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Abstract

Accurate depiction of the vessels of the lower leg, foot or hand benefits from suppression of bright MR signal from lipid (such as bone
marrow) and long-T1 fluid (such as synovial fluid and edema). Signal independence of blood flow velocities, good arterial/muscle contrast
and arterial/venous separation are also desirable. The high SNR, short scan times and flow properties of balanced steady-state free precession
(SSFP) make it an excellent candidate for flow-independent angiography. In this work, a new magnetization-prepared 3D SSFP sequence for
flow-independent peripheral angiography is presented. The technique combines a number of component techniques (phase-sensitive fat
detection, inversion recovery, T2-preparation and square-spiral phase-encode ordering) to achieve high-contrast peripheral angiograms at
only a modest scan time penalty over simple 3D SSFP. The technique is described in detail, a parameter optimization performed and
preliminary results presented achieving high contrast and 1-mm isotropic resolution in a normal foot.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Interest in performing MR angiograms of the distal
peripheral vasculature has increased as surgical bypass
procedures have become more common in the infrapopliteal
and pedal arteries. While X-ray angiography can provide
most required information for surgical planning in the
peripheral vasculature, it is an invasive procedure that can
fail to depict clinically significant run-off vessels [1].
Imaging of peripheral vascular structure necessitates high
spatial resolution given the small arterial diameters in the
extremities. Contrast-enhanced MR angiography techniques,
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which capture contrast during the relatively short window of
time between arterial and venous enhancement, achieve
limited spatial resolution.

Flow-independent angiography (FIA) techniques have
been shown to be effective at producing high-resolution
peripheral angiograms [1–4]. These techniques exploit the
inherent differences in tissue T1, T2 and chemical shift to
generate contrast, rather than rely on parameter changes
induced by contrast agents. FIAwithout contrast enhancement
is therefore not limited in spatial resolution by the short period
of time between arterial and venous contrast enhancement.

Recent work has shown that the high signal-to-noise ratio
(SNR), short scan times and flow properties of balanced
steady-state free precession (SSFP, True FISP or FIESTA)
make it an excellent candidate for angiography [5–7].
However, the characteristic large-T2/T1 fluid signal of
balanced SSFP can obscure vascular structures when fluids
such as edema or synovial fluid are present in the region of
interest. Balanced SSFP angiograms of the pedal arteries, for
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example, suffer from bright synovial fluid signal between the
bones of the foot. Angiograms of the lower leg or extremities
in patients with peripheral swelling may be obscured by
bright signal from edema.

In this work, a fast, magnetization-prepared 3D SSFP
sequence for creating high-resolution flow-independent
angiograms with long-T1 fluid suppression is presented.
The sequence exploits inversion recovery and T2 preparation
combined with square-spiral centric phase encode ordering
for contrast generation. Fat suppression is achieved through
phase-sensitive SSFP reconstruction [8]. An analysis and
optimization of scan parameters are performed to achieve
fluid suppression and high arterial/muscle and arterial/
venous contrast, at only a modest scan time penalty over
3D SSFP with no magnetization preparation.

2. Methods

A diagram of our 3D fluid-suppressed T2-prep SSFP
pulse sequence is shown in Fig. 1. A nonselective 180x°
inversion pulse is followed by a large gradient spoiler to
dephase any residual transverse magnetization. An inversion
delay of length TI follows, chosen to attenuate long-T1
fluids. A TI of approximately 2 s returns both blood (T1≈1 s)
and muscle (T1≈850 ms) to near-equilibrium values.

