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Varying Kernel-Extent Gridding Reconstruction
for Undersampled Variable-Density Spirals

Tolga Çukur,∗ Juan M. Santos, Dwight G. Nishimura, and John M. Pauly

Nonuniform, non-Cartesian k-space trajectories enable fast
scanning with reduced motion and flow artifacts. In such cases,
the data are usually convolved with a kernel and resampled onto
a Cartesian grid before reconstruction. For trajectories such as
undersampled variable-density spirals, the mainlobe width of
the kernel for undersampled high spatial frequencies has to be
larger to limit the amount of aliasing energy. Continuously vary-
ing the kernel extent is time consuming. By dividing k-space
into several annuli and using appropriate mainlobe widths for
each, the aliasing energy and noise can be reduced at the
expense of lower resolution towards the edge of the field of
view (FOV). Resolution can instead be preserved at the center
of the FOV, which is expected to be free of artifacts, without
any artifact reduction. The image reconstructed from each annu-
lus can be deapodized separately. The method can be applied
to most k-space trajectories used in MRI. Magn Reson Med
59:196–201, 2008. © 2007 Wiley-Liss, Inc.
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INTRODUCTION

Magnetic resonance imaging (MRI) data can be collected
on various grids in the spatial frequency domain, usu-
ally referred to as k-space. Non-Cartesian trajectories are
sometimes preferred to Cartesian trajectories for reasons
including imaging speed and flow properties. For example,
spiral imaging (1,2) is a k-space sampling strategy that has
gained interest in cardiac (3) and coronary imaging (4,5).
For applications where full field-of-view (FOV) coverage is
difficult, such as high-resolution breathhold imaging, there
is a trade-off between resolution and aliasing artifacts due
to a smaller FOV. An effective solution to this problem is
using variable-density k-space trajectories (6,7).

Tsai and Nishimura (7) showed that if the center of
k-space is densely sampled to prevent aliasing artifacts and
the lower energy high-spatial frequencies are undersam-
pled, then we can choose to reduce scan time or increase
resolution at the expense of increased aliasing artifacts.
The undersampled variable-density spiral sampling strat-
egy reduces the severity of aliasing artifacts as most of
the energy in MR data is concentrated around the k-space
origin. With spiral imaging, aliasing artifacts caused by
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undersampling the high-spatial frequencies appear as arc-
shaped signals in the reconstructed images.

When the MRI data lies on a regular Cartesian grid, the
reconstruction problem is solved by performing an inverse
fast Fourier transform (FFT). Although various reconstruc-
tion methods (8–10) have been proposed for non-Cartesian
trajectories recently, the gridding algorithm (11–14) is still
widely used. There are various design considerations for
the algorithm including density compensation and the
choice of the convolution kernel. When variable-density
spirals are used to cover k-space, the nonuniform sam-
pling of k-space causes the more densely sampled central
part of k-space to be heavily weighted, resulting in low-
frequency artifacts in the reconstructed images. Density
compensation is required to correct for the variable-density
sampling. Effective density compensation methods have
been proposed in recent work (15–19).

A Kaiser–Bessel convolution kernel with an oversam-
pling ratio of two is commonly used for gridding recon-
struction (13). For variable-density spirals, an important
consideration is the extent of the convolution kernel. When
a fixed-extent kernel is used for all k-space data, we can
choose a wide enough kernel to cover the gaps between
the samples around either the central part or the periph-
ery of k-space. If the acquisition FOV for a certain spatial
frequency is assumed to be the region where sampling is
performed at or above the Nyquist rate, then the corre-
sponding acquisition FOV for undersampled high spatial
frequencies is smaller than that for low spatial frequen-
cies. Aliasing artifacts caused by undersampling of the
high spatial frequencies cannot be reduced outside the
corresponding acquisition FOV, while preserving resolu-
tion at the center of the FOV with this approach as it
is shift-invariant approach. Therefore, the low spatial fre-
quencies which are actually sampled above the Nyquist
rate within the full FOV can only be reconstructed for
the smallest acquisition FOV. Sedarat and Nishimura (14)
showed that when a priori information about the image
is available, the reconstruction problem can be posed
as a least squares problem, where interpolation matri-
ces with different kernel extents are used. However, this
approach is limited to the cases where prior knowl-
edge about the image is at hand, and is computationally
demanding.

