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Spectrally Selective Imaging with Wideband Balanced
Steady-State Free Precession MRI

Tolga Çukur1,2*

Purpose: Unwanted, bright fat signals in balanced steady-
state free precession sequences are commonly suppressed

using spectral shaping. Here, a new spectral-shaping method
is proposed to significantly improve the uniformity of stopband
suppression without compromising the level of passband

signals.
Methods: The proposed method combines binomial-pattern

excitation pulses with a wideband balanced steady-state free
precession sequence kernel. It thereby increases the fre-
quency separation between the centers of pass and stop-

bands by p radians, enabling improved water-fat contrast.
Simulations were performed to find the optimal flip angles and
subpulse spacing for the binomial pulses that maximize con-

trast and signal efficiency.
Results: Comparisons with a conventional binomial balanced

steady-state free precession sequence were performed in sim-
ulations as well as phantom and in vivo experiments at 1.5 T
and 3 T. Enhanced fat suppression is demonstrated in vivo

with an average improvement of 58% in blood-fat and 68% in
muscle-fat contrast (P<0.001, Wilcoxon signed-rank test).

Conclusion: The proposed binomial wideband balanced
steady-state free precession method is a promising candidate
for spectrally selective imaging with enhanced reliability

against field inhomogeneities. Magn Reson Med 000:000–
000, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Balanced steady-state free precession (bSSFP) sequences
differ from many other MRI sequences in that they pre-
serve the transverse component of tissue magnetization
during steady state (1,2). As a result, bSSFP sequences
produce considerably higher signal levels at short repeti-
tion times compared to conventional techniques (3). This
important advantage has bolstered the use of bSSFP in
many applications where imaging speed is critical

including angiography (4–7), musculoskeletal imaging
(8,9), cellular imaging (10,11), interventional imaging
(12,13), and parameter mapping (14–16). At the same
time, however, bSSFP sequences yield a T2/T1-weighted
contrast that depicts fat brighter than tissues of primary
interest such as blood or muscle, degrading image qual-
ity. Therefore, reliable suppression of fat signal is critical
for acquiring high quality bSSFP images.

Many sophisticated approaches have been previously

proposed for either fat suppression or fat-water separa-

tion in bSSFP imaging (17–29). These approaches differ

in the way that they introduce the spectral selectivity

required to disentangle fat and water signals. Phase-

sensitive techniques commonly require the acquisition of

multiple bSSFP images and subsequent postprocessing

to estimate the fat-water distribution in bSSFP images

(17–21). While these techniques generally achieve robust

fat/water separation across large volumes, they incur

substantially prolonged scan times and susceptibility to

partial volume effects. Another group of methods

reduces fat signal by using specific excitation trains dur-

ing the transient phase of bSSFP sequences (22–24).

These transient-suppression techniques yield relatively

shorter scan times, but signal instabilities and magnetiza-

tion decay during the transient phase can lead to image

artifacts (30).
Alternatively, the bSSFP spectral profile can be

reshaped through periodic manipulation of radiofre-

quency (RF) excitations and repetition times (TR)

(25–29). Spectral-shaping techniques achieve selective

imaging by creating a passband near the water resonance

and a stopband near the fat resonance. Because these

techniques rely on steady-state magnetization profiles,

they can alleviate problems due to partial volume effects

and transient signal behavior. However, suppression lev-

els are generally nonuniform across the stopband, and

fat suppression can deteriorate with moderate to large B0

field inhomogeneity (25,28).
In this work, we propose a new spectral-shaping strat-

egy for selective bSSFP imaging with improved robust-

ness against B0 field inhomogeneities. The proposed

method combines spectrally selective binomial RF excita-

tions with a wideband bSSFP kernel (31,32). This

approach provides a more favorable trade-off between

passband efficiency and stopband suppression when com-

pared to the conventional use of spectral RF excitations

in bSSFP sequences (27,33,34). Thus it enables the use of

higher-order binomial excitation patterns for enhanced fat

suppression while maintaining high passband signal lev-

els. We present simulations, phantom and in vivo data

that demonstrate the performance improvements attained

using the proposed spectral-shaping method.
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METHODS

Spectral Shaping of bSSFP Profiles

Regular bSSFP sequences have a frequency-dependent
magnetization profile (3,35):

Mða;Df;fRFÞ ¼ Mss
1�Ae�i DfþfRFð Þ

1� Bcos ðDfþ fRFÞ

����
���� [1]

where a denotes the RF flip angle, Df ¼ 2p � Df � TR
denotes the phase accrual per TR at an off-resonant fre-
quency Df , and fRF denotes the RF phase increment
across TRs. The remaining terms Mss, A, and B depend
on sequence and tissue parameters (see Appendix).

