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Reconstruction by Calibration Over Tensors for
Multi-Coil Multi-Acquisition Balanced SSFP Imaging

Erdem Biyik,1,2 Efe Ilicak,1,2 and Tolga Çukur1,2,3*

Purpose: To develop a rapid imaging framework for balanced
steady-state free precession (bSSFP) that jointly reconstructs

undersampled data (by a factor of R) across multiple coils (D)
and multiple acquisitions (N). To devise a multi-acquisition coil
compression technique for improved computational efficiency.

Methods: The bSSFP image for a given coil and acquisition is
modeled to be modulated by a coil sensitivity and a bSSFP

profile. The proposed reconstruction by calibration over ten-
sors (ReCat) recovers missing data by tensor interpolation
over the coil and acquisition dimensions. Coil compression is

achieved using a new method based on multilinear singular
value decomposition (MLCC). ReCat is compared with iterative
self-consistent parallel imaging (SPIRiT) and profile encoding

(PE-SSFP) reconstructions.
Results: Compared to parallel imaging or profile-encoding

methods, ReCat attains sensitive depiction of high-spatial-
frequency information even at higher R. In the brain, ReCat
improves peak SNR (PSNR) by 1.1 6 1.0 dB over SPIRiT and

by 0.9 6 0.3 dB over PE-SSFP (mean 6 SD across subjects;
average for N¼2–8, R¼8–16). Furthermore, reconstructions

based on MLCC achieve 0.8 6 0.6 dB higher PSNR compared
to those based on geometric coil compression (GCC) (average
for N¼2–8, R¼4–16).

Conclusion: ReCat is a promising acceleration framework for
banding-artifact-free bSSFP imaging with high image quality;

and MLCC offers improved computational efficiency for
tensor-based reconstructions. Magn Reson Med 79:2542–
2554, 2018. VC 2017 International Society for Magnetic Res-
onance in Medicine.
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INTRODUCTION

Balanced SSFP sequences are commonly employed in
rapid imaging due to their relatively high signal efficiency
(1). While the speed advantage can be countered in part by

the T2=T1 contrast and system imperfections (2,3), multi-

ple phase-cycled acquisitions can enable improvements in

tissue contrast through fat–water separation (4–6) and in

reliability against field inhomogeneity (3,7–9). Yet accelera-

tion techniques are needed to maintain scan efficiency

with higher number of acquisitions (N).
Several approaches were recently proposed for acceler-

ating phase-cycled bSSFP imaging. One study used

simultaneous multi-slice imaging on each acquisition

(10). Undersampled data were recovered via parallel-

imaging (PI) reconstructions (11,12) across multiple coils

to achieve modest acceleration factors (R � 2–3). In (13),

we used disjoint variable-density sampling patterns

across phase cycles at similar R � 4. Independent

compressed-sensing (CS) reconstructions (14–16) were

then performed on each acquisition. To further enhance

image quality, we more recently proposed a profile-

encoding framework (PE-SSFP) to jointly reconstruct

data from separate phase-cycles (17). PE-SSFP yielded

improved preservation of high-spatial-frequency details

at relatively high R � 6–8 compared to conventional PI

and CS reconstructions. These previous approaches

leverage only a subset of correlated structural informa-

tion, either across multiple coils or across multiple

acquisitions. However, recent studies indicate that joint

processing of coils and acquisitions can improve perfor-

mance for heavily undersampled datasets (18–20).
Here, we propose a new framework for phase-cycled

bSSFP imaging, reconstruction by calibration over ten-

sors (ReCat), that utilizes correlated information simulta-

neously across multiple coils and acquisitions (Fig. 1).

ReCat is based on a joint encoding model: the bSSFP

image for a given coil and phase-cycle is taken to be spa-

tially modulated by a respective pair of coil sensitivity

(11,21) and bSSFP profile (17,22). A tensor-interpolation

kernel comprising coil and acquisition dimensions is

estimated from calibration data. This kernel is then used

to linearly synthesize unacquired samples. Compared to

kernels trained only on coils or on phase-cycles, the

ReCat kernel aims to optimize use of aggregate informa-

tion across both dimensions.
Joint reconstruction of a multi-coil, multi-acquisition

dataset poses significant computational burden. Since

modern coils contain a large number of elements, a com-

mon approach is either hardware- (23) or software-based

(24,25) coil compression. A recent technique is the data-

driven geometric coil compression (GCC) that accounts

for spatially-varying coil sensitivities across three-

dimensional (3D) datasets (26). While software-based

methods such as GCC can estimate virtual coils sepa-

rately for each bSSFP acquisition, they ignore shared

information about coil sensitivities across acquisitions,
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yielding suboptimal estimates. Furthermore, the virtual-
coil sensitivities in separate acquisitions can be inconsis-
tent due to variations in bSSFP profiles and noise. These
limitations can in turn degrade the quality of joint
reconstructions.

To address these limitations, here we propose a new

multilinear coil compression (MLCC) technique based on

multilinear singular value decomposition (SVD) for

multi-coil, multi-acquisition datasets. It performs com-

pression via tensor-based separation of the coil and

acquisition dimensions. It therefore leverages shared

coil-sensitivity information to produce a consistent set of

virtual coils across acquisitions.
Comprehensive simulation and in vivo results are pre-

sented to demonstrate the potential of the proposed

framework for accelerated bSSFP imaging. ReCat signifi-

cantly improves image quality over both PI reconstruction

of multi-coil and CS reconstruction of multi-acquisition

data. In addition, reconstructions based on MLCC show

superior quality compared to those based on GCC.

METHODS

The main aim of this study is to enable highly acceler-

ated phase-cycled bSSFP imaging via an expanded

framework (ReCat) that jointly processes data aggregated

across multiple coils and acquisitions. We start this sec-

tion with an overview of accelerated bSSFP imaging, and

then describe the reconstruction and coil-compression

components of ReCat.