Alternatively, the kernel extent can be varied by scal-
ing the mainlobe-width, starting with a small width in
the central part and gradually increasing toward high spa-
tial frequencies. Along with the varying mainlobe-width,
the kernel is extended by increasing the number of adja-
cent grid points for which the convolution is evaluated to
cover the inter-sample gap between the data points. It is
not possible to find the deapodization function by a sim-
ple Fourier transform, if the mainlobe-width and the kernel
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extent are varied continuously throughout k-space. In this
work, we have partitioned k-space into several annuli and
assigned a different kernel to each, where the innermost
annulus has the smallest kernel extent and the outermost
has the largest. As annuli are reconstructed independently,
deapodization can be performed on each since the kernel is
fixed for a given annulus. This method reduces the aliasing
artifacts and the noise contribution of undersampled high
spatial frequencies outside the region supported by the
corresponding sampling densities. On the other hand, the
resolution is preserved in the region supported by the sam-
pling densities of all frequencies, as the region is already
artifact-free.

THEORY

The initial step in gridding reconstruction is to perform
density compensation on the sampled data. The recon-
struction discussed in this paper uses a numerically com-
puted estimate of the density based on Voronoi diagrams
(19), as described by Rasche et al. (17). Given the set
of sampled data points, the algorithm estimates the area
associated with each point. Once the density compensa-
tion is carried out, the data points are convolved with the
gridding kernel and resampled onto a Cartesian grid. The
gridded k-space data can be related to the acquired MR
data by,

M̂ (k) = [Ms(k) ∗ C(k)]III
(

αk
�k

)
, [1]

where ∗ denotes convolution, k is the k-space coordinate,
�k is the separation between the Cartesian-grid k-space
samples, α is the oversampling factor, C(k) is the gridding
kernel, III (k) is the Shah sampling function and M̂ (k) is the
result of the gridding algorithm. Ms(k) is the sampled and
density compensated MR signal,

Ms(k) = M (k)
P(k)
ρ(k)

, [2]

where M (k) is the MR signal, ρ(k) is the density com-
pensation function and P(k) is the sampling function that
represents the non-Cartesian data acquisition grid,

P(k) =
∑

i

δ(k − ki). [3]

The final step in the gridding reconstruction algorithm is to
account for the apodization caused by the convolution ker-
nel in the reconstructed images. This can be performed by
dividing the image by c(r), the Fourier transform of the con-
volution kernel in the spatial domain, where r is the spatial
coordinate. A constant can be added to the deapodizing
function to limit the degree of deapodization at the edges
of the FOV or to prevent division by zero when c(r) has
zero crossings within the FOV. The entire gridding algo-
rithm including the deapodization step can be expressed
in the spatial domain as,

m̂(r) = 1
c(r)

{
[ms(r)c(r)] ∗ III

( r
αFOV

)}
, [4]

where the lowercase characters are the inverse Fourier
transforms of the uppercase characters, which represent
data in k-space.

Looking at Eq. [1], the input-output relationship of the
regular gridding algorithm up to the Cartesian sampling
step—with a constant mainlobe-width convolution kernel
and assuming Ms(k) is the input—is given by,

Mo(k) = C(k) ∗ Ms(k), [5]

where Mo(k) is the output and the system is frequency-
invariant. The corresponding relationship in the spatial
domain can be expressed as,

mo(r) = c(r)ms(r), [6]

where mo(r) is the inverse Fourier transform of Mo(k).
Instead of using the same convolution kernel throughout

k-space, we can choose to divide k-space into several non-
overlapping subsets and use a different gridding kernel for
each. Assuming there are a total of N subsets and Ci(k) is the
gridding kernel assigned to the ith subset Zi , the frequency-
domain relationship can be expressed as,

Mo(k) =
N∑

i=1

Ci(k) ∗ [Bi(k)Ms(k)], [7]

where Bi(k), acting as a bandpass filter where the band is
defined by the elements of Zi , is given by,

Bi(k) =
{

1, k ∈ Zi

0, k /∈ Zi
[8]

The frequency-variant nature of the convolution kernel
can be explained by the fact that the kernel has a differ-
ent mainlobe-width and extent for each frequency band in
k-space. The corresponding spatial-domain relationship is
given by,

mo(r) =
N∑

i=1

ci(r)[bi(r) ∗ ms(r)], [9]

where bi(r) is the inverse Fourier transform of Bi(k). Hence,
mo(r) is the sum of spatially weighted versions of bandpass-
filtered versions of ms(r). The bandpass filtering is such that
mo(r) equals ms(r) if all ci(r)s are unity.

