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COVID-19 Detection from Respiratory Sounds
with Hierarchical Spectrogram Transformers
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Abstract— Monitoring of prevalent airborne diseases
such as COVID-19 characteristically involves respiratory
assessments. While auscultation is a mainstream method
for preliminary screening of disease symptoms, its utility
is hampered by the need for dedicated hospital visits.
Remote monitoring based on recordings of respiratory
sounds on portable devices is a promising alternative,
which can assist in early assessment of COVID-19 that
primarily affects the lower respiratory tract. In this study,
we introduce a novel deep learning approach to distinguish
patients with COVID-19 from healthy controls given audio
recordings of cough or breathing sounds. The proposed
approach leverages a novel hierarchical spectrogram trans-
former (HST) on spectrogram representations of respi-
ratory sounds. HST embodies self-attention mechanisms
over local windows in spectrograms, and window size is
progressively grown over model stages to capture local
to global context. HST is compared against state-of-the-art
conventional and deep-learning baselines. Demonstrations
on crowd-sourced multi-national datasets indicate that HST
outperforms competing methods, achieving over 90% area
under the receiver operating characteristic curve (AUC) in
detecting COVID-19 cases.

Index Terms— COVID-19, respiratory sound classifica-
tion, auditory, spectrogram, transformer, auscultation

I. INTRODUCTION

Auscultation is a primary step in preliminary assessment of
subjects for symptoms of respiratory disorders [1]. Assessment
via stethoscope is non-invasive and inexpensive, but it must be
performed by a healthcare professional during a hospital visit.
As such, early-stage or continuous monitoring of symptoms
might not be feasible across broad populations [2], as expe-
rienced during the COVID-19 pandemic that has significantly
disrupted access to healthcare facilities across the globe [3]. A
promising solution is remote monitoring of respiratory sounds
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based on audio recordings captured via portable equipment
such as mobile or wearable devices [4]. While COVID-
19 is clinically diagnosed with reverse-transcription polymer
chain reaction (RT-PCR) tests [5] and/or radiological imaging
[6]–[8], economic and time costs of these lab-administered
procedures restrict patient access and elicit backlogs during
periods of high transmission [9]–[11]. Remote screening of
respiratory sounds can assist in preliminary assessment and
risk stratification for potential COVID-19 cases under low-
resource settings. By more-informed resource allocation, it can
facilitate early referrals and timely interventions to deteriorat-
ing patients to help contain the spread of disease [12].

Auditory screening of respiratory disorders relies on the
prevalence of disease-specific features in respiratory sounds
[13]. Diverse pathology can be encountered in respiratory dis-
orders ranging from inflammation and obstruction to consoli-
dation and pleural effusion. While some commonalities exist
among diseases, precise characteristics of pathology including
location and severity typically show disease-specific patterns
[14], [15]. Imaging studies report that common lung pathology
in non-COVID-related pneumonia has central-peripheral dis-
tribution, air bronchograms, and pleural enlargement/effusion;
whereas COVID-related pneumonia frequently elicits lower-
peripheral distribution, enhanced ground glass opacity and
vascular enlargement [16], [17]. These pathomorphological
changes have been associated with increased prevalence of
adventitious respiratory sounds in COVID-19 such as coarse
breathing, wheezes, and crackles [18], which may carry dis-
tinctive cues compared to respiratory sounds in other dis-
eases such as asthma, chronic obstructive pulmonary disease
(COPD), bronchitis and pertussis [15], [19].

Literature suggests that normal respiratory sounds resemble
filtered noise with a typical frequency range of 100-1500 Hz
during inspiration/expiration segments of the respiration cycle,
and are nearly inaudible during inter-segment intervals [20].
Meanwhile, adventitious sounds common in COVID-19 can
show a degree of divergence from normal sounds in terms of
their spectro-temporal characteristics. For instance, wheezes
resemble repeated sinusoids that last longer than ∼80 ms
and that span across 100-5000 Hz [21], [22], and crackles
resemble dampened sinusoids shorter than ∼15 ms and that
span across 150-2000 Hz [18], [23]. Representative samples
of breathing sounds for COVID and non-COVID cases are
displayed in Fig. 1. The non-COVID case without symptoms
follows a cyclic pattern with moderate frequency range and
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Fig. 1: Audio recordings of breathing sounds depicted in time-domain (top row) and corresponding spectrogram representations (bottom row).
Representative samples are displayed for a COVID case, a non-COVID case with symptoms, and a non-COVID case without symptoms.

relatively silent inter-segment intervals. The non-COVID case
with symptoms shows a degree of irregularity in time and
frequency distribution, and modest elevation of intensity at
moderate frequencies. In comparison, the COVID case shows
a uniformly spread intensity distribution across both time and
frequency dimensions, relatively stronger intensity at higher
frequencies. Corroborating findings in literature, such apparent
and other fine-grained differences in time-frequency charac-
teristics bring forth the possibility of automated screening to
identify potential COVID-19 cases.

Given recordings of respiratory sounds, remote screen-
ing leverages an algorithm to automatically infer respiratory
conditions. Previous studies have successfully applied ma-
chine learning (ML) algorithms to detect a broad spectrum
of conditions including bronchitis, bronchiolitis, emphysema,
pertussis, pneumonia, rale and rhoscus [24]–[28]. Commonly,
summary descriptors of audio data were extracted such as
Mel-frequency cepstral coefficients (MFCC), tonal and chroma
features [29]. Classifiers were then built via traditional meth-
ods such as support vector machines (SVM) and logistic
regression, or via network models such as convolutional neural
networks (CNN) [25] and recurrent neural networks (RNN)
[26], [30]. Recent studies have followed similar approaches
for COVID-19 detection from cough, breathing or speech
sounds [31]–[34]. Various sound descriptors were extracted
including MFCC, tonal, chroma, spectral contrast, glottal flow
and spectrogram features [32], [34]–[36]. Either traditional
classifiers such as SVM, decision trees and random forests
[31], [37], [38], or network models including CNNs or RNNs
[26], [30], [39], [40] were then used for detection.

Despite the potential of learning-based approaches for
preliminary COVID-19 screening, there remain avenues for
further technical improvement. Many prior studies have em-
ployed shallow models ––based on traditional classifiers or
neural networks— in conjunction with hand-crafted audio
features. While this approach mitigates model complexity,
latent representations in shallow models might have limited
power to capture the rich information in respiratory sounds
[38]. Few studies have considered additional input features
extracted from pre-trained networks, which can be suboptimal
compared against task-specific features derived via end-to-end
learning [31]. Other studies have reported elevated detection

performance with deep CNN or RNN models that capture a
hierarchy of latent representations. Yet, CNNs perform local
filtering with compact kernels so they show limited sensitivity
to long-range contextual features [41]. Although RNNs can
improve capture of temporal context, serial processing of input
sequences can introduce computational burden and compro-
mise feature learning over long time scales [41].