Accelerated Phase-Cycled bSSFP Imaging

Phase-cycled bSSFP imaging acquires multiple images

with different phase increments in radio-frequency exci-

tations. The bSSFP signal at each spatial location r is

given by (27):

Sn;dðrÞ5CdðrÞMðrÞ
ei /ðrÞ1D/nð Þ=2 12AðrÞe2i /ðrÞ1D/nð Þ� �

12BðrÞcos ð/ðrÞ1D/nÞ
[1]

under the assumption that the echo time (TE) is one half

of the repetition time (TR). Here, Sn;dðrÞ denotes the sig-

nal captured by the dth coil element (d 2 [1 D]) and the

nth acquisition (n 2 [1 N]). CdðrÞ is the coil sensitivity, D
/n is the phase increment, and /ðrÞ is the phase accrued

due to off-resonance (assumed to be constant across

acquisitions). Note that M, A, B are terms that do not

depend on off-resonance or phase increments. With D/n

equispaced across ½0 2pÞ, banding artifacts in separate

bSSFP images will be largely nonoverlapping (1). Thus

multiple phase-cycled bSSFP images can be combined to

effectively suppress banding artifacts (3,7). However, to

maintain scan efficiency, each phase-cycled acquisition

should first be undersampled by a factor of R, and images

must be recovered during subsequent reconstructions.
One acceleration approach is to use uniform-density

deterministic patterns and perform separate PI recon-

structions of multi-coil data for each acquisition (10).

The PI approach casts on Equation [1] an encoding

model based on coil sensitivities (11):

Sn;dðrÞ5CdðrÞSnðrÞ [2]

where SnðrÞ denotes the phase-cycled image devoid of

coil-sensitivity modulation. Autocalibration is typically

used to estimate CdðrÞ from fully-sampled central k-

space data. Separate linear inverse problems are solved

to recover SnðrÞ, which are then combined across

acquisitions.
We recently proposed to use variable-density random

patterns and perform profile-encoding (PE) reconstruc-

tions of multi-acquisition data for each coil (17). This PE

approach casts on Equation [1] an encoding model based

on spatial bSSFP profiles (22,28):

Sn;dðrÞ5PnðrÞSdðrÞ [3]

where SdðrÞ denotes the coil image devoid of bSSFP-

profile modulation. PnðrÞ can again be estimated from

fully-sampled central k-space data. Separate linear

inverse problems are solved to recover SdðrÞ, which are

then combined across coils.
PI leverages correlated structural information across

coils, whereas PE-SSFP leverages correlated information

across acquisitions. Neither technique aggregates infor-

mation in these two dimensions. This poses a limitation

in the recovery of unacquired data and the achievable

acceleration rates.

FIG. 1. Balanced SSFP images from two phase-cycled acquisi-

tions and two coils are shown. The first two rows show the
acquisitions, with Df denoting the phase-cycling increment. Simi-
larly, the first two columns show the coils. Acquisition-combined

coil images (third row) and coil-combined phase-cycle (third
column) images are also shown along with the reference image

combined across both coils and acquisitions. Intensity modula-
tions due to bSSFP profiles differ across acquisitions, whereas
those due to coil sensitivities vary across coils.
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Reconstruction by Calibration over Tensors

Here we propose to accelerate multi-coil multi-acquisi-
tion bSSFP imaging via a new technique named recon-
struction by calibration over tensors (ReCat). Unlike PI or
PE-SSFP, the proposed approach utilizes correlated
information simultaneously across the coil and acquisi-
tion dimensions. For this purpose, ReCat casts on Equa-
tion [1] a tensor encoding model based on both coil
sensitivities and bSSFP profiles:

Sn;dðrÞ5PnðrÞCdðrÞSoðrÞ [4]

where SoðrÞ denotes the ideal bSSFP image devoid of
modulations due to both bSSFP profiles and coil sensitiv-
ities. Leveraging this model, ReCat recovers unacquired k-
space data in terms of collected data yn;d aggregated
across coil and acquisition dimensions (see Fig. 2). First,
a tensor-based interpolation kernel is estimated from
fully-sampled calibration data. This kernel is then used to
linearly synthesize missing k-space samples.

Interpolation Kernel

ReCat uses an interpolation kernel to estimate each unac-
quired k-space sample as a weighted combination of
neighboring data in all coils and acquisitions:

xn;dðkrÞ5
XN

i51

XD

j51

tij;ndðkrÞ � xi;jðkrÞ [5]

where xn;d is the k-space data from the nth acquisition

and dth coil, kr is the k-space location, and � is a convo-

lution. The kernel t is a third-order tensor; and tij;ndðkrÞ
reflects the linear contribution of samples in kr’s neigh-

borhood from the ith acquisition and jth coil, onto the

sample at kr from the nth acquisition and dth coil. The

unknown kernel weights are obtained from calibration

data yc, a fully-sampled central region of k-space. The

calibration procedure finds the weights that are consis-

tent with the calibration data according to Equation [5].

This leads to the following least-squares solution:

tnd5ðY �Y1bIÞ21Y �yc
n;d [6]

where tij;nd are concatenated to form tnd, and yc are

aggregated in matrix form Y. The regularization parame-

ter b is used to improve matrix conditioning and noise

resilience (29).
In this study, we prescribed an interpolation kernel

that covered a 11 3 11 neighborhood of k-space samples

as in (17). The regularization weight b was varied in the

range ð0; 0:2�. An optimized value of b50:05 was

FIG. 2. Flowchart of the proposed ReCat method. ReCat reconstructs phase-cycled bSSFP images by jointly processing data from
D coils and N acquisitions. An interpolation kernel across coils and acquisitions is estimated from central calibration data. Missing data
are iteratively synthesized using this kernel. Reconstructed images are first combined over coils and then over acquisitions with the

p-norm method.
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determined on simulated phantoms (see Supporting Fig.

S1a), and used in all subsequent reconstructions. Finally,

the convolution operations in Equation [5] were trans-

formed into matrix form for convenience:

x5T x [7]

This matrix operator T was used to linearly synthesize

unacquired samples during reconstruction.

Reconstruction

ReCat recovers missing k-space samples based on the

interpolation operator T . Inspired by the SPIRiT method

(iterative self-consistent parallel imaging reconstruction)

for multi-coil imaging (21), a self-consistency formula-

tion is used that enforces consistency of both acquired

and recovered data with Equation [7]. Accordingly,

ReCat solves the following optimization problem:

min
~x nd

XN

n51

XD

d51

kðT 2IÞ~xnd1ðT 2IÞyndk2
21kk~xndk2

2

� �
[8]

Here ~xnd denote the unacquired data to be recovered,

and ynd denote the acquired data from the nth acquisi-

tion and dth coil. The separation of ~x from y ensures

that acquired samples are unchanged during reconstruc-

tion. An ‘2-regularization term with weight k is used to

penalize the energy in recovered k-space samples.
In this study, the unconstrained optimization in Equa-

tion [8] was expressed as a linear system of equations,

and solved using the iterative least squares (LSQR)

method. A total of 20 iterations were sufficient to obtain

stable reconstructions. The regularization weight k was

varied in the range ð0; 0:03�. An optimized value of k5

0:018 was determined on simulated phantoms (see

Supporting Fig. S1b), and used in all subsequent recon-

structions. This value was observed to yield a good com-

promise between suppression of aliasing interference

and preservation of structural details.
To demonstrate ReCat, zero-filled Fourier (ZF), SPIRiT