In conventional bSSFP imaging, fRF ¼ p is selected to
center the passband at the on-resonant frequency
(Df ¼ 0). Assuming TR � (T1,T2), the resulting signal
can then be approximated as (36) (see Appendix):

MpassðaÞ �
Mosin a

T1

T2
þ 1

� �
� T1

T2
� 1

� �
cos a

[2]

For moderate to large flip angles (e.g., a > 10�), MpassðaÞ
yields a relatively high signal intensity and a T2/T1-
weighted contrast. However, the signal intensity diminishes
proportionally with a for smaller flip angles (e.g., a < 5�):

Mpassða < 5oÞ � Mo

2
a [3]

which is obtained using second-order Taylor series
approximations for sine and cosine functions (<1%
approx. error).

As seen in Eqs. [2] and [3], spectral selectivity of the

magnetization profile can be manipulated by generating

a frequency-dependent RF flip angle, aðf Þ. High flip

angles should be maintained near the frequency band of

the tissue of interest (e.g., water), whereas flip angles

should be lowered in the frequency band of the contami-

nating tissue (e.g., fat). This can be achieved by design-

ing an RF excitation pulse that generates the transverse

magnetization MRFðDf Þ ¼ Mosin ðaðDf ÞÞ.
Binomial RF pulses are excellent candidates to gener-

ate a frequency-dependent flip angle due to their simple
design, robustness against B1 field inhomogeneities, and
approximately Gaussian spectral profiles with minimal
ripples (27,33,34).

Binomial subpulse amplitudes are proportional to bino-
mial coefficients (e.g., “1 2 1” for third order), and sub-
pulses are spaced at regular intervals s (Fig. 1a). The
resulting excitation profile is periodic with fb ¼ 1=t, and
the spacing between the null (anull) and peak (amax) points
of the profile is fb=2 ¼ 1=2t. Ideally, s should be selected
to equate this spacing with the frequency separation
between water and fat. In addition, subpulse phases
should be selected to align anull with the fat resonance.
Assuming negligible relaxation effects (t� T1,T2), the flip
angle generated by the binomial pulse equals zero when
the phase accrual between consecutive subpulses (due to
both off-resonance and subpulse phases) is p radians.

Flip angle profiles and corresponding magnetization
profiles for binomial pulses in a fRF ¼ p cycled bSSFP

sequence are displayed in Figure 1a. A first-order
binomial pulse “1” creates a uniform flip angle pro-
file, and it is equivalent to a regular bSSFP sequence.
Assuming a stopband centered at Df ¼0 with no loss
of generality, a second-order binomial pulse “1 �1,”
equivalently the fat-suppressing alternating-TR (FS-
ATR) sequence (28), selectively produces near-zero
flip angles around on-resonance. However, because the
null region of the flip angle profile is narrow, the
level of suppression across the generated stopband is
nonuniform.

The null regions of the flip angle profile can be broad-
ened by third and higher-order pulses as seen in Figure
1a. Considering that practical TR values for a binomial
bSSFP sequence are around 4–5 ms (33), the passbands
centered at Df ¼ 2p and Df ¼ 4p can be used to image
water at 1.5 T and 3 T, respectively. Unfortunately,
higher-order pulses reduce the flip angles and cause sig-
nal degradation in the neighboring passbands particu-
larly at lower field strengths (34). Although lengthening
subpulse spacing ðtÞ may alleviate this degradation, it
will lengthen TR and increase susceptibility to B0 field
inhomogeneity.

Spectral Shaping with Wideband bSSFP

Here, we propose an alternative spectral-shaping strategy
to enhance stopband uniformity without degrading the
passband signal levels. We incorporate binomial pulses
into a bSSFP sequence with fRF ¼ 0 phase cycling (as
opposed to fRF ¼ p in FS-ATR). Figure 1b displays the
flip angle profiles and resulting bSSFP magnetization
profiles generated by binomial pulses of orders 1–4. A
second-order binomial pulse “1 �1,” equivalently the
wideband bSSFP sequence (31), selectively yields near-
zero flip angles around on-resonance. Note that while
the flip angle profile of the “1 �1” pulse is identical for
fRF ¼ 0 and fRF ¼ p bSSFP sequences, reduced flip
angles near the bSSFP signal null do not yield effective
stopband suppression (Fig. 1b).