At the end of the inversion delay, a T2-preparation
sequence is played to suppress muscle signal and enhance
arterial/muscle and arterial/venous contrast [9,10]. A centric
phase-encode ordering in SSFP results in image contrast
exhibiting more proton-density weighting than the steady-
state T2/T1 contrast typical of SSFP [11]. Use of a T2-
preparation sequence generates the higher T2 discrimination
needed for flow-independent angiography [12]. The se-
quence presented here employs a simple 90x°, 180y°, 180y°,
−90x° preparation, with the echo time TEprep measured
between the isocenters of the first pulse (90x° tip down) and
final pulse (−90x° tip up). The two 180y° pulses are centered
at delays of TEprep/4 and 3TEprep/4, respectively, after the
initial tip down. The final tip-up pulse is immediately
followed by a gradient spoiler to dephase residual
transverse magnetization.
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Fig. 1. Diagram of 3D IR/T2-prep SSFP sequence. A spoiled nonselective inversion
is applied. Immediately following the T2 preparation, a linear ramp catalyzation
begins, with a centric phase-encode ordering. The whole sequence is then repeate
A linear ramp start-up is performed to reduce transient
oscillations immediately prior to SSFP data acquisition
[13,14]. Square-spiral phase encode ordering is used to
capture the prepared contrast at low spatial frequencies [15].
The square-spiral ordering was chosen for ease of imple-
mentation; an elliptical centric ordering [16] may also be
used, but should yield similar results when the FOV in each
of the two phase-encode directions is similar.

The above series (IR, T2-prep, catalyzation, balanced
SSFP acquisition) can be repeated several times if needed
during acquisition of the volume of interest, as the
magnetization-prepared signal levels evolve to the steady
state. In particular, the high spatial frequency artifact from
long-T1 fluids is more severe as the total number of
magnetization-preparation steps is decreased. When multi-
ple repetitions are used, the sequence interleaves the square-
spiral phase encodes as shown in Fig. 2. This effectively
increases the extent of k-space acquired before signal levels
evolve from their magnetization-prepared state to the steady
state, decreasing high spatial frequency artifact. A recovery
time of at least several seconds is required between each set
of acquisitions to allow the volume to reach near
equilibrium prior to the subsequent inversion. Thus,
increasing the number of interleaves carries a concomitant
penalty in scan time.

Single-cycle phase-sensitive fat detection was employed
in the results presented to null fat pixels [8]. Note that single-
cycle phase-sensitive fat detection is only effective if off-
resonance variations across the field of view fall within a
single SSFP spectral passband. Otherwise, fat pixelsmay drift
into the water passband and have phase that is indistinguish-
able from water pixels. Achieving an adequate shim is
therefore essential to avoid serious artifact from mistakenly
identified fat and water pixels. This can be a challenge,
particularly in the foot, where irregular geometry may lead to
large susceptibility-induced field variations. While an
adequate shim was achieved in the test cases presented to
enable the use of the single-cycle fat detection method, better
sequence robustness to off-resonance and improved SNR
may potentially be achieved with dual-cycle phase-sensitive
fat detection at the cost of doubled scan time [17].
SSFP
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is followed by an inversion time (TI), after which a T2-preparation sequence
is performed to reduce transient signal oscillations. SSFP acquisition then
d for the desired number of interleaves.
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Fig. 2. Centric phase-encode interleaving. If more than one magnetization
preparation is acquired to achieve good fluid suppression or T2 contrast,
the square-spiral phase encodes are interleaved. The four-interleaf case
is shown.
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Finally, Bloch simulations of the inversion-recovery T2-
prep SSFP signal evolution for on-resonant spins were
performed across a range of scan parameters [18]. Values for
inversion time (TI), T2-prep echo time (TEprep) and flip
angle (α) were selected based on these simulations, under the
assumption that dominant contrast is determined by the
SSFP signal levels of each tissue when the center of k-space
is sampled. Results of this analysis and parameter optimi-
zation are presented below. All simulations were implemen-
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Fig. 3. Bloch simulation of catalyzed SSFP signal evolution for on-resonant spins.
exhibiting consistently high signal from synovial fluid. The results of different magn
(C) and (D). A square spiral centric phase-encode ordering ensures that dominant im
(D), a combined IR/T2-preparation scheme can effectively null long-T1 fluid s
Simulation assumed TI=2.4 s, TEprep=60 ms, TR/TE=4.6/2.3 ms and flip angle α=
ted in Matlab (The MathWorks, Natick, MA, USA). Tissue
relaxation times assumed in the simulation were as follows:
T1/T2=4000/2000 ms for synovial fluid, 1000/200 ms for
arterial blood, 1000/100 ms for venous blood, 870/47 ms for
muscle and 270/85 ms for fat [1,3,4].
3. Results

3.1. Analysis and parameter optimization

Bloch simulations of the SSFP signal evolution for on-
resonant spins are shown in Fig. 3 for a variety of cases. In
(A), the signal evolution with a simple catalyzation but no
magnetization preparation is shown. The addition of an
inversion-recovery preparation prior to SSFP excitations
yields the signal evolution shown in (B). Signal progression
after a T2-preparation pulse (with no inversion recovery) is
shown in (C), while the combination of inversion-recovery
and T2-prep yields (D). Pulse sequence parameters are
summarized in the figure caption.