(21) and PE-SSFP (17) reconstructions were also imple-

mented. In ZF, zero-filled k-space data were compen-

sated for variable sampling density and inverse Fourier

transformed to obtain images for each acquisition and

each coil. In SPIRiT, multi-coil data from each acquisi-

tion were independently reconstructed by removing the

coil dimension from Equation [8]. In PE-SSFP, multi-

acquisition data from each coil were independently

reconstructed by removing the acquisition dimension

from Equation [8]. Both SPIRiT and PE-SSFP reconstruc-

tions were obtained via the LSQR algorithm with 20 iter-

ations and identical b, k to ReCat.
All reconstruction methods produced separate images

from each acquisition and each coil. Individual images

were then combined with the p-norm method to main-

tain favorable performance in artifact suppression and

SNR efficiency (28). Combination was performed with

p 5 2 across coils, and with p 5 4 across acquisitions (see

Supporting Fig. S2). Two different orders of combination

were tested: first across coils then acquisitions, and first

across acquisitions then coils. No significant difference

was observed due to combination order.
All reconstruction algorithms were executed in MAT-

LAB (MathWorks, MA). The implementations used

libraries in the SPIRiT toolbox (21). The ReCat algorithm

is available for general use at: http://github.com/icon-

lab/mrirecon.

Multi-Linear Coil Compression

As N and D grow, it becomes demanding to compute the

interpolation kernel T and to jointly reconstruct multi-

coil multi-acquisition datasets. To improve computational

efficiency, coil-compression techniques are typically

employed to map D coils onto D0 virtual coils (23–26).

Hardware-based compression is suboptimal since it

ignores variability in coil sensitivity due to subject config-

uration (23). Meanwhile, conventional software-based

methods either rely on explicit knowledge of coil sensitiv-

ities (24) or assume spatially-invariant sensitivities across

the imaging volume (25).
To alleviate these limitations, GCC was recently pro-

posed for single-acquisition 3D Cartesian imaging that

performs data-driven compression separately for each

spatial location in the readout dimension (26). While

GCC can cope with spatially-varying coil sensitivities, it

disregards shared sensitivity information across acquisi-

tions. Furthermore, since GCC is performed indepen-

dently on each acquisition, the resulting virtual coils can

have inconsistent spatial sensitivities across acquisitions.

As a result, accuracy of virtual-coil estimates can be

impaired in the presence of noise, and joint reconstruc-

tions can be suboptimal due to coil inconsistency.
Here we propose a new method called MLCC for Carte-

sian sampling based on multi-linear SVD. MLCC per-

forms joint compression of multi-slice, multi-coil, multi-

acquisition bSSFP data. Therefore, it identifies a shared

set of virtual coils across acquisitions, as opposed to

GCC that identifies independent sets of coils for separate

acquisitions. Note that, when disjoint sampling patterns

are prescribed, unacquired locations differ among acquis-

itions. A simple compression of data pooled across coils

and acquisitions would produce nonzero data in many

unacquired locations, leading to substantial information

loss during reconstruction. Instead, MLCC first models

bSSFP data as a fifth-order tensor A of size Ir13

Ir23Ir33N3D, where Ir1;2 denote data size in two phase-

encode dimensions, and Ir3 is the number of cross-sections

in the readout dimension. MLCC then approximates this

tensor with reduced size in the coil dimension D0.
Tensor theory indicates that any complex tensor of

order H can be expressed as the product of a core tensor

with unitary matrices in each dimension (30):

A5S31Uð1Þ32Uð2Þ . . . 3HUðHÞ [9]

where S is the core tensor of size I13I23 � � �3IH ; UðhÞ is a

unitary (Ih3Ih)-matrix, and 3h denotes the h-mode tensor-

matrix product. This multi-linear SVD calculates the core

tensor, unitary matrices in each dimension, along with n-

mode singular values rðhÞi (rðhÞ1 � rðhÞ2 � � � � � rðhÞH � 0). The
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tensor can then be decomposed along dimension h by con-
structing a set of Ih subtensors A0 along mode-h:

A5ðS31Uð1Þ . . . 3H UðHÞÞ3hUðhÞ

5A03hUðhÞ
[10]

In MLCC, a fifth-order tensor A is formed from under-
sampled data across all coils and acquisitions. This ten-
sor is then decomposed along the coil (fifth) dimension
via multi-linear SVD:

A05S31Uð1Þ32Uð2Þ33Uð3Þ34Uð4Þ [11]

where a set of D-many coil subtensors is obtained A05
fA0i; i 2 ½1;D�g with individual subtensors ordered accord-
ing to the coil-mode singular values. As such, data can be
mapped onto D0 virtual coils by retaining the first D0 sub-
tensors fA01;A02; . . . ;A0D0 g that account for the highest
amount of variance in the data. Note that the unitary
matrix in the coil dimension satisfies:

Uð5Þ
T

3U
ð5Þ
1:D;1:D05 ID03D0 0ðD2D0Þ3D0

� �T
[12]

where I is the identity and 0 is the zero matrix. The ten-
sor approximation can then be expressed as:

Â5A035Uð5Þ35U
ð5ÞT
1:D;1:D0

5A35U
ð5ÞT
1:D;1:D0

[13]

This derivation clearly shows that once the multi-linear
SVD is computed, coil compression can be achieved via
a single tensor-matrix multiplication.

In this study, bSSFP datasets were Fourier transformed
in the fully-sampled readout dimension prior to coil
compression. A higher-order SVD (HOSVD) algorithm
proposed in (30) was used. The learned unitary matrix
in the coil dimension was then used to map D original
coils in the undersampled dataset onto D0 virtual coils.
For comparison, software-based compression was also
performed via GCC (26). Since disjoint sampling patterns
are used here, GCC was performed independently for
each bSSFP acquisition. MLCC and GCC were both per-
formed over a window of 5 cross-sections in the readout
dimension.

All coil-compression algorithms were executed in
MATLAB (MathWorks, MA). The implementation of
MLCC utilized the TensorLab package (31). The MLCC
algorithm is available for general use at: http://github.
com/icon-lab/mrirecon.