To understand the effect of reduced flip angles near
bSSFP signal nulls, we can revisit the approximations to
the bSSFP signal equation (Eq. [1]). Taking Df ¼ 0;fRF

¼ 0 and TR � (T1,T2), the magnetization level near a
bSSFP null can be approximated as (see Appendix):

MnullðaÞ �
Mosin a

2T1

TR
� T1

T2
� 1þ TR

T2

� �
� 2T1

TR
� T1

T2
� 1

� �
cos a

[4]

For a > 10�, the T1/TR term in the denominator gener-
ates the well-known bSSFP null. However, for smaller
flip angles, the magnetization can be approximated as:

Mnullða < 5oÞ � Mo
a

TR
T2

� � [5]

Contrary to Eq. [3], given a sufficiently small TR/T2

value, reasonably high signal levels can be generated
even for flip angles around a ¼ 1o. Thus the flip angle
should be lowered as much as possible to ensure reliable
stopband suppression. One can assume that the “1 �1”
binomial pulse readily creates a perfect a ¼ 0o at Df ¼ 0.
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However, relaxation effects during the finite subpulse
intervals (s) lead to deviations from the target flip-angle
profile, generating considerably high bSSFP signal levels
(Fig. 1b).

To address this critical issue, we propose to improve
flip angle profiles by using higher-order binomial pulses.
Figure 1b clearly shows that third and fourth-order bino-
mial pulses create highly uniform stopbands with
enhanced suppression compared to binomial fRF ¼ p-
cycled bSSFP sequences. Note that the proposed method
uses the passbands are centered at Df ¼ 3p and Df ¼ 5p

for water imaging at 1.5 T and 3 T, respectively. The sep-
aration between stop and passbands is increased by p
radians compared to FS-ATR, and as a result, the pro-
posed method also alleviates signal degradation in the
neighboring passbands.

Effect of Subpulse Spacing on bSSFP Profiles

Given a resonant-frequency difference of 3.5 ppm
between fat and water, the ideal subpulse spacing is t

¼ 1:15 ms at 1.5 T and t ¼ 0.58 ms at 3 T. However, the
total TR in a binomial pulse bSSFP sequence is
TR¼TRl þ ðn� 1Þt, where TRl is the data acquisition
interval between consecutive pulses, and n is the pulse
order. Because relatively long s-values lengthen the over-
all TR, it is desirable to understand the effects of more
practical s values on the magnetization profiles.

For this purpose, we simulated the steady-state mag-
netization profiles of two sample sequences: a “1 �1”
fRF ¼ p bSSFP sequence and a “1 �2 1” fRF ¼ 0 bSSFP
sequence. Simulations were performed for T1/T2¼ 1200/
250 ms, TRl¼ 4.0 ms, and t 2 [0.3 1.0] ms. For both
sequences, the flip angles for the binomial subpulses

FIG. 1. a: Diagram for a binomial-pulse bSSFP sequence with fRF ¼ p RF phase cycling (top row). The binomial pulse contains sub-
pulses of flip angles a1;::;n spaced at a regular interval of s, and it generates a frequency-dependent flip angle aðfÞ. This in turn modifies

the shape of the bSSFP magnetization profile (bottom rows). The frequency-dependent flip angle (dashed orange line) and the resulting
profile (solid blue line) are shown for binomial pulses of orders 1 to 4 (“1,” “1 �1,” “1 �2 1,” and “1 �3 3 �1”). Flip angle and magnet-

ization profiles are displayed as a function of the phase offset per TR (Df). Water-selective imaging can be performed using the pass-
band centered at Df ¼ 2p at 1.5 T, and that centered at Df ¼ 4p at 3 T. Higher-order pulses broaden the null region of aðfÞ, improving
stopband suppression at the expense of reducing passband signals. b: Diagram for a binomial-pulse bSSFP sequence with fRF ¼ 0 RF

phase cycling (top row). The resulting magnetization profiles are shown for binomial pulses of orders 1–4 (bottom rows). Water-selective
imaging can be performed using the passband centered at Df ¼ 3p at 1.5 T, and that centered at Df ¼ 5p at 3 T. Due to increased

spacing between pass and stopbands, higher-order pulses improve stopband suppression without compromising passband signals.