Equation 9 shows the apodizing effect of the convolution
kernel on the reconstructed images. As the mainlobe-width
of the kernel increases at higher spatial frequencies, the
extent of the corresponding apodizing function in the spa-
tial domain is reduced. To help interpret Eq. [9], Fig. 1
shows a simple example where the input object is the
superposition of 2 sinusoids and k-space is divided into
two subsets (N = 2)–low spatial frequencies and high
spatial frequencies. The kernel mainlobe width for the
high-spatial-frequency subset is made larger than that for
the low-spatial-frequency subset. Therefore, the apodiza-
tion function assigned to the high-spatial-frequency subset
covers a smaller circular region in the spatial domain.
This means the high spatial frequency components of the
image are kept only within this smaller spatial extent
of the apodizing function, whereas low spatial frequency
components are preserved within the entire FOV as
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FIG. 1. The input is assumed to be a superposition of two sinusoids
varying in the x direction. k-space is partitioned into two subsets (a);
the impulses that belong to the low-frequency sinusoid (m1) fall into
the inner subset Z1 and are for the high-frequency sinusoid (m2) those
in the outer subset Z2. The central cross-section of the input (m3) (b)
is shown to be a superposition of m1 and m2 over the entire FOV.
Apodization functions c1(r ), for the low spatial frequencies, and c2(r ),
for the high spatial frequencies, are circular disks bounded by the
inner and outer dashed circles respectively (c). m1 is preserved within
the full-FOV, whereas m2 only within the extent of c2(r ) (d). Therefore
the central part of the FOV preserves high-frequency components,
but the outer part retains only low-frequency components.

the assigned apodization function extends to the edges
of the FOV.

The error energy contribution of the high spatial fre-
quency components is reduced as the range of spatial
locations that contribute to the error energy is decreased,
as explained by Pipe (16). This observation can be used
to reduce the noise contribution and the aliasing artifacts
at high spatial frequencies with undersampled variable-
density spiral acquisitions. If the spatial frequencies are
grouped into several subsets depending on the acquisition
sampling density, an appropriate mainlobe-width that sup-
ports only a large enough FOV can be selected. Regular
gridding reconstruction can be performed on each subset
independently with a space-invariant kernel. Therefore,
subsets can be deapodized separately and summed to yield
a final image. The deapodization must be performed only
within the corresponding acquisition FOV for each subset,
in order to reduce the aliasing artifacts outside the acquisi-
tion FOV. The exact value of the width is determined by the
mean separation between the sampling points, �k. With
proper selection of the kernel extent and the mainlobe-
width, the additional noise contribution and the aliasing
energy from outside the acquisition FOV for the given sub-
set of spatial frequencies is avoided in the reconstructed
image.

The shift-variant nature of the apodization function can
further be exploited to compromise between the amount of
noise and aliasing energy reduction, and resolution for a
given region of interest (ROI). When the ROI is not located
at the center of the FOV, the noise and the aliasing energy
are reduced. However, the resolution within that ROI will
be lower than the nominal resolution for the center of the

FOV. If preserving the resolution has priority over reducing
aliasing artifacts for that ROI, the center of the reconstruc-
tion FOV can be shifted to the center of the ROI with
a corresponding complex exponential modulation of the
k-space data. Effective center of the reconstruction FOV for
various ROIs in the original image can be shifted to differ-
ent locations within the FOV to adjust the trade-off between
resolution and aliasing artifact reduction. Later, the recon-
structed ROIs can be shifted back to their original locations
and combined to yield a single image.

METHODS AND RESULTS

Simulations

The two-dimensional impulse response (PSF) of the vary-
ing kernel-extent gridding reconstruction method was com-
puted. The undersampled variable-density trajectory was
designed to linearly fall off from a relative sampling den-
sity of 1 at the k-space origin to a density of 0.17 at the
periphery. For the varying kernel-extent method, k-space
was partitioned into 6 annuli and the kernel extent was
linearly ramped up from 3 to 17. The central cross-sections
for the PSFs with an impulse placed at the center of
the FOV and toward the edge of the FOV are displayed
in Fig. 2. The impulse response of the varying kernel-
extent reconstruction is shift-variant. For the impulse at
the center of the FOV, the varying kernel extent method
has less aliasing energy than the constant kernel extent
method. For the impulse toward the edge of the FOV,
the total aliasing energy is still reduced with the vary-
ing kernel-extent method; however the amplitude of the
impulse is also scaled down, as high spatial frequency
data are reconstructed within a smaller extent. The cross-
sections clearly show that the constant and varying kernel-
extent methods behave similarly for the central region
of the FOV.