In this study, we introduce a novel deep learning method to
automatically screen COVID-19 symptoms with short record-
ings of respiratory sounds. The proposed method first converts
respiratory sounds onto a time-frequency (i.e., spectrogram)
representation, and then classifies disease from spectrogram
features using a novel hierarchical spectrogram transformer
(HST). Unlike prior models that use a compact set of
knowledge-based features, HST leverages a comprehensive
characterization of respiratory sounds through high-resolution
log-spectrogram features. Compared to CNNs, HST leverages
self-attention mechanism for improved sensitivity to long-
range context in spectrograms. Compared to RNNs and vanilla
transformers, HST leverages a patch-based approach where
the time-frequency extent of attended regions is progressively
increased for computational efficiency.

Main Contributions:

• We introduce a novel hierarchical spectrogram trans-
former for screening COVID-19 symptoms from audio
recordings of respiratory sounds.

• The proposed transformer model progressively captures
local to global context in spectrogram representations for
enhanced efficiency.

• We demonstrate improved performance in COVID-19
detection against state-of-the-art baselines including tra-
ditional, CNN, RNN, transformer, and ensemble methods.

II. RELATED WORK

A. Shallow Classifiers

A first group of studies have proposed to detect COVID-19
via shallow models based on either traditional ML methods
(e.g., SVM, random forests, decision trees), or neural networks
of limited depth. In [37], MFCC features of cough sounds
were analyzed with SVM to separate COVID-19 from other
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respiratory infections. In [32], a diverse set of audio features
including the power spectrum, Mel spectrum, chroma, tonal,
and MFCC features were extracted from cough sounds, and
analyzed with SVM and logistic regression models. In [42],
cough, breath, and voice recordings were analyzed with an
ensemble of shallow CNN, gradient boosted trees and logistic
regression models given Mel-spectrogram and cochleagram
features along with network-based features from a pre-trained
convolutional architecture for audio data (VGGish) [43]. In
[33], hand-crafted features of cough sounds including MFCC,
log energy and entropy were analyzed via a shallow five-
layer model with gated linear units. Cough features were
augmented with symptomatic and demographic features for
improved performance. In [34], MFCC, tonal, chroma, spectral
contrast, spectrogram features of cough sounds were input
to an ensemble of decision-tree, logistic regression, random
forest, boosting and multi-layer perceptron (MLP) models.
In [38] and [44], COVID-19 screening was proposed based
on spectrogram and wavelet features of respiratory sounds
concatenated with network-based features obtained from pre-
trained VGGish or CNN models. The compiled features were
then processed with an SVM or logistic regression model.
In [36], a new bio-inspired cepstral feature was proposed for
COVID-19 detection, and demonstrated on speech, breathing,
or cough sounds with SVM. In [31] acoustic and scattering
features were augmented with pre-trained VGGish features
of cough, breath, speech sounds. Decision trees, random
forests or MLP models were then used. These previous studies
commonly leveraged shallow models of low complexity to
process either hand-crafted features or task-agnostic features
from pre-trained networks. While this approach can improve
learning behavior on limited datasets, the resultant classifiers
are deprived from a diverse hierarchy of task-specific latent
features that could be captured via end-to-end deep learning.

B. Deep Classifiers
A second group of studies have instead considered deep

models typically based on CNN or RNN architectures for
COVID-19 detection. In [37], a CNN was used to predict
COVID-19 given MFCC features of cough sounds. In [39],
short-time magnitude spectrogram of cough sounds were clas-
sified via a CNN. In [32], power spectrum, Mel spectrum,
chroma, tonal, and MFCC features of cough sounds were clas-
sified using an ensemble of pre-trained CNN and traditional
ML models. In [40], an ensemble of CNNs was used given
as input MFCC features of cough sounds. Three different pre-
trained CNNs were used to extract features related to lung
and respiratory tract, vocal cord, and sentiment information.
In [45] and [46], spectrogram features of cough and breathing
sounds were analyzed with an ensemble of CNNs. In [47],
spectrogram features of cough and breathing sounds were
analyzed via a CNN. In [35], glottal flow features of speech
sounds were extracted and classified via a CNN. In [48],
augmented mel-spectrogram features of breathing sounds were
analyzed via a CNN. Although CNN models are powerful in
capturing local features in time-frequency representations of
audio data, the inductive bias introduced by filtering with local
kernels limits sensitivity for long-range contextual features.

Several recent studies have instead proposed architectures
designed for sequence modeling to improve capture of tempo-
ral context. In [49], MFCC, chroma and spectral features of
cough sounds were analyzed with a long-short-time-memory
(LSTM) model. In [50], spectral centroid, spectral roll-off,
zero-crossing rate, MFCC, first and second derivatives of
MFCC features of cough, breathing, and voice sounds were
analyzed with an LSTM. In [51], both hand-crafted and
learning-based features from spectrograms of cough sounds
were analyzed with an ensemble of SVMs and LSTMs. In
[52], an LSTM was proposed to detect COVID-19 from
MFCC, power spectrum, and filter bank features of cough,
breath and sneeze sounds. In [53], cepstral coefficients and
filter bank features of breathing, cough, and speech sounds
were analyzed with a bidirectional LSTM. In [54] and [55],
hybrid CNN-LSTM architectures were proposed for COVID-
19 detection, which received as input MFCC or spectrogram
features of cough sounds. In [56], network-based features of
speech and cough sounds were inspected via a gated recurrent
unit (GRU) model that also received clinical features for
improved accuracy. While RNNs have demonstrated success
in capturing signal correlations over long time scales, they can
suffer from suboptimal learning due to vanishing gradients.

Here, we introduce a novel hierarchical transformer model
for COVID-19 detection from spectrogram features of respi-
ratory sounds. Few recent studies have independently con-
sidered transformer models for analyzing respiratory sounds
in COVID-19 patients. In [56], sound embeddings extracted
from a pre-trained transformer are analyzed with an RNN
for classification. Note that [56] use a vanilla transformer of
quadratic complexity, and perform task-agnostic pre-training
to extract sound embeddings that are frozen during the
classification stage. Instead, HST employs a hierarchical
patch-based attention to progressively capture local to global
context while alleviating computational burden, and it is
trained end-to-end for disease classification resulting in task-
specific representations. In [57], spectrogram, MFCC and other
clinical features are analyzed simultaneously with a nested
multi-modal transformer. The nested transformer splits audio
spectrograms into non-overlapping patches of growing size
across a hierarchy. Yet, the nested transformer independently
processes single patches in each stage, only permitting interac-
tions among neighboring patches via pooling operations during
block aggregation. In contrast, HST uses cyclic shifts to split
spectrograms into partly overlapping patches. It further lever-
ages self-attention operations to enable interactions between
a broader set of patches at each stage, which can improve
sensitivity to global context and model performance.