Simulations

Balanced SSFP acquisitions of a brain phantom with
0.5 mm isotropic resolution were simulated (http://
www.bic.mni.mcgill.ca/brainweb). Signal levels for each
tissue were calculated based on Equation [1]. The follow-
ing set of tissue parameters were assumed: T1/T2 of
3000/1000 ms for cerebro-spinal fluid (CSF), 1200/250
ms for blood, 1000/80 ms for white matter, 1300/110 ms
for gray matter, 1400/30 ms for muscle, and 370/130 ms
for fat (17). The sequence parameters were a560

�
(flip

angle), TR/TE 5 10.0/5.0 ms, and D/52p ½0:1:ðN21Þ�
N . The

simulations were based on a realistic distribution of
main-field inhomogeneity yielding 0 6 62 Hz (mean 6 SD
across volume) off-resonance. An array of 8 coils in a cir-
cular configuration within each 2D cross-section was
assumed. Multi-coil images were simulated by multiplying
each phase-cycled bSSFP image with analytically-derived
coil sensitivities (32).

Simulated acquisitions were each undersampled by a
factor of R. Here disjoint sampling based on variable-
density random patterns was used (13), which we previ-
ously observed to outperform uniform-density and
Poisson-disc sampling in phase-cycled bSSFP imaging
(17). Isotropic acceleration was implemented in two
phase-encode dimensions based on a polynomial sam-
pling density function (15). A central k-space region was
fully sampled for calibration of the interpolation kernel.

Undersampled data were then reconstructed via ZF,
SPIRiT, PE-SSFP, and ReCat. Reconstruction quality was
assessed with the peak signal-to-noise ratio (PSNR) met-
ric. To prevent bias due to differences in image scale,
the 98th percentile of intensity values were mapped onto
the ½0;1� range. To prevent bias from background regions
void of tissues, a tissue mask was generated for each
cross-section by simple thresholding. Images were
masked prior to PSNR calculation. The reference image
was taken as the Fourier reconstructions of fully-
sampled acquisitions at N 5 8. All metrics were pooled
across the central cross-sections of 10 different simulated
phantoms.

To optimize reconstruction and sampling parameters,
undersampled data were processed with varying
b 2 ð0;0:2�; k 2 ð0; 0:03�, and radius of calibration region
2 [4%,20%] of the maximum spatial frequency. Varying
p-norm combination parameters were also considered
across coils (pcoils) and across phase-cycles (pacq) 2 [1,5].
The quality of reconstructions was assessed via PSNR
which is a logarithmic measure inversely proportional to
the mean squared error (MSE) between a reconstructed
image and a reference image. Representative results for
N 5 4, D 5 8 are shown in Supporting Figures S1 and S2.
The optimized parameters for ReCat were b50:05,
k50:018, a calibration region of radius 13%, pcoils 5 2,
and pacq 5 4. These parameters also enabled SPIRiT and
PE-SSFP to achieve more than 99.0% of their optimal
performance. Therefore, this parameter set was pre-
scribed for all reconstructions thereafter.

To validate the optimization algorithm in ReCat, two
different implementations were considered based on
LSQR and projection onto convex sets (POCS) methods
(21). Reconstructions were obtained for the same set of
parameters including number of iterations. Bivariate
Gaussian noise was added to simulated acquisitions to
attain SNR 5 20, where SNR was taken as the ratio of
total power in k-space data to the power of noise
samples. Representative images via LSQR and POCS
methods are shown in Supporting Figure S3 for N 5 4,
D 5 8, and R 5 12. LSQR maintains lower reconstruction
errors, with 0.6 dB higher PSNR than POCS, implying
improved convergence properties.

To test robustness against variability in tissue and
sequence parameters, extended simulations over
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equispaced cross-sections of a single subject were per-

formed for varying T1/T2 ratios, flip angles, TRs (with

TE 5 TR/2), and SNR levels. The following range of

parameters were considered: (220%, 0%, 20%) devia-

tion in T1/T2 ratios, a5ð30
�
; 60

�
;90

� Þ, TR5(5 ms, 10 ms,

15 ms), and SNR levels in [10, 30].

In Vivo Experiments

In vivo bSSFP acquisitions of the brain were performed

on a 3 T Siemens Magnetom scanner (with 45 mT/m max-

imum gradient strength and 200 T/m/s). A 3D Cartesian

bSSFP sequence was prescribed with a flip angle of 30�, a

TR/TE of 8.08 ms/4.04 ms, a field-of-view (FOV) of

218 mm, a resolution of 0.85 3 0.85 3 0.85 mm3, ellipti-

cal scanning, and N 5 8 separate acquisitions with D/
spanning ½0; 2pÞ in equispaced intervals. A readout band-

width of 199 Hz/pixel was used to increase acquisition

SNR and thereby improve reconstruction performance at

high R. Standard volumetric shimming was performed.

Prior to each phase-cycled acquisition, a start-up segment

with 10 dummy TRs was used to dampen transient signal

oscillations. Each fully-sampled acquisition lasted 2 min

37 s, yielding a total scan time of nearly 21 min. The

acquisitions for each subject were collected sequentially,

without delay in a single session. Two separate experi-

ments were conducted, the first one using a 12-channel

receive-only head coil that was hardware-compressed to

four output channels, and the second one using a 32-

channel receive-only head coil for demonstration of

MLCC. The number of participants was eight for the first

experiment and six for the second experiment. All partici-

pants gave written informed consent, and the imaging

protocols were approved by the local ethics committee at

Bilkent University.
In vivo bSSFP acquisitions of the brain were variable-

density undersampled in the two phase-encode dimen-

sions retrospectively to attain R 2 [4, 16] (where R is the

acceleration rate with respect to a fully-sampled acquisi-

tion). ZF, SPIRiT, PE-SSFP, and ReCat were subsequently

FIG. 3. Phase-cycled bSSFP acquisitions of a brain phantom were simulated for N¼4. a: Phase-cycle images and the p-norm com-

bined reference image are shown. b: Representative reconstructions at D¼8, R¼8 are shown for ZF, SPIRiT, PE-SSFP, and ReCat (top
row). Zoomed-in portions of the images are depicted in small display windows. ReCat depicts detailed tissue structure with greater acu-

ity compared to other methods. Error maps relative to fully-sampled acquisitions are displayed in logarithmic scale (bottom row; see
colorbar). ReCat visibly reduces reconstruction errors compared to alternative methods. For this cross-section, ReCat achieves 30.6 dB
PSNR, whereas SPIRiT and PE-SSFP yield 29.6 dB and 29.4 dB, respectively.