The performance of the method was further analyzed fol-
lowing the formalism outlined by Pipe (16). An impulse
object at the center and another one at the outer portion of
the FOV were used for separate simulations. The aliasing
energy was computed by integrating the squared difference
between a perfect impulse and the resulting magnitude
transfer function (MTF) of the method over k-space. The
relative resolution was assumed to be the square root of
the relative voxel size. The relative SNR efficiency calcu-
lated as the ratio of the amplitude of the reconstructed
impulse to the square root of the mean square variation of
the background signal. The reconstruction time increases
the number of annuli due to the additional gridding com-
putations. Therefore, the number of annuli should be kept
to a minimum while achieving the desired aliasing artifact
reduction. The results are displayed in Fig. 3.

Since the apodizing kernels are slowly varying functions
in space, the abruptness in kernel extent change does not
noticeably harm the smoothness of the image. The kernel
extent in the transition regions between the annuli can
be windowed for a milder progression. Although this is
more optimal, the improvement in smoothness in the spa-
tial domain is negligible and the increase in reconstruction
time is substantial as the number of annuli is increased
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FIG. 2. Central cross sections of the PSFs for constant and varying
kernel-extent gridding reconstructions are displayed. For the impulse
at the center of the FOV (a) the varying kernel-extent method has
lower sidelobe amplitudes than the constant kernel-extent method.
For the impulse close to the edge of the FOV (b) varying kernel-extent
reconstruction has lower aliasing energy within the FOV; however the
high spatial frequency components toward the edge of the FOV are
masked out by the reconstruction. Therefore, the amplitude of the
impulse is lower compared to regular gridding reconstruction.

almost an order of magnitude. Decreasing the quantiza-
tion level of kernel extents to non-integer values is more
effective, if the increased number of annuli is affordable.

Phantom Images

The varying kernel-extent method was tested on a resolu-
tion phantom, where data was acquired on an undersam-
pled variable-density spiral trajectory with 17 interleaves.
The FOV of the trajectory fell off linearly from 20 cm at the
center of k-space to 5 cm at the edge. The in-plane reso-
lution was 0.8 mm. The phantom data was acquired on a
1.5 T GE Signa system with CV/i gradients, with a single-
channel 5-in. surface coil. The signal reception through the
surface coil caused a fall-off in SNR increasing with dis-
tance from the coil. Therefore, high-frequency aliasing from
high SNR regions of the phantom led to visible artifacts in

the low SNR region. A varying kernel-extent reconstruc-
tion with 8 annuli, kernel extents varying linearly between
3 and 17, was performed. Figure 4 shows reduced alias-
ing artifacts in the reconstructed phantom images with
the use of varying kernel-extent method (arrows). Partial
density compensation, where the high spatial frequencies
are not fully compensated, was performed prior to grid-
ding to reduce aliasing artifacts throughout the FOV as
well (15). Although a similar reduction in aliasing artifacts
can be achieved with this method, the resolution has to be
sacrificed everywhere within the FOV.

Different ROIs in a single image can be shifted to choose
the trade-off between aliasing artifact suppression and reso-
lution for each and combined after reconstruction. Figure 4
displays an example where the high SNR region of the
phantom image (interior of the rectangle) and the remaining
low SNR region are considered as separate ROIs. The high
SNR ROI shows minimal aliasing artifacts and the center
of the region can be shifted to the center of the FOV before
reconstruction to preserve high resolution. Fermi windows
aligned with the center of each ROI are applied before sum-
mation to yield a smooth combination of the separate ROIs

FIG. 3. The relative aliasing energy (a), the relative resolution
(b) and the relative SNR efficiency (c) are computed for an impulse
object at the center of the FOV (dots) and in the outer part of the
FOV (squares). The characteristic fits are also displayed. The time
for reconstruction on a 500 × 500 grid with respect to the num-
ber of annuli is shown in d for the same variable-density trajectory
(with 23,596 points) used for the PSF computations and using a
PC with a 2 GHz AMD CPU. A contour plot of the variation of res-
olution with respect to the number of annuli and spatial extent is
displayed in e.
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FIG. 4. The constant kernel-extent reconstruction (a) leads to
severe aliasing artifacts for the low SNR region in the phantom
images as indicated by the arrow. The partial density compensa-
tion (b) reduces the aliasing artifacts, however the resolution is lower
over the entire FOV. The varying kernel-extent method (c) effectively
removes the aliasing artifacts at the same location, while preserving
the resolution in the central region of the FOV. The image can be sep-
arated into 2 ROIs, one being the interior of the rectangle shown in d
and the other the exterior. The center of the former ROI can be shifted
to the center of the FOV before reconstruction to preserve resolution
and shifted back after reconstruction. Finally, Fermi windowing of the
two separate images before summation enables a smooth combina-
tion (d). The resolution in the high SNR region of the phantom image
is preserved, while the aliasing artifacts in the low SNR region are
reduced. All images have been windowed down to clearly display
artifacts.

from the individual reconstructions. The windows have a
full width at half maximum (FWHM) equal to the extent of
the ROI and a transition width of 5 pixels. The transition

width is kept small as there is a weighted combination of
images with different resolutions in this area.