III. METHODS

A. Experimental Datasets
We performed demonstrations on two public datasets con-

taining audio recordings of respiratory sounds: Cambridge
(breathing and cough; https://www.covid-19-sounds.
org/en/blog/data_sharing.html) [38], and COUGHVID
(cough; https://zenodo.org/record/4048312) [58]. Vo-
cal respiratory sounds were recorded via microphones on cellular
phones or personal computers. Participants were instructed to record
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Fig. 2: Overall architecture for the hierarchical spectrogram transformer (HST) model for COVID-19 detection based on audio recordings
of bodily sounds. To derive the model input, audio recordings are first mapped onto a spectrogram that captures a two-dimensional time-
frequency representation. The spectrogram is then processed with HST that employs a hierarchical patch-based attention mechanism to
capture local to global context. HST is a five-stage model where the first four stages derive latent audio representations with a cascade of
local-windowed transformer blocks. The spectrotemporal resolution of the feature maps is progressively lowered across these stages, while
the embedding dimensionality is increased. The last stage maps latent representations onto a classification output via cross-entropy loss.

in a silent environment, and breathe deeply through their mouth or
cough directly to the microphones held within arm’s length.

1) Cambridge Dataset: The dataset included three subject
groups [38]: “COVID” group with positive test results within 14
days prior to the recording (141 samples), “non-COVID without
symptom” group with clean medical records (298 samples), and “non-
COVID with symptom” group with clean medical records albeit with
a cough symptom (32 samples). The “non-COVID” participants were
recruited from countries where the virus was not widespread during
the time of data collection, had not tested positive for COVID-19.

Each participant provided a written report of symptoms, and
uploaded a recording containing five breathing or three cough samples
through either an Android application or a web-based platform. Each
sample corresponded to a single audio recording. Recordings were
imported at a sampling rate of 22050 Hz using the Librosa library
[59]. Silent or noisy recordings were discarded. Silent periods at the
beginning and end of the recording were trimmed. Only recordings
that were longer than 2 s were analyzed. To alleviate data imbalance,
augmentation was performed on the training set via amplification by
a random scalar in [1.15 2], random change of pitch speed by [0.8
0.99], and addition of white noise without distorting the audibility of
the original recordings significantly, following procedures in [38].

Two separate tasks were considered: discriminating “COVID” ver-
sus “non-COVID without symptom” groups (Task 1), and “COVID”
versus “non-COVID with symptom” groups (Task 2). Both tasks were
implemented given either cough or breath modalities as input [60]. In
Task 1, we analyzed (137, 141) samples in COVID and non-COVID
groups respectively for cough modality, (141, 144) samples in COVID
and non-COVID groups for breath modality. In Task 2, we analyzed
(54, 88) samples in COVID versus non-COVID groups for cough
modality, (56, 89) samples in COVID versus non-COVID groups for
breath modality.

2) COUGHVID Dataset: The dataset included participants of
different ages, genders, geographic locations, and COVID-19 statuses
[58]. Four experienced physicians labeled the recordings to diagnose
any pulmonary abnormalities. Here, two groups of subjects were
analyzed: “COVID” group with disease labels and cough symptoms
(608 samples), and the “non-COVID with symptom” group with clean
medical records and cough symptoms (1778 samples). Cough sounds
were captured through a web-based platform. To improve data quality,
poor recordings with signal-to-noise ratio (SNR) lower than 0.8 were
discarded. A spectral peak detection algorithm was used to segment
each recording into individual cough events. The recordings were

imported using the Librosa library [59] at a sampling rate of 22050
Hz. Silent periods present at the start and end of the recordings were
trimmed. Only recordings that were longer than 2 s were analyzed.
Data augmentation was performed on the training set to alleviate
data imbalance. A single task given cough modality as input was
considered where “COVID” versus “non-COVID with symptom”
groups were discriminated. Accordingly, we analyzed (1644, 1644)
samples in COVID versus non-COVID groups.

Fig. 3: Illustration of the local windowed multi-head self-attention
(LWMSA) mechanism in HST. In a given stage, attention is computed
among a local neighborhood of M × M patches (M = 4 in this
example). During progression onto the next stage, feature maps are
concatenated via patch merge across 2 × 2 grids of neighboring
patches, resulting in 4-fold increase in patch size. LWMSA is again
performed across M × M patches, but a broader receptive field is
covered in the spectrogram due to growing patch size.

B. Hierarchical Spectrogram Transformer

The proposed method leverages a novel architecture to detect
COVID-19 from respiratory sounds. Audio recordings of cough or
breathing sounds are first mapped onto a spectrogram that captures
a two-dimensional time-frequency representation (Section III-B.1).
The spectrogram is then processed with a hierarchical patch-based
attention mechanism to capture local to global context across network
layers (Section III-B.2). Here, we introduce a five-stage model
where the first four stages derive latent audio representations with
a cascade of local-windowed transformer blocks (Section III-B.3).
The spectrotemporal resolution of feature maps is progressively
lowered across these stages, while the channel dimensionality is
expanded. Meanwhile, the last stage maps latent representations
onto a classification output via cross-entropy loss (Section III-B.4).
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Code for implementing HST is available at https://github.com/icon-
lab/HST.

1) Spectrogram Features: Many prior studies on disease de-
tection from audio recordings suggest that spectrotemporal features
can provide comprehensive description of respiratory sounds [61]–
[63]. Inspired by this success, here we employ Mel-spectrogram
representations of audio recordings. Given a recording of duration
D, a the short-time Fourier transform (STFT) of audio recordings
are calculated over windowed segments. The STFT (A[k, n]) of the
sampled audio signal (a[n]) at time n with length N is taken as:

A[k, n] =

∞∑
m=−∞

a[m] · w[m− n] · exp
(
− j2πkm

N

)
(1)

for k = 0, 1, 2, ..., N − 1. The computed frequency components are
f = kfs

N where the sampling frequency is fs=22050 Hz, N = 2048
and w[n] is the Hanning Window of length N .

w[n] = 0.5− 0.5 · cos
(
2πn

N

)
(2)

The STFT is computed via a 2048-point fast Fourier transform (FFT)
with 2048 points in each segment and 128 overlapping points between
consecutive segments, for a favorable trade-off between spectral
and temporal resolution. Lastly, the magnitude square of the STFT
coefficients are used to derive the spectrogram representation:

Mel-spectrogram[mel, n] = log(|A[f(mel)N/fs, n]|2) (3)
where f (mel) denotes frequency in Hz corresponding to mel-scale
frequency mel. Two-dimensional (2D) spectrograms are log trans-
formed to induce compressive nonlinearity and linearly downsampled
onto a 224×224 matrix for efficiency.