Reconstruction by Calibration Over Tensors for Multi-Coil Multi-Acquisition bSSFP 2547



performed. The following subsets of acquisitions were
selected for varying N: D/52p ½0:1:ðN21Þ�

N for N 5 2, 4, and 8.
To compare coil-compression techniques, 32-channel

acquisitions were reduced to 6 virtual coils that capture
nearly 78% of the total variance in data. GCC and MLCC
compressions were separately obtained. ZF, SPIRiT, PE-
SSFP, and ReCat reconstructions were performed on the
compressed datasets. To examine the effect of D0 on com-
pression performance, GCC and MLCC were performed
for varying number of virtual coils D05 [3, 8]. Separate
ReCat reconstructions were computed for each D0 while

R 5 [4, 16] and N 5 [2, 8]. To examine the effect of MLCC
on information captured by virtual coils, the variances
explained by MLCC and GCC were compared at each D0

value. To assess the amount of shared information
among phase-cycles in compressed images, Pearson’s
correlation coefficient was calculated between each pair
of phase-cycles.

To examine image quality, PSNR was measured across

the central cross-section in the readout dimension for
each subject. Significant differences among reconstruc-
tions were assessed with nonparametric Wilcoxon
signed-rank tests. Similar to simulation analyses, images
were masked to select tissue regions prior to measure-

ments. The reference image was taken as the combined
Fourier reconstruction of fully-sampled, uncompressed
acquisitions with N 5 8.

RESULTS

Simulations

ReCat was first demonstrated on bSSFP acquisitions of a
numerical brain phantom with D 5 8. ZF, SPIRiT, PE-
SSFP, and ReCat reconstructions and error maps are
shown in Figure 3. Error maps for varying acceleration

factors R 5 {4, 8, 12} are shown in Figure 4. SPIRiT that
independently processes separate acquisitions and PE-
SSFP that independently processes separate coils suffer
from broad errors at high-spatial frequencies. In compari-
son, ReCat achieves visibly reduced reconstruction error

and enhanced tissue depiction, particularly for R> 4.
Quantitative assessments regarding ReCat and alterna-

tive reconstructions are listed in Table 1 for N 5 2–8 and
R 5 4–16. ReCat yields higher PSNR values compared to
SPIRiT and PE-SSFP at all N and R, except for two cases
R 5 4, N 5 8 and R 5 4, N 5 4 where the techniques per-

form similarly. On average, ReCat improves PSNR by
2.0 6 1.0 dB over SPIRiT, and by 2.0 6 0.5 dB over PE-
SSFP (mean 6 SD across subjects; average for N 5 2–8,
R 5 8–16).

Extended simulations presented in Supporting Tables
S1–S4 indicate that ReCat provides similar performance

improvements over alternative reconstructions broadly
across varying noise levels (SNR 5 10–30), TRs (5–15
ms), flip angles (30�–90�), and T1/T2 ratios (220% to

Table 1
Measurements on Simulated Phantoms

R¼4 R¼8 R¼12 R¼16

N¼8 ZF 23.5 6 0.1 22.5 6 0.2 20.2 6 0.3 15.8 6 0.2
SPIRiT 33.6 6 0.3 29.1 6 0.5 26.3 6 0.6 24.4 6 0.7

PE-SSFP 34.3 6 0.3 30.8 6 0.3 28.0 6 0.5 26.1 6 0.6
ReCat 33.5 6 0.3 32.0 6 0.2 29.6 6 0.4 27.6 6 0.5

N¼4 ZF 24.0 6 0.1 22.2 6 0.3 18.6 6 0.3 15.0 6 0.3
SPIRiT 32.4 6 0.2 28.6 6 0.4 26.1 6 0.6 24.3 6 0.7
PE-SSFP 32.4 6 0.3 28.6 6 0.4 26.2 6 0.6 24.5 6 0.7

ReCat 32.5 6 0.2 30.5 6 0.2 28.3 6 0.4 26.4 6 0.5
N¼2 ZF 24.1 6 0.2 20.6 6 0.3 16.6 6 0.3 14.5 6 0.2

SPIRiT 30.1 6 0.2 27.6 6 0.4 25.5 6 0.5 23.9 6 0.6
PE-SSFP 29.0 6 0.4 25.7 6 0.6 23.7 6 0.7 22.5 6 0.7
ReCat 30.2 6 0.2 28.2 6 0.3 26.3 6 0.5 24.7 6 0.6

Peak SNR (PSNR) measurements on simulated brain phantoms with D¼8 and a range of N and R. For each reconstruction method,
metrics are reported as mean 6 SD across the central cross-sections of 10 different subjects.

FIG. 4. SPIRiT, PE-SSFP, and ReCat reconstructions of the simu-

lated brain phantom were performed at N¼4 and D¼8. Error
maps are shown for R¼4, 8, and 12. ReCat outperforms SPIRiT
and PE-SSFP for R>4, and the level of error reduction increases

towards higher R.
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20%). These results suggest that ReCat enhances image

quality and improves artifact suppression compared to

reconstructions that ignore correlated information across

coils or acquisitions.

In Vivo Experiments

Following simulations, the potential of ReCat for acceler-

ated in vivo bSSFP imaging was examined in the brain.

Representative images from ZF, SPIRiT, PE-SSFP, and

ReCat are displayed for D 5 12 in Supporting Figure S4,

and for D 5 32 in Figure 5. For D 5 12, ZF and SPIRiT

suffer from relatively high levels of residual aliasing and

noise interference compared to PE-SSFP and ReCat.

While ReCat maintains the lowest reconstruction error,

PE-SSFP and ReCat images are visually similar with

detailed depiction of tissue structure even at high R. For

D 5 32, ReCat again yields high-quality images, and in

this case ReCat images appear sharper than PE-SSFP

images. As opposed to PE-SSFP that jointly processes

acquisitions, ReCat leverages additional information

across coils. Thus, as D increases relative to N, perfor-

mance improvements that ReCat provides over PE-SSFP

might become more prominent.
Quantitative assessments of in vivo reconstructions are

listed in Table 2 for D 5 12, N 5 2–8 and R 5 4–16. ReCat

achieves higher PSNR than SPIRiT for R> 4 (P<0.05,

sign-rank test), and higher PSNR than PE-SSFP for all N

and R (P< 0.05). While across-subject variations in PSNR

levels can occur naturally due to varying anatomies or

noise levels, our significance tests indicate that the pro-

posed method outperforms alternative reconstructions

consistently across subjects. On average, ReCat improves

PSNR by 1.1 6 1.0 dB over SPIRiT, and by 0.9 6 0.3 over

PE-SSFP (mean 6 SD across subjects; average for

N 5 2–8, R 5 8–16). Note that these PSNR differences cor-

respond to average MSE improvements of 28.8% over

SPIRiT, and 23.0% over PE-SSFP.