From the graphs, it is clear that the signal evolves during
the course of image acquisition. Again, the assumption was
made that dominant contrast is determined by the signal
levels when the center of k-space is sampled. The sequence
under consideration (catalyzed IR/T2-prep SSFP) makes use
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etization–preparation combinations prior to SSFP imaging are shown in (B),
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Fig. 4. Bloch simulation of IR/T2-prep SSFP contrast. The contrast achieved in IR/T2-prep SSFP is a function of TI, T2-prep echo time TEprep and flip angle α
Arterial blood/venous blood contrast and arterial blood/muscle contrast are shown above as a function of TEprep for flip angles of 20°, 40°, 60° and 80° at TI=2.0
s. Note that higher flip angles tend to yield better arterial/muscle and arterial/venous separation. Simulations were performed at TR/TE=4.6/2.3 ms.
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of a centric phase-encode ordering (see Methods) so that
contrast is roughly defined by the initial signal values in the
graph shown in Fig. 3D. Variations in TI, T2-prep echo time
(TEprep) and flip angle (α) all affect the initial signal values.

A TI of between 2 and 2.5 s was found to yield good
suppression of synovial fluid. Bloch simulations were then
performed with TI in this range to ascertain the initial
contrast-defining signal levels as a function of TEprep and
α, informing parameter selection. Specifically, arterial/
muscle and arterial/venous contrast were examined. Results
at TI=2 s are shown in Fig. 4. The graphs show simulated
arterial blood/venous blood and arterial blood/muscle
contrast for TEprep ranging from 40 to 200 ms and flip
angle values of 20°, 40°, 60° and 80°. Note that higher flip
angles tend to yield better contrast, with optimal TEprep

values lying between about 60 and 120 ms. Simulations
were performed at TR/TE=4.6/2.3 ms. The studies
presented employed TI=2 s, TEprep=80 ms and α=70°.
The flip angle was not increased beyond 70° due to RF
power deposition considerations.

3.2. In vivo results

The sequence was implemented on a 1.5-T Signa scanner
(GE Healthcare, Waukesha, WI, USA) with CV/i gradients
(40 mT/m maximum amplitude, 150 mT/m per millisecond
slew rate). A protocol suitable for the lower leg and foot was
prescribed with the following scan parameters: TR/TE=4.6/
2.3 ms, α=70°, 384×128×128 matrix, 1 mm isotropic
resolution, TI=2 s, TEprep=80 ms and a 10-s excitation linear
ramp catalyzation. Four interleaves were performed (i.e.,
four magnetization preparations were applied over the course
.

of the scan). Total scan time for the protocol was 1 min 55 s
(including a long Trecovery of 10 s to avoid gradient
overheating), compared to a normal balanced SSFP scan
time with the same parameters of 1 min 15 s. Imaging of all
volunteers was conducted according to the ethics guidelines
of Stanford University.

Fig. 5 shows the results in a normal foot. The image on
the left (Fig. 5A) was acquired with only the T2-prep
pulse, eliminating the inversion-recovery preparation.
Bright synovial fluid signal is seen in the joints of the
foot, obscuring vascular structure. Fig. 5B shows the
corresponding result when both the inversion recovery and
T2 preparation were applied. Synovial fluid signal is well
suppressed (synovial fluid SNR drops from 184 in the T2-
prep-only dataset to 42 in the IR/T2-prep dataset) allowing
much better visualization of the vessels. High arterial/
venous contrast is also achieved by both techniques
(arterial blood/venous blood contrast-to-noise ratio=42 in
the T2-prep-only dataset and 39 in the IR/T2-prep dataset).
The high spatial resolution allows visualization of the
small caliber arteries of the foot and allows differentiation
from companion vein pairs.