2) Network Architecture: Here, we propose a five-stage architec-
ture for COVID-19 detection (Fig. 2). In Stage 1, the 2D spectrograms
are partitioned into non-overlapping patches of size h × h, where
h = 4. Thus, partitioning produces a grid of P × P = 56 × 56
patches. Each patch is flattened onto a feature dimensionality of
4× 4 = 16, and then projected with a linear embedding layer onto a
dimensionality d, where d = 96. This provides an input feature map
of size 56×56×d to the HST block in Stage 1. The input map is then
processed with the transformer block equipped with local windowed
attention mechanisms to achieve linear complexity as described in the
following section, instead of global attention mechanisms in vanilla
transformer models that suffer from quadratic complexity [41], [64].

HST comprises a hierarchical architecture for efficient capture of
contextual features in spectrograms across multiple scales. To do
this, the spectrotemporal resolution of features maps is progressively
decreased while the embedding dimensionality is increased across
stages (Fig. 3). In Stages 2-4, a patch merge layer is used across
2×2 grids of neighboring patches to lower the number of patches (i.e.,
sequence tokens) by a factor of 4. Afterwards, a linear embedding
layer scales up the embedding dimensionality by a factor of 2. There-
fore, the input feature maps to the stages are given as (56/2S−2)×
(56/2S−2)×(2S−2d), and the input feature maps to the HST blocks
in each stage are given as (56/2S−1)×(56/2S−1)×(2S−1d), where
S is the stage number (see Fig. 2). A cascade of transformer blocks
are then employed in each stage, where local windowed attention is
computed over a broader scale due to merged patches.

In its final stage, HST processes latent representations of spectro-
grams extracted via the prior stages for disease detection. In Stage
5, an input feature map of size 7 × 7 × 8d is received. Afterwards,
this feature map is passed through a cascade of a normalization layer,
a one-dimensional adaptive average pooling layer [64], and a linear
classification head with two output units.

Small, base and large variants of HST were implemented. Across
Stages 1-4, the small variant had (1,1,3,1) blocks, hidden size of 96-
768, MLP size of 384-3072, 3-24 attention heads, the base variant
had (1,1,9,1) blocks, hidden size of 96-768, MLP size of 384-3072, 3-
24 attention heads, and the large variant had (1,1,9,1) blocks, hidden
size of 128-1024, MLP size of 512-4096, 4-32 attention heads.

Fig. 4: Training and validation (a) F1 performance and (b) loss values
of HST across training epochs. Results shown separately for models
based on breath and cough modalities, and for Task 1 (COVID vs.
non-COVID without symptoms) and Task 2 (COVID vs. non-COVID
with symptoms).

TABLE I: Validation F1 scores of competing neural network models
across learning rates. Highest performing rates for each model are
marked in bold font.

10−5 3× 10−4 10−3 10−2

CNN 0.77±0.10 0.79±0.10 0.82±0.05 0.75±0.13
DeepShufNet 0.68±0.11 0.71±0.13 0.67±0.15 0.77±0.10
LSTM 0.52±0.17 0.55±0.24 0.56±0.10 0.54±0.25
BiLSTM 0.47±0.08 0.58±0.07 0.60±0.08 0.57±0.08
CNN-LSTM 0.51±0.18 0.69±0.09 0.52±0.19 0.53±0.14
A-CNN-LSTM 0.54±0.28 0.68±0.08 0.71±0.10 0.73±0.12
Wav2Vec 0.67±0.04 0.61±0.05 0.57±0.03 0.58±0.03
AST 0.71±0.12 0.69±0.11 0.74±0.14 0.72±0.15
HMT 0.77±0.09 0.76±0.08 0.73±0.06 0.67±0.24
Ensemble 0.70±0.16 0.75±0.13 0.77±0.16 0.70±0.10
HST 0.83±0.07 0.74±0.08 0.70±0.10 0.72±0.15

3) Local Windowed Transformer Blocks: Each stage of HST
except for the final stage includes a cascade of transformer blocks to
derive attention-based latent representations. The transformer blocks
are composed of multi-head self-attention (MSA) modules and MLPs,
interleaved with normalization layers and residual connections as
in [41]. However, unlike vanilla token-based [65] or patch-based
transformers [64] proposed for auditory tasks, the MSA modules in
HST leverage local windowed attention as inspired by the the success
of restricted attention models in computer vision tasks [66]–[68].
Attention is restricted to a local neighborhood of M × M patches,
where M = 7 in this work. Within a transformer block, a cyclic shift
of (⌊M2 ⌋, ⌊M2 ⌋) patches is enforced to improve diversity in window
definition prior to the second MSA module. Given the input feature
map yi−1 to the ith transformer block, latent representations are
computed as:

ẑi = LWMSA(LN(yi−1)) + yi−1,

zi = MLP(LN(ẑi)) + ẑi,

ŷi = LWMSA(LN(zi)) + zi,

yi = MLP(LN(ŷi)) + ŷi,

(4)

where LWMSA is the local windowed MSA module, LN denotes
layer normalization, yl is the output of the transformer block. A two-
layer MLP is used with Gaussian error linear unit (GELU) activation
functions.

Provided an input sequence of nt tokens X ∈ Rnt×d, the self-
attention matrix in an LWMSA module is calculated as:

Attention(Q,K, V ) = softmax

(
QKT

√
d

+B

)
V, (5)

where B ∈ Rnt×nt is a relative position bias matrix [41], and
Q,K, V ∈ RnT×d are the query, key, and value matrices obtained
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TABLE II: Hyperparameters for neural network models.

Learning Rate λL2 Batch Size Optimizer

CNN 10−3 10−4 8 Adam
DeepShufNet 10−2 10−4 8 Adam
LSTM 10−3 - 8 Adam
BiLSTM 10−3 - 8 Adam
CNN-LSTM 3× 10−4 - 8 Adam
A-CNN-LSTM 10−2 10−4 8 Adam
Wav2Vec 10−5 10−6 32 Adam
AST 10−3 10−4 8 Adam
HMT 10−5 10−4 5 Adam
Ensemble 10−3 10−4 6 Adam
HST 10−5 10−8 8 AdamW

as learnable linear projections of X:

Q = XLQ,

K = XLK ,

V = XLV ,

(6)

where LQ, LK , LV ∈ Rnt×d are the corresponding projection
matrices. Note that, in Eq. 5, calculation of softmax attention involves
formation of an Rnt×nt inter-token interaction matrix. A single
sequence with nt = P 2 patches are processed in vanilla MSA
modules [41], [69], resulting in a quadratic complexity of O(P 2 ×
P 2). In contrast, LWMSA splits the overall sequence into ( P

M )2

sub-sequences of length nt = M2 each. As such, LWMSA enables a
linearly scaled complexity of O(( P

M )2×M2×M2) = O(P 2×M2)
with respect to sequence length.

4) Loss Function: A binary cross-entropy loss function is em-
ployed to train the HST models for COVID-19 detection. The
classification head at the output layer produces a predicted probability
for each output class in the range [0, 1]. Cross-entropy loss is then
expressed as:

Loss = − 1

J

J∑
j=1

(xj log(x̂j) + (1− xj)log(1− x̂j)) (7)

where xj is the true label of the jth sample (1 denoting COVID-19,
0 denoting healthy control), x̂j is the predicted probability of the jth

sample, and J is the number of samples.