Table 2

Measurements on In Vivo Data

R¼4 R¼8 R¼12 R¼16

N¼8 ZF 28.6 6 0.9 23.6 6 1.2 19.1 6 1.2 14.7 6 1.1

SPIRiT 34.8 6 1.3 29.0 6 1.4 26.4 6 1.4 24.7 6 1.5
PE-SSFP 33.6 6 1.4 29.8 6 1.3 27.7 6 1.2 26.1 6 1.2
ReCat 34.8 6 1.4 30.9 6 1.2 28.6 6 1.2 27.0 6 1.2

N¼4 ZF 25.3 6 1.5 21.0 6 1.3 16.9 6 1.0 13.9 6 0.7
SPIRiT 28.3 6 2.1 26.4 6 1.2 24.8 6 1.0 23.6 6 1.1

PE-SSFP 27.6 6 2.0 26.1 6 1.4 24.8 6 1.2 23.9 6 1.2
ReCat 28.2 6 2.3 26.9 6 1.6 25.7 6 1.2 24.7 6 1.1

N¼2 ZF 22.7 6 1.7 18.7 6 1.0 15.4 6 0.5 13.5 6 0.5

SPIRiT 24.7 6 1.9 23.9 6 1.4 23.0 6 1.1 22.2 6 1.0
PE-SSFP 24.4 6 1.8 23.4 6 1.3 22.4 6 1.2 21.6 6 1.1
ReCat 24.7 6 2.0 24.0 6 1.5 23.3 6 1.3 22.5 6 1.1

PSNR measurements on in vivo brain images with D¼12 and a range of N and R. For each reconstruction method, metrics are reported

as mean 6 SD across the central cross-sections of eight different subjects.

FIG. 5. In vivo bSSFP acquisitions of the brain were performed for N¼4, D¼32. Representative reconstructions at R¼8 are shown for
ZF, SPIRiT, PE-SSFP and ReCat (top row). Error maps relative to fully-sampled acquisitions are displayed in logarithmic scale (bottom
row; see colorbar). ReCat reduces reconstruction error and suppresses artifacts compared to other approaches, and achieves 34.1 dB

PSNR; while SPIRiT and PE-SSFP yield to 33.7 dB and 32.4 dB, respectively. (See also Supporting Fig. S4.).
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Next, the proposed coil compression—MLCC—was

demonstrated on multi-coil data with D 5 32. Figure 6 dis-

plays the proportion of variance that is captured by D05 6

virtual coils, and the average correlation coefficient

between pairs of virtual coil images for a representative

subject. MLCC slightly improves variance explained in

virtual coils compared to GCC. Furthermore, it increases

the amount of shared information across acquisitions cap-

tured in coil-compressed data. This can be confirmed

visually by virtual coils shown in Supporting Figure S5.

While coil sensitivities based on GCC vary substantially

among acquisitions, MLCC yields more consistent coil

sensitivities. Note that each acquisition in MLCC-based

coils still shows intensity modulation due to bSSFP pro-

files. These results are valid in each individual subject.

Because ReCat leverages an interpolation kernel to synthe-

size unacquired data across coils and acquisitions, consis-

tency of virtual coils should enhance interpolation

performance.
ReCat reconstructions and respective error maps fol-

lowing GCC and MLCC with D05 6 virtual coils are dis-

played in Figure 7. For SPIRiT, PE-SSFP, and ReCat,

MLCC enables substantially reduced errors compared to

GCC, as it increases the amount of information in virtual

coils that is shared across multiple acquisitions. Quanti-

tative assessments of coil-compressed ReCat reconstruc-

tions are listed in Table 3 for N 5 2–8, R 5 4–16, and D05
6. A comprehensive list of measurements for various

reconstruction methods is in Supporting Table S5. For

ZF, MLCC and GCC show no significant differences

since they account for similar proportion of variance in

coil data. For SPIRiT, PE-SSFP and ReCat, MLCC yields

higher PSNR than GCC for all N and R (P< 0.05, sign-
rank test). On average, MLCC improves PSNR by
0.8 6 0.6 dB over GCC for ReCat (mean 6 SD across sub-
jects; average for N 5 2–8, R 5 4–16). This PSNR differ-
ence corresponds to an average improvement of 20.2%
in MSE.

Differences in PSNR of ReCat images obtained after
MLCC and GCC are plotted in Supporting Figure S6 for
varying D05 [3, 8] in a representative subject. For D0 >4,
MLCC consistently improves PSNR over GCC regardless of
R or N. Taken together, these results suggest that the pro-
posed framework enables scan-efficient phase-cycled
bSSFP imaging at high R with improved image quality due
to the tensor-based reconstruction and coil compression.

DISCUSSION

Several lines of work have produced successful
approaches to suppress banding artifacts in bSSFP imag-
ing. Proposed methods for alleviating sensitivity to field
inhomogeneity include modification of magnetization
profiles (33–35), advanced shimming (36), and phase-
cycled imaging (3). Compared to methods that require
pulse-sequence modification, phase-cycled bSSFP with
its ease of implementation has remained a popular
choice albeit at the expense of prolonged scan times.

To improve scan efficiency in phase-cycled bSSFP, we
recently proposed a profile-encoding approach (PE-
SSFP) that jointly reconstructs multi-acquisition data
(17). PE-SSFP was demonstrated to outperform both
independent CS (13) and multi-coil PI reconstructions
(10) of individual acquisitions. Since it utilizes corre-
lated structural information across acquisitions, PE-SSFP

FIG. 6. In vivo bSSFP acquisitions of the brain were performed with N¼8, D¼32, R¼8. Coil compression was performed via GCC and

MLCC. The bar plots show the mean and standard error across 5 cross-sections. a: For each virtual coil, the average proportion of vari-
ance captured across phase-cycles is plotted when D0 ¼ 6. b: For varying D0 ¼ ½3;8�, the total proportion of variance captured by all vir-
tual coils is shown. c: For each virtual coil, the average correlation coefficient of virtual coils across phase-cycles is plotted when

D0 ¼ 6. d: For varying D0 ¼ ½3;8�, the average of all pair-wise correlations of virtual coils is shown.
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could maintain high image quality up to R 5 6–8. How-
ever, it remains suboptimal since data from each coil
were treated independently.