While the T2-prepped image clearly demonstrates the
significant differences in signal intensity due to blood
oxygenation difference, the elimination of longer-T2 species
such as edema or synovial fluid is important. Our phase-
sensitive reconstruction also performed well despite poten-
tial sensitivity in smaller vessels to partial volume effects.
Finally, as predicted by simulation, there appears to be no
significant loss of SNR despite the inversion pulse (arterial
blood SNR=89 in the T2-prep-only dataset and 84 in the IR/
T2-prep dataset).



Fig. 5. Maximum-intensity projection of 3D T2-prep balanced SSFP flow-independent angiograms of the foot at 1.5 T. Phase-sensitive SSFP reconstruction was
used for fat suppression. (A) Angiogram without the IR preparation (T2-prep only), showing high signal from synovial fluid in the foot joints (arrow). (B) IR and
T2-prep angiogram, showing good synovial fluid suppression and high arterial/venous contrast (arrow). Both sequences employed four interleaves, a 10-
excitation linear ramp catalyzation and achieve 1 mm isotropic resolution on a 384×128×128 matrix. TR/TE=4.6/2.3 ms, α=70°, TI=2 s, TEprep=80 ms. Tota
scan times were 1 min 47 s for (A) and 1 min 55 s for (B). Background noise level was equalized for both datasets, and the images are shown on the same intensity
scale. Note, however, that the synovial fluid signal in (A) is saturating at the chosen window level.
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4. Discussion

Magnetic resonance angiography of the peripheral vessels
holds great promise in the visualization of small but
important vessels. Compared to X-ray angiography, MR
angiography avoids radiation and potential complications
such as contrast nephropathy. Contrast-enhanced MR
angiography has been demonstrated to be superior at
detecting viable bypass targets compared to X-ray [19].
Contrast-enhanced MR angiography provides excellent
vascular to other soft tissue contrast given its general
suppression of all nonvascular tissue. However, the
achievable resolution remains low due to the first-pass
nature of the technique. Furthermore, vessels with slower
flow may not be adequately visualized at all given the
significant peripheral shunting that exists in patients with
vascular disease. While intravascular contrast agents are
being pursued vigorously, no agent has been released to date.
The current flow-independent technique generates high-
resolution angiography of the peripheral arteries by elimi-
nating each of the major soft tissue signals without
significantly affecting blood signal. This represents a
l

significant improvement over prior flow-independent angio-
graphic techniques that rely purely on either SSFP-like
contrast or T2 preparation alone.

As previously mentioned, the technique's reliance on
single-cycle phase-sensitive fat detection makes it suscepti-
ble to off-resonance and partial volume effects. While careful
shimming can often adequately limit off-resonance varia-
tions across the field of view, future work is needed to
examine other potential ways of making the method more
robust. Alternate fat suppression techniques, such us dual-
cycle phase-sensitive fat detection or IDEAL (Iterative
Decomposition of water and fat with Echo Asymmetry and
Least-squares estimation) [20], could increase tolerance to
field inhomogeneity. Preliminary work has also demonstrat-
ed the use of susceptibility-matching materials to effectively
distance the air–tissue interface and increase field homoge-
neity across the field of view [21].

Veins are still clearly visible in the results presented.
Improvements in arterial/venous contrast could possibly be
achieved by going to higher field strength (3 T) and
potentially increasing the TR [22,23]. However, phase-
sensitive fat detection is difficult at higher field strengths, so
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this would likely necessitate the use of an alternate fat-
suppression technique such as IDEAL.

In conclusion, 3D magnetization-prepared balanced SSFP
shows promise for rapid flow-independent angiography of
the peripheral vasculature. High-resolution volumetric scans
can be achieved in less than 2 min. This work has
demonstrated one such sequence, employing phase-sensitive
fat detection to suppress fat signal, a combined IR/T2-
preparation scheme to suppress long-T1 fluid signal and
improve arterial/muscle and arterial/venous contrast, and an
interleaved square-spiral centric phase encode ordering to
capture the prepared contrast.
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