C. Competing Methods
Several state-of-the-art baselines were adopted including a tradi-

tional ML method along with CNN, RNN, transformer, and ensemble
models for COVID-19 detection. All models analyzed grayscale
spectrograms, yet the spectrogram for a given audio recording was
replicated across the three color channels to provide inputs to CNN
modules.

SVM: A total of 733 hand-crafted and data-driven features were
taken as inputs [38]. Hand-crafted features including duration, onset,
tempo, period, RMS energy, spectral centroid, roll-off frequency,
zero crossing, MFCC, ∆-MFCC, ∆2-MFCC were extracted via the
Librosa library [59]. Data-driven features were obtained from inter-
mediate layers of a pre-trained VGGish model. An SVM classifier
with a radial basis function (RBF) kernel was built for each task.

CNN: A CNN model was built that received as input spectrogram
features [39]. The ResNet34 architecture was adopted with image
resolution 224×224, albeit a fully-connected (FC) layer with two
output units was used for COVID-19 detection.

DeepShufNet: A CNN model was built based on the efficient ar-
chitecture reported in [48]. The models received as input spectrogram
features identical to the CNN baseline.

LSTM: An RNN model was built based on the LSTM architecture
in [49]. Model inputs included 13 MFCC, 13 ∆-MFCC, 13 ∆2-
MFCC, 1 spectral center, 7 spectral contrast and 12 chroma features.
A total of 59 features were compiled.

TABLE III: Test performance of competing methods in Task 1 based
on cough sounds for the Cambridge dataset. Performance in distin-
guishing the COVID from the non-COVID group without symptoms
is listed as mean±std across cross-validation folds.

AUC Precision Recall F1

SVM 0.68±0.13 0.64±0.12 0.72±0.13 0.67±0.10
CNN 0.93±0.04 0.87±0.10 0.86±0.08 0.86±0.06
DeepShufNet 0.92±0.04 0.81±0.11 0.81±0.08 0.80±0.05
LSTM 0.71±0.10 0.64±0.07 0.68±0.09 0.66±0.07
BiLSTM 0.64±0.08 0.62±0.08 0.68±0.16 0.64±0.09
CNN-LSTM 0.66±0.12 0.64±0.09 0.61±0.19 0.61±0.10
A-CNN-LSTM 0.88±0.05 0.81±0.11 0.71±0.09 0.75±0.08
Wav2Vec 0.82±0.04 0.83±0.06 0.70±0.03 0.76±0.03
AST 0.86±0.04 0.89±0.11 0.70±0.13 0.77±0.05
HMT 0.89±0.07 0.77±0.11 0.77±0.13 0.76±0.05
Ensemble 0.90±0.04 0.84±0.12 0.74±0.16 0.77±0.08
HST 0.97±0.03 0.92±0.08 0.94±0.07 0.93±0.04

BiLSTM: A bidirectional RNN model was built based on the
BiLSTM architecture reported in [70]. The input features were
identical to those for the LSTM baseline.

CNN-LSTM: A hybrid model composed of CNN and LSTM
layers was adapted as reported in [71]. The input features matched
those provided to the LSTM baseline.

A-CNN-LSTM: An attention-based hybrid CNN-LSTM was im-
plemented as reported in [54]. The model received as input spectro-
gram features.

Wav2Vec: An audio transformer model was adopted [65].
Wav2Vec processed raw audio signals resampled at 16 KHz with
a feature encoder (7-layer CNN), a context encoder (12 transformer
blocks), followed by a classification layer.

AST: An audio spectrogram transformer (AST) introduced for
general audio tasks was adopted [64]. The model received as input
spectrogram features as in HST. The architecture comprised vanilla
transformer blocks processing the input with patch size 16×16. The
last layer of AST was adapted to a classification layer with two output
units.

HMT: A hierarchical multi-modal transformer (HMT) for COVID-
19 detection was implemented [57]. The model fused representations
from a transformer branch processing spectrograms and from an MLP
branch processing MFCC features.

Ensemble: An ensemble model [72] was implemented that com-
bined CNN and AST models described above. Output feature maps
prior to classification layers in each model were concatenated, and
input to an FC layer with two output units.

D. Modeling Procedures
Models were implemented in PyTorch except for LSTM, BiLSTM

and CNN-LSTM that were implemented in Tensorflow. Models were
executed on NVidia A4000 GPUs. Spectrogram intensities were
normalized to a mean of 0.5 and standard deviation of 0.5. Modeling
was performed separately on each dataset via 10-fold cross validation
[38]. In each fold, data were partitioned into independent training,
test and validation sets nearly of size (70%, 20%, 10%), with
no participant-level overlap between the sets. Following common
practice in literature, transformer models were initiated with pre-
trained weights. AST and HST were pre-trained for object detection
on ImageNet, Wav2Vec was pre-trained on sampled speech audio
from the LibriSpeech dataset. Gradient clipping was used with an
upper threshold of 0.1 for the gradient norm.

Model hyperparameters were selected based on F1 performance on
the validation set (see Table I for representative results on learning
rate, and Table II for selections). For SVM, regularization parameter
C and kernel coefficient γ were selected via grid search. For network
models, a common set of learning rate, regularization parameter for
L2 norm of model weights (λL2

), batch size, optimizer were selected
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TABLE IV: Performance in Task 1 based on breathing sounds, distin-
guishing the COVID from the non-COVID group without symptoms.

AUC Precision Recall F1

SVM 0.65±0.14 0.63±0.14 0.70±0.19 0.66±0.15
CNN 0.91±0.04 0.82±0.12 0.72±0.18 0.74±0.09
DeepShufNet 0.91±0.07 0.83±0.07 0.85±0.07 0.84±0.06
LSTM 0.68±0.14 0.65±0.19 0.60±0.16 0.62±0.16
BiLSTM 0.69±0.12 0.63±0.10 0.68±0.19 0.65±0.14
CNN-LSTM 0.72±0.09 0.68±0.08 0.75±0.13 0.71±0.08
A-CNN-LSTM 0.84±0.06 0.83±0.11 0.63±0.14 0.71±0.11
Wav2Vec 0.83±0.04 0.81±0.05 0.67±0.08 0.73±0.06
AST 0.85±0.01 0.82±0.10 0.70±0.19 0.75±0.13
HMT 0.86±0.09 0.82±0.09 0.71±0.17 0.75±0.13
Ensemble 0.87±0.05 0.80±0.06 0.80±0.07 0.80±0.04
HST 0.97±0.02 0.94±0.06 0.95±0.04 0.94±0.04

Fig. 5: ROC curves for Task 1 to distinguish the COVID group from
the non-COVID group without symptoms, based on cough (left), or
breathing sounds (right). AUC is listed for each model (see legend).

across tasks. To avoid over-fitting, the number of epochs ranged
between 1-100 and was selected separately for each task to stop
training when a continual increase in validation loss or decrease in
validation F1 was observed. Figure 4 shows F1 and loss values of
HST across epochs, where the trained models converge onto relatively
high performance levels of around 0.85-0.90 F1 on the validation set.
Model performance was measured using AUC, precision, recall, and
F1 metrics on the test set. Individual metrics were averaged across
the test set. Mean and standard deviation of metrics were reported
across cross-validation folds. Statistical significance of performance
differences was assessed via non-parametric Wilcoxon signed-rank
tests.