In this study, we proposed an improved acceleration
framework, ReCat, that linearly synthesizes unacquired
data using a tensor-interpolation kernel over coil and
acquisition dimensions. We further proposed a tensor-
based coil compression, MLCC, that jointly processes
acquisitions to produce consistent sets of virtual coils.
MLCC improves ReCat by enabling more optimal use of
shared information across acquisitions, particularly for
disjoint sampling. With this enhanced framework,
detailed tissue depiction was maintained up to R 5 16
and N 5 8. Thus nearly two-fold increase in scan effi-
ciency was attained while prescribing a large number of
acquisitions that effectively suppress banding artifacts.
Compared to SPIRiT and PE-SSFP, ReCat yields signifi-
cantly higher PSNR for simulated phantom and in vivo

brain datasets. ReCat also improves image sharpness
over SPIRiT and noise and artifact suppression over PE-
SSFP. Future studies on a patient population are war-
ranted to assess whether ReCat improves the diagnostic
quality of prospectively undersampled acquisitions for
radiological evaluations.

ReCat outperforms both SPIRiT and PE-SSFP for rela-
tively high acceleration factors, but we observed that
SPIRiT yields higher PSNR for R 	 4. In theory, the
higher-dimensional ReCat kernel should yield equal or
better performance than the SPIRiT kernel that only
captures the coil dimension. In practice, however, the
fidelity of kernel estimates can decrease with increasing
dimensionality. During recovery of heavily under-
sampled datasets, the ReCat kernel captures additional
information about bSSFP profiles to boost reconstruction
performance. Yet for densely sampled datasets with R 	
4 and a large number of coils, the benefit of bSSFP-

FIG. 7. In vivo bSSFP acquisitions of the brain were performed with N¼4, D¼32. Multi-coil data were compressed to 6 virtual coils

(capturing nearly 78% of the data variance) via GCC and MLCC. Representative ReCat reconstructions are shown at R¼8 (top row)
along with error maps relative to fully-sampled, uncompressed acquisitions (bottom row). MLCC outperforms GCC, and it produces a
reconstruction that more closely resembles the reference no-compression case. Compared to 30.7 dB PSNR in the no-compression

case, MLCC yields 30.5 dB PSNR while GCC yields merely 28.7 dB PSNR.

Table 3
Measurements on Coil-Compressed In Vivo Data

R¼4 R¼8 R¼12 R¼16

N¼8 GCC 35.3 6 4.8 32.5 6 4.1 30.6 6 4.0 29.2 6 3.7
MLCC 36.9 6 5.0 33.7 6 4.2 31.7 6 3.9 30.0 6 3.8

N¼4 GCC 33.3 6 2.2 31.4 6 2.7 29.9 6 2.7 28.6 6 2.6
MLCC 33.8 6 2.2 32.2 6 2.4 30.6 6 2.4 29.4 6 2.3

N¼2 GCC 29.8 6 2.2 29.1 6 2.3 28.1 6 2.4 27.1 6 2.3
MLCC 30.1 6 2.1 29.4 6 2.2 28.6 6 2.2 27.7 6 2.2

PSNR measurements on in vivo brain images acquired with D¼32. GCC and MLCC coil compression was performed to attain D0 ¼ 6,

followed by a ReCat reconstruction. For different N and R, metrics are reported as mean 6 SD across the central cross-sections of six
different subjects. Quantitative coil compression results with other reconstruction techniques are in Supporting Table S5.
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profile information is naturally more limited and can be
outweighed by performance losses due to decreased
kernel fidelity.

ReCat is an acceleration framework proposed primarily
for phase-cycled bSSFP imaging. The bSSFP signal
model reveals that each acquisition performs spatial
encoding via a respective bSSFP profile, analogous to
spatial encoding via coil sensitivities. Here, we showed
that the tensor-interpolation kernel in ReCat captures
this encoding information from calibration data, and
outperforms a kernel across coils or a kernel across
acquisitions. Note that calibration-free frameworks were
recently proposed for sparse recovery via low-rank struc-
tured matrix completion (20,37,38). These frameworks
can offer improved performance in cases where calibra-
tion data are scarce or accuracy of kernel estimates is
limited. In particular, the annihilating filter-based low
rank Hankel matrix approach (ALOHA) uses efficient
implementations of low-rank constraints in transform
domains to unify PI and CS reconstructions. These
improvements can help further reduce residual aliasing
and noise interference in reconstruction of bSSFP data-
sets. That said, a fair comparison among frameworks
requires implementations based on similar types of
regularization terms. Currently, ReCat is cast as a linear
problem with ‘2-regularization on reconstructed data. We
plan to incorporate ‘1-norm, total variation, and low-
rank constraints in ReCat to perform comprehensive
evaluations in future studies.

Several technical limitations might be further addressed
to improve the proposed framework. First, while scan
acceleration partly alleviates motion sensitivity, separate
phase cycles are acquired sequentially in ReCat. If signifi-
cant motion occurs in between the collection of central k-
space data for separate phase cycles, joint reconstruction
might be impaired due to spatial displacement. To address
this issue, motion correction could be incorporated into
the reconstructions (39). Motion can also alter the spatial
distribution of field-inhomogeneity-induced phase across
multiple acquisitions. ReCat can estimate interpolation
kernels that take into account alterations in the encoded
bSSFP profiles. However, since these profiles may no lon-
ger correspond to phase-cycles equispaced in [0, 2p),
higher noise amplification may be observed in the recon-
structions. Lastly, for very high R approaching 16, the
preparation time needed to reach steady state for each
phase-cycled acquisition can become comparable to the
acquisition time itself. In such cases, a preparatory seg-
ment of ten dummy excitations may prove insufficient in
suppressing transient oscillations. To better dampen oscil-
lations, the preparatory segment can be prolonged and
advanced preparations based on gradually-ramped RF flip
angles might be used (40). Still, scan efficiency consider-
ations can impose an upper limit on the achievable accel-
eration factors.