In Vivo Images

The undersampled variable-density spiral trajectory de-
signed for acquiring was used for the phantom experiment
single-breathhold cardiac images. Each of the 17 inter-
leaves had a 5.5 ms duration. The spiral cardiac data
was acquired on a 3 T GE Signa system with VH/i gra-
dients, with a single-channel 5-in. surface coil. The 5-in.
coil was placed on the chest of the subject; therefore,
high signal from the chest wall caused aliasing artifacts
in the reconstructed images with constant kernel-extent
gridding reconstruction. A varying kernel-extent recon-
struction with 4 annuli, kernel extents varying linearly
between 3 and 15, was performed. The images were refor-
matted to properly visualize the right coronary artery.
Figure 5 shows reduced aliasing artifacts and noise in
the cardiac images with the use of varying kernel-extent
method.

DISCUSSION

One approach for reconstructing undersampled variable-
density data is to do a full density compensation followed
by a constant kernel extent gridding. The resolution cor-
responding to the outermost k-space samples is supported
within the entire FOV. However, the reconstruction error
due to the undersampling of high spatial frequencies is
prevalent. On the other hand, a partial density compensa-
tion effectively reduces the aliasing artifacts at the expense
of reduced resolution over the entire FOV. Alternatively,
the kernel-extent can be varied throughout k-space to sup-
port a given spatial-frequency sample only within the
corresponding acquisition FOV instead of the full FOV. The
reconstruction error is reduced and the SNR is higher with
this method. The trade-off is a gradually decreasing resolu-
tion outside the region supported by the sampling densities
of all spatial frequencies.

Choosing the number of annular k-space partitions lead
to a trade-off between image quality and reconstruction
time. Therefore, this number should be kept at a minimum
while trying to achieve the desired level of aliasing artifact

FIG. 5. Multiplanar reformatted images displaying the right coronary artery reconstructed with (a) constant kernel-extent, (b) partial density
compensated and (c) varying kernel-extent gridding. Although the partial density compensation reduces aliasing artifacts, the resolution is
also lower. Aliasing artifacts and noise in the regular gridding reconstruction are reduced in the varying kernel-extent images, while preserving
the high resolution in the central region of the FOV.
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suppression. The plots in Fig. 3 can serve as an estimate
of the order of artifact reduction; however, the actual value
depends on the object.

The number of ROIs is mainly determined by the number
of separate regions over which different aliasing reduction–
resolution trade-off characteristics are desired for the ROI
translation method. This number should be minimized as
it is equivalent to the number of separate reconstructions
to be performed. If the size of a certain ROI is large enough
to cause a more-than desired variation in resolution, then
a reconstruction with smaller number of annuli can limit
the variation. The contour plot in Fig. 3 can be used to
determine the required number of annuli.

The varying kernel-extent method can be applied to any
k-space trajectory. For Cartesian trajectories, k-space can
no longer be divided into several annuli; for the case of
2DFT it has to be divided into several strips. The reso-
lution of vastly undersampled isotropic projection recon-
struction (VIPR) (20) images is merely limited by aliasing
artifacts and noise energy. Our method can improve the
resolution by allowing a higher degree of undersampling
without the additional noise and aliasing artifacts, with
the possible extension of the use of VIPR to SNR-limited
applications.

The method varies the resolution of the reconstruction by
limiting the FOV, using different kernel extents for different
sets of spatial frequencies. Alternatively a spatially-varying
low-pass filter can be applied to the regular gridding image.
The trade-offs between a k-space and a spatial domain
approach still need to be investigated.

CONCLUSION

Undersampled variable-density trajectories are sometimes
preferred to uniform sampling methods, due to shorter scan
times and increased resolution. However, undersampling
of the high spatial frequencies leads to aliasing artifacts and
increased noise in the reconstructed images with gridding
reconstruction. We have demonstrated that varying kernel-
extent gridding can be used to reconstruct undersampled
variable-density spiral data with reduced aliasing artifacts
and noise compared to regular gridding. Without a sub-
stantial increase in reconstruction time, the kernel extent
was varied over k-space. The SNR was increased due to the
reduced noise and aliasing artifact contribution of under-
sampled high spatial frequencies, at the expense of a lower
resolution in the outer portions of the FOV. Deapodiza-
tion could be performed in spite of the shift-variant kernel,
as the linearity of gridding reconstruction allows for the
superposition of images from separate k-space annuli.
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