IV. RESULTS

A. COVID-19 Detection
We first demonstrated HST on the Cambridge dataset against

state-of-the-art baselines including traditional (SVM), CNN (CNN,
DeepShufNet), RNN (LSTM, BiLSTM), hybrid CNN-RNN (CNN-
LSTM, A-CNN-LSTM), transformer (Wav2Vec, AST, HMT), and
ensemble (Ensemble) methods. In Task 1, the COVID group was
distinguished from the non-COVID group without symptoms based
on either cough or breathing sounds. Performance for competing
methods are reported in Table III with cough modality, in Table
IV with breathing modality. Receiver operating characteristics (ROC)
curves for SVM, AST, CNN and HST are displayed in Fig. 5. Overall,
HST significantly outperforms competing methods (p < 0.05). As
seen in ROC curves, HST also maintains a more favorable trade-
off between true and false positive rates. These results indicate that
HST enables improved capture of contextual features in spectrograms
to improve detection of COVID-19. Note that comparable detection
performance is attained via HST with cough versus breathing modal-
ities. This finding implies that both modalities carry discriminative
information regarding respiratory symptoms of COVID-19. In Task
2, the COVID group was distinguished from the non-COVID group
with symptoms. Performance metrics are listed in Table V for cough
modality, and in Table VI for breathing modality. ROC curves

TABLE V: Performance in Task 2 based on cough sounds, distinguish-
ing the COVID group from the non-COVID group with symptoms.

AUC Precision Recall F1

SVM 0.69±0.15 0.62±0.16 0.65±0.17 0.62±0.15
CNN 0.95±0.05 0.87±0.12 0.92±0.10 0.89±0.09
DeepShufNet 0.96±0.03 0.86±0.09 0.98±0.04 0.91±0.05
LSTM 0.57±0.20 0.56±0.18 0.71±0.27 0.62±0.20
BiLSTM 0.38±0.23 0.69±0.31 0.43±0.20 0.49±0.20
CNN-LSTM 0.55±0.21 0.67±0.17 0.43±0.12 0.49±0.13
A-CNN-LSTM 0.88±0.08 0.80±0.11 0.88±0.12 0.83±0.09
Wav2Vec 0.89±0.05 0.76±0.12 0.80±0.08 0.77±0.08
AST 0.83±0.11 0.86±0.06 0.86±0.07 0.86±0.05
HMT 0.87±0.07 0.80±0.09 0.85±0.07 0.82±0.07
Ensemble 0.94±0.06 0.78±0.15 0.96±0.09 0.85±0.09
HST 0.98±0.03 0.94±0.08 0.93±0.07 0.94±0.07

TABLE VI: Performance in Task 2 based on breathing sounds, distin-
guishing the COVID from the non-COVID group with symptoms.

AUC Precision Recall F1

SVM 0.71±0.18 0.74±0.20 0.58±0.19 0.62±0.13
CNN 0.92±0.06 0.85±0.08 0.91±0.09 0.87±0.06
DeepShufNet 0.96±0.04 0.88±0.06 0.95±0.06 0.91±0.05
LSTM 0.64±0.17 0.45±0.16 0.44±0.19 0.44±0.17
BiLSTM 0.61±0.21 0.56±0.33 0.48±0.32 0.49±0.28
CNN-LSTM 0.75±0.16 0.49±0.19 0.53±0.30 0.49±0.21
A-CNN-LSTM 0.87±0.08 0.80±0.11 0.92±0.06 0.85±0.06
Wav2Vec 0.92±0.05 0.80±0.17 0.88±0.04 0.83±0.09
AST 0.93±0.05 0.87±0.04 0.94±0.06 0.90±0.03
HMT 0.86±0.06 0.78±0.09 0.88±0.09 0.83±0.06
Ensemble 0.91±0.04 0.86±0.10 0.90±0.12 0.87±0.06
HST 0.97±0.02 0.91±0.06 0.96±0.09 0.93±0.04

are displayed in Fig. 6. HST significantly outperforms competing
methods (p < 0.05), except for DeepShufNet and Ensemble that yield
higher recall. HST also maintains a modestly better trade-off between
true and false positive rates. Taken together, these results indicate that
contextual representations of audio spectrograms captured by HST
enable discrimination of respiratory symptoms in COVID-19 patients
versus healthy controls.

Next, we demonstrated HST on the separate COUGHVID dataset
against the same set of traditional, CNN, RNN, hybrid CNN-RNN,
transformer, and ensemble methods. A single task was implemented
to distinguish the COVID group and non-COVID group with cough
symptoms, based on cough sounds. Performance metrics for compet-
ing methods are reported in Table VII. All methods yield relatively
lower performance on the COUGHVID dataset, implying elevated
task difficulty compared to the Cambridge dataset. That said, HST
again outperforms competing methods significantly in all metrics
(p < 0.05), except for A-CNN-LSTM that yields slightly higher
precision. These results suggest that HST offers more reliable capture
of COVID-related cues in respiratory sounds against competing
methods.

B. Model Interpretation
Across multiple stages, the proposed HST model nonlinearly

transforms spectrogram features of audio recordings to extract their
latent representations. Ideally, these representations should capture
hidden relationships among input features that serve to improve
discrimination between output classes. To examine this issue, we
visualized the latent representations extracted across separate stages
in HST. A random subset of 55 audio recordings were projected
through HST, and the evoked hidden unit responses for each sample
were stored as stage-specific response vectors. At each stage, the
response vectors of all samples were embedded via t-SNE onto
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Fig. 6: ROC curves for Task 2 to distinguish the COVID-19 group
from the non-COVID group with cough symptoms, based on cough
sounds (left), and breathing sounds (right). AUC is listed for each
model (see legend).

TABLE VII: Performance in distinguishing the COVID from the non-
COVID group based on cough sounds for the COUGHVID dataset.