ReCat produces images for each individual coil and
acquisition separately. Here, these images were com-
bined across both dimensions with the p-norm method
to attain a favorable compromise between signal homoge-
neity and SNR efficiency. A simple sum-of-squares com-
bination (P 5 2) for coils may lead to suboptimal
efficiency at higher noise levels. In such cases, an SNR-

optimal linear combination could be performed instead
(28). The homogeneity of the p-norm combination (P 5 4)
for bSSFP may also degrade when imaging at high field
strengths. To improve homogeneity, analytical methods
can be used to better separate the signal components due
to tissue parameters and those due to off-resonance
(27,41). Other ReCat parameters including regularization
weights and calibration area size were optimized on sim-
ulated phantoms, and then used to reconstruct all data-
sets in this study. With these parameters, ReCat
maintains similar performance improvements across a
wide range of sequence and tissue parameters. When
larger deviations in scan protocols are expected, it might
be preferable to reoptimize ReCat parameters on training
data acquired with each unique protocol. Here, a long-
TR bSSFP sequence with low readout bandwidth was
used to improve reconstruction performance at high R.
Similar acquisition time and image quality can also be
maintained via a short-TR sequence with higher readout
bandwidth and lower R. While this short-TR sequence
may further decrease sensitivity to field inhomogeneity,
the long-TR sequence can allow for multi-echo bSSFP
acquisitions (42) and yield improved arterial-venous
blood contrast for angiographic applications (43).

The MLCC method proposed here uses the HOSVD
algorithm to decompose the multi-coil, multi-acquisition
data tensor. Although rarely encountered, low-rank
approximations based on HOSVD can recover local
optima (44). In such cases, optimization-based algo-
rithms can be used at the expense of increased computa-
tional load (45). For the datasets considered here, no
significant differences were observed between HOSVD
and optimization-based SVD solutions. Thus HOSVD
was preferred for its computational efficiency. In addi-
tion to multiple acquisitions, the proposed MLCC
method also leverages shared information across multi-
ple cross-sections. Here high quality compression was
obtained with MLCC on five cross-sections. This strategy
might be suboptimal in cases with substantial, non-
smooth changes in coil sensitivity or tissue structure
through cross-sections. The optimal number of cross-
sections for MLCC will be application-specific, and it
warrants further investigation.

In summary, ReCat significantly improves scan effi-
ciency of bSSFP imaging while maintaining reliability
against field inhomogeneity. By leveraging shared infor-
mation across both acquisitions and coils, it achieves
enhanced image quality compared to conventional PI
and CS methods. The computational complexity of the
joint reconstruction is effectively addressed via the
MLCC method. To optimize image quality, MLCC produ-
ces a consistent set of virtual coils across separate
acquisitions. The potential for accelerated brain imaging
via multiple phase-cycled bSSFP acquisitions was dem-
onstrated in the current study. Yet, the suggested bene-
fits of ReCat are expected to generalize to many multi-
acquisition bSSFP applications including peripheral
angiography (43), magnetization transfer imaging (46)
and fat/water separation (6). Moreover, ReCat and MLCC
can be adapted to other multiple-acquisition applications
such as multi-echo fat/water separation (47) and para-
metric mapping (48,49) where there is substantial shared
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structural information across acquisitions, or dynamic

imaging (50) by incorporating a temporal sparsity model.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

Table S1. Effects of SNR Variations
Table S2. Effects of TR Variations.
Table S3. Effects of a Variations
Table S4. Effects of T1=T2 Variations.
Table S5. Measurements on Coil-Compressed In Vivo Data
Fig. S1. Reconstruction quality was examined as a function of the regulari-
zation parameters b, k and the calibration area size. Results are shown for
SPIRiT, PE-SSFP and ReCat methods with N 5 4, D 5 8, R 5 8. (a) PSNR
measurements on simulated brain phantoms with varying b, and fixed cali-
bration area size of 13% and k50.018. All methods are fairly insensitive to
the value of b in a broad range. (b) PSNR measurements with varying k,
and fixed calibration area size of 13% and b50.05. (c) PSNR measure-
ments with varying calibration area size, and fixed k50.018 and b50.05. In
all cases, SPIRiT and PE-SSFP achieve above 99.0% of their maximum
PSNR at the optimal reconstruction parameters for ReCat
Fig. S2. Reconstruction quality was examined as a function of the p-norm
parameters pacq and pcoils, which represent the p-norm values to combine

acquisitions and coils, respectively. Results are shown as PSNR measure-
ments for SPIRiT (a), PE-SSFP (b) and ReCat (c) methods with N 5 4,
D 5 8, R 5 8. pacq 5 4 and pcoils 5 2 were taken as optimal parameters for
ReCat. SPIRiT and PE-SSFP achieve above 99.2% of their maximum PSNR
at the optimal p-norm parameters for ReCat
Fig. S3. Two different implementations of ReCat were considered based on
projection onto convex sets (POCS) and least squares (LSQR) algorithms.
Reconstruction parameters for the two methods were independently opti-
mized. Reconstructions (top row) and squared error maps in logarithmic
scale (bottom row; see colorbar) are shown for N54, D58. Overall, LSQR
achieves relatively lower reconstruction errors, with 0.6 dB higher PSNR
than the POCS implementation.
Fig. S4. In vivo bSSFP acquisitions of the brain were performed for N58,
D512. (a) Fully-sampled acquisitions for four sample phase cycles and their
p-norm combination are shown. (b) Representative reconstructions at R58
are shown for ZF, SPIRiT, PE-SSFP and ReCat (top row). Error maps relative
to fully-sampled acquisitions are displayed in logarithmic scale (bottom row;
see colorbar). ReCat reduces reconstruction error compared to other
approaches with 29.3 dB PSNR; while SPIRiT and PE-SSFP yield 27.6 dB
and 27.9 dB, respectively. While ReCat and PE-SSFP produce visually similar
images, ReCat yields sharper reconstructions compared to SPIRiT
Fig. S5. Coil-compression was performed on undersampled bSSFP data
(N58, R54) acquired with D532 physical coils and compressed to D’56
virtual coils. ZF reconstructions were obtained for each acquisition and
each coil separately. (a) Virtual coil images obtained with GCC for two rep-
resentative acquisitions, D/5p (top row), p=4 (bottom row). Coils are shown
in separate columns. (b) Virtual coil images obtained with MLCC for the
same acquisitions. While GCC-based coil sensitivities show differences
across acquisitions (marked with arrows), MLCC-based sensitivities are
highly consistent across acquisitions
Fig. S6. In vivo bSSFP acquisitions of the brain were performed with
D532. Coil-compression via GCC and MLCC was obtained for varying
number of virtual coils D05 [3,8], and ReCat was computed. The data vari-
ance captured at each D0 value is listed in the horizontal axis. (a) PSNR dif-
ference between MLCC and GCC for R5[4,16] and N58. (b) PSNR
difference between MLCC and GCC for N5[2,8] and R58. For D’ >4,
MLCC improves PSNR over GCC regardless of R or N
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