AUC Precision Recall F1

SVM 0.55±0.01 0.59±0.01 0.56±0.01 0.57±0.02
CNN 0.75±0.03 0.69±0.04 0.68±0.04 0.69±0.04
DeepShufNet 0.76±0.04 0.74±0.06 0.70±0.06 0.72±0.05
LSTM 0.55±0.01 0.55±0.02 0.47±0.07 0.50±0.04
BiLSTM 0.56±0.01 0.56±0.02 0.55±0.08 0.55±0.01
CNN-LSTM 0.70±0.03 0.66±0.04 0.68±0.05 0.67±0.01
A-CNN-LSTM 0.83±0.02 0.81±0.06 0.76±0.04 0.78±0.01
Wav2Vec 0.64±0.07 0.61±0.10 0.65±0.09 0.61±0.08
AST 0.79±0.02 0.74±0.03 0.74±0.02 0.74±0.03
HMT 0.75±0.05 0.74±0.06 0.72±0.09 0.73±0.04
Ensemble 0.78±0.03 0.73±0.03 0.72±0.02 0.72±0.03
HST 0.90±0.01 0.80±0.03 0.84±0.03 0.82±0.01

two dimensions [73]. Figure 7 displays representative embeddings
of samples from the COVID and non-COVID without symptoms
groups based on breath modality in the Cambridge dataset. The
latent representations of COVID and non-COVID samples become
progressively more distinct across stages, indicating that hierarchical
transformations in HST extract latent time-frequency features critical
in disease detection.

Next, a post-hoc explanatory analysis was performed to interpret
the spectrogram features that most significantly contribute to model
decisions. On correctly classified test samples from the COVID and
non-COVID groups, Grad-CAM was used to produce activation maps
that indicate the relative importance levels of spectrogram features for
detecting each group [74]. To obtain characteristic maps, principal
component analysis (PCA) was performed on activation maps across
samples within each group. The first PCs along with their difference
between the two groups are shown in Fig. 8 for Task 1, and in Fig. 9
for Task 2. For the cough modality (Figs. 8a-9a), HST attends to
similar frequency bands for the two groups, centered around 1.5-3
kHz in Task 1 and 1-2 kHz in Task 2. However, across the audio
recording, the COVID group shows more uniformly strong attention
for the frequency band than the non-COVID group. As highlighted
by the difference maps, the COVID group has predominantly higher
activation at 0-1 kHz and 2-4 kHz bands for 0.4-0.9 event progress
in Task 1, and at 2-3 kHz band for 0-0.1 event progress, 0-2 kHz
band for 0.2-0.6 event progress in Task 2. For the breathing modality
(Figs. 8b-9b), HST generally shows elevated attention towards higher
frequency bands in the COVID group (around 2-4 kHz in both tasks)
versus the non-COVID group (around 0-2 kHz in both tasks). As
visible in the difference maps, the COVID group has higher activation
at 2-4 kHz band for 0.2-0.8 event progress in Task 1, and at 2.5-
3.5 kHz band for roughly 0-0.1, 0.4-1.0 event progress and at 3.5-4
kHz band for 0.2-0.4, 0.6-0.8 event progress in Task 2. Note that
the differences between the two groups are more accentuated for
the breathing versus cough modality. This observation might suggest
that there might be more diverse sound events during breathing
as compared to cough. Although clinical research regarding the

Fig. 7: Visualization of latent representations captured by HST across
Stages 1-4. Embeddings of samples from the COVID group (red) and
the non-COVID group without symptoms (blue) are displayed.

Fig. 8: Activation maps in HST for interpreting the spectrogram
features that contribute to detection of the COVID group and the
non-COVID group without symptoms. The first PC of activation maps
prior to the final attention layer were computed. The difference maps
between PCs for the two groups are also shown. Horizontal axis
shows ratio of event progress, i.e. the fraction with respect to the
total duration of the recording. Results are shown for models based
on (a) cough sounds, (b) breathing sounds in Task 1.

frequency features of respiratory sounds in COVID-19 is ongoing, a
prior study has examined respiratory symptoms of COVID-19 patients
in different stages of disease [75]. Frequency of respiration sounds
was reported to be increased with disease development. While our
results are consistent with this finding, future work on larger patient
cohorts is warranted to examine the validity of the observations
reported here.

C. Ablation Studies
Ablation studies were conducted to examine the influences of input

spectrogram type, spectrogram window length, model size, and pre-
training on the test performance of HST on the Cambridge dataset.
The results for all four performance metrics (i.e., AUC, precision,
recall, F1) are consistent, albeit only F1 scores for the variant models
are listed for brevity. Table VIII lists performance for the proposed
Mel-spectrogram and alternative CQT, Gammatone, Bark and Linear
spectrograms. Table IX lists performance for the proposed 2048
window length and alternative 1024 and 4096 lengths. Table X lists
performance for the proposed base model size and alternative small
and large sizes. Table XI lists performance with and without pre-
training, where HST is pre-trained for object classification on natural
images. For all tasks and modalities, the proposed configuration of
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Fig. 9: Activation maps in HST for the COVID group and the non-
COVID group with symptoms, along with the difference map between
the two groups. Results are shown for models based on (a) cough
sounds, (b) breathing sounds in Task 2.

TABLE VIII: Test F1 scores of HST in Tasks 1-2 based on cough or
breathing sounds with different time-frequency representations.

Mel CQT Gammatone Bark Linear

Task 1 Cough 0.93±0.04 0.84±0.06 0.87±0.07 0.85±0.03 0.86±0.06
Task 1 Breath 0.94±0.04 0.85±0.03 0.83±0.07 0.86±0.03 0.86±0.02
Task 2 Cough 0.94±0.07 0.92±0.07 0.93±0.02 0.92±0.01 0.92±0.02
Task 2 Breath 0.93±0.04 0.90±0.03 0.90±0.06 0.91±0.04 0.90±0.08

the HST model yields higher performance in all four tasks against
variant models.

The datasets examined here contain recordings from participants
instructed to produce either cough or breathing sounds. Yet, there
can be practical scenarios in which the modality of a given recording
might be unknown. To assess the influence of modality labels on
HST, we compared modality-specific and modality-agnostic models.
Modality-specific models were trained and tested on a single known
modality (either cough or breathing). Meanwhile, modality-agnostic
models were trained and tested on a mixture of breathing and cough
sounds without labels. Table XII lists the resultant performance
metrics. The performance differences between modality-specific and
modality-agnostic models are modest, suggesting that HST shows
reasonable reliability against missing modality labels.

Finally, we examined the computational complexity of HST against
a vanilla transformer variant that replaced local-windowed MSA
layers with global MSA layers. Table XIII lists total pre-training time
on ImageNet, total training time and per-sample inference time on
the Cambridge dataset, along with FLOPS, memory use, and number
of parameters. Compared to the vanilla variant, HST requires lower
FLOPS, memory use and fewer parameters to process spectrograms,
and so it offers faster pre-training, training and inference.

V. DISCUSSION

Clinical testing of COVID-19 involves PCR and/or imaging pro-
cedures typically administered in centralized healthcare institutions
[76], [77]. These cost-intensive procedures might not be broadly
accessible in developing countries, and access might be delayed till
relatively late stages of disease. In this context, remote monitoring
via audio recordings of respiratory sounds can help pave the way
to accessible preliminary screening [60]. Here, we introduce HST
to detect COVID-19 with high accuracy from brief audio recordings
of cough and breathing sounds. Similar to manual auscultation, the
proposed method does not serve as a diagnostic test. Yet, it holds
promise as a preliminary assessment tool for potential COVID-19
cases that can assist in informed allocation of limited resources for
timely testing and interventions [78]. Rapid antigen tests are another

TABLE IX: Test F1 scores of HST in Tasks 1-2 based on cough
or breathing sounds with different spectrogram window lengths, in
number of samples (N) and milliseconds (ms).

N=1024 N=2048 N=4096
(46.4 ms) (92.8 ms) (185.7 ms)

Task 1 Cough 0.86±0.03 0.93±0.04 0.82±0.06
Task 1 Breath 0.85±0.05 0.94±0.04 0.84±0.06
Task 2 Cough 0.93±0.04 0.94±0.07 0.93±0.02
Task 2 Breath 0.89±0.07 0.93±0.04 0.92±0.07

TABLE X: Test F1 scores of HST in Tasks 1-2 based on cough or
breathing sounds. Small, base, and large variants were considered.

Small Base Large

Task 1 Cough 0.85±0.09 0.93±0.04 0.86±0.03
Task 1 Breath 0.86±0.05 0.94±0.04 0.87±0.05
Task 2 Cough 0.89±0.05 0.94±0.07 0.89±0.05
Task 2 Breath 0.91±0.07 0.93±0.04 0.91±0.02

low-cost alternative for COVID-19 screening, but they primarily de-
tect high concentrations of viral load and typically miss early disease
stages [79]. Instead, respiratory sounds are suggested to contain cues
for infection starting at earlier stages [33]. It remains important
future work to systematically compare the utility of respiratory sound
analysis versus antigen tests in COVID-19 screening.

Transformers can capture contextual features in sound signals more
effectively than CNN or RNN models [64]. Yet, vanilla transformers
with global attention suffer from quadratic complexity [80], restrict-
ing their use under limited compute budgets on mobile devices.
Instead, HST achieves high computational efficiency by leveraging
local-windowed attention for linear complexity, and a hierarchical
structure for progressively lowered spectrogram resolution. That said,
analyses of respiratory sounds here were conducted offline for proof-
of-concept demonstration. In practice, remote monitoring involves
online processing of audio recordings either on mobile devices or
via communication with a cloud computing platform [37], [45]. To
reduce computational and communication load, network distillation
or hybrid CNN-transformer architectures might be adopted [81], [82].

Here, demonstrations were performed on the Cambridge [38]
and COUGHVID [58] datasets. Across competing methods, we
find generally higher detection performance on Cambridge versus
COUGHVID. Several differences between the datasets might have
contributed to this pattern. First, single audio recordings in Cambridge
of duration 10.0±6.0 s contain repeated respiratory events (5 repeats
for breathing, 3 repeats for cough), whereas those in COUGHVID
of duration 6.6±2.5 s contain a single cough event per recording.
Acoustic signatures of COVID-19 might manifest not only over short
but also over longer time intervals, and prolonged recordings might
facilitate separation of foreground-background signals. Thus, analyses
based on multiple events per sample can improve detection sensitivity.
Second, while Cambridge uses participant-reported COVID-19 status
labels based on positive PCR test results, COUGHVID relies on
expert-provided labels based on inspection of audio recordings. Thus,
analyses on COUGHVID might suffer from higher label inaccuracy
that can limit model performance. Third, native differences in mi-
crophone type, microphone positioning, recording environment, and
compliance to recording instructions might have influenced the data
quality, and thereby detection sensitivity. Future studies are warranted
to identify ideal recording procedures for COVID detection from
respiratory sounds.

The Cambridge and COUGHVID datasets primarily comprise
COVID and non-COVID groups (with or without cough symptoms),
so the binary classification tasks examined here concerned segre-
gation of these groups. While we find high detection accuracy for
the COVID group against the non-COVID group with symptoms,
a clinical characterization of respiratory disorders that underlie the
cough symptoms is unavailable in the datasets. A practical concern
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TABLE XI: Test F1 scores of HST in Tasks 1-2 based on cough or
breathing sounds, without and with pre-training.

No Pre-training Pre-training

Task 1 Cough 0.77±0.08 0.93±0.04
Task 1 Breath 0.70±0.10 0.94±0.04
Task 2 Cough 0.83±0.07 0.94±0.07
Task 2 Breath 0.83±0.07 0.93±0.04

TABLE XII: Test F1 scores of HST in Tasks 1-2. Modality-specific
models based on cough or breathing sounds, and modality-agnostic
models based on a mixture of cough/breathing sounds are shown.

Task 1 Task 2

Modality: Cough 0.93±0.04 0.94±0.07
Modality: Breath 0.94±0.04 0.93±0.04
Modality-agnostic 0.91±0.04 0.92±0.04

regarding the adoption of a screening technology is its reliability
on patient cohorts with varying types of disease [79], [83]. Recent
studies suggest that respiratory sounds carry symptomatic cues to
distinguish COVID-19 from other conditions such as asthma, chronic
obstructive pulmonary disease (COPD), bronchitis and pertussis [18],
[19]. It remains important future work to examine whether HST
can discriminate among a broad spectrum of respiratory diseases
based on cough or breathing sounds alone. In cases where these
two modalities do not carry sufficient information to detect COVID,
speech or wheeze modalities might also be incorporated to boost
model performance [26], [31], [35], [50]. Furthermore, additional
clinical information such as patient demographics can be integrated
to boost sensitivity of HST [33], [56].

Here, we find that HST outperforms competing methods based on
analyses conducted on relatively modest-to-moderate sized datasets.
An essential next step for validation of HST is demonstration of its
reliability on broader patient cohorts. In practice, cross-checking the
specific input features of an audio recording that drive the model
output against known respiratory sound markers of COVID can be
critical to avoid erroneous decisions when using black-box deep
learning models. Explanatory analyses presented here indicate that
the Grad-CAM algorithm applied on HST can identify important
input features for COVID detection that closely match the expected
discriminating features of respiratory sounds in COVID-19 [18]. Yet,
it remains important future work to evaluate the efficacy of gradient-
based explanatory methods such as Grad-CAM and uncertainty
characterization methods in interrogating the decisions provided by
HST.

VI. CONCLUSION

In this study, we proposed a deep learning approach to detect
COVID-19 from respiratory sounds. A novel hierarchical transformer
model, HST, was introduced to extract contextual features from
spectrogram representations of audio signals. HST leverages local
attention mechanisms over progressively growing windows to capture
long-range context without excessive computational burden. While
our demonstrations focused on COVID-19 screening, the contextual
sensitivity of HST might also be helpful in detection of other
pervasive respiratory disorders such as pneumonia, bronchitis or
obstructive pulmonary disease.
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