Spectrally Selective Imaging with Wideband bSSFP 3



were set to yield a maximum flip angle of amax ¼ 80o

(e.g., 20o � ð�40oÞ � 20o for the “1 �2 1” pulse). The
spectral profiles were shifted across the frequency axis
to align the center of the passband with the water reso-
nance (Df ¼ 0) at 3 T.

The simulated profiles in Figure 2 suggest that shorter
s values that yield shorter TR broaden the bSSFP pass
and stopbands, improving fidelity against B0 field inho-
mogeneities. At the same time, however, shorter s values
also broaden the binomial excitation profile. Given the
theoretical constraints on s for fat-water separation (t ¼
1.15 ms at 1.5 T and t ¼ 0.58 ms at 3 T), this broadening
will either reduce the passband signal or yield subopti-
mal stopband suppression.

Optimization of Sequence Parameters

The trade-off between stopband suppression and pass-
band efficiency is biased strongly by the flip angle and
subpulse spacing. In practice, the optimal s that maxi-
mizes the expected water-fat contrast over bSSFP bands
will critically depend on the prescribed amax value. To
determine optimal sequence parameters, we simulated
the magnetization profiles of water and fat separately for
binomial bSSFP sequences with fRF ¼ p and fRF ¼ 0.
Simulations were performed with the following parame-
ters: T1/T2¼ 1200/250 ms for water, T1/T2¼ 270/85 ms
for fat (37), TRl¼ 4.0 ms, t 2 [0.3 1.0] ms, amax 2 [30�

120�], and binomial pulse order of 2–4. Magnetization

profiles were shifted to center the passbands on the
water resonance.

For each sequence, the level of stopband suppression
was first quantified as the difference between average
water and fat signals across a [�100 100] Hz frequency
range (i.e., water-fat contrast). Second, the efficiency of
the passband was quantified as the average water signal
normalized by the square root of the total TR (SNR effi-
ciency). Finally, an aggregate performance metric was
derived for each sequence by multiplying the contrast
and SNR efficiency factors.

The aggregate performance metric for the conventional
and proposed sequences at 1.5 T and 3 T are displayed
in Figures 3 and 4. The “1 �1” binomial pulse yields the
best performance among fRF ¼ p bSSFP sequences.
Near-optimal sequence parameters at 1.5 T are amax 2
[60� 90�] and t 2 [0.6 0.9] ms, whereas at 3 T they are
amax 2 [40� 70�] and t 2 [0.4 0.6] ms. In comparison, the
“1 �2 1” binomial pulse achieves the best performance
for the proposed sequence. In this case, near-optimal
parameters at 1.5 T are amax 2 [40� 80�] and t 2 [0.8 1.0]
ms, whereas at 3 T they are amax 2 [40� 70�] and t 2 [0.5
0.8] ms.

Transient Behavior of Magnetization

Magnetization levels of bSSFP sequences exhibit well-
known oscillations during the transient phase before
steady state is reached (30,36). Strongest oscillations
usually occur near the bSSFP nulls with zero steady-
state magnetization (30). Bloch simulations were per-
formed to compare transient behavior of a regular fRF

¼ p bSSFP sequence, a “1 �1” fRF ¼ p sequence and a
“1 �2 1” fRF ¼ 0 sequence (see Fig. 5). The following
parameters were used: T1/T2¼ 1200/250 ms, amax ¼ 80o,
TRl¼ 4.0 ms, s¼ 0.6 ms, and no magnetization prepara-
tion. The total TR/TE was 4.0/2.0 ms for the regular
sequence, TR/TE¼4.6/2.3 ms for the “1 �1” sequence,
and TR/TE¼ 5.2/2.6 ms for the “1 �2 1” sequence.

Oscillation levels were quantified as the ratio of abso-
lute finite differences in transient magnetization to the
steady-state magnetization at Df ¼ 0. At the water reso-
nance, oscillation level is reduced below a 10%-
threshold after 40 TRs for regular bSSFP, 20 TRs for the
“1 �1” sequence, and only 5 TRs for the “1 �2 1”
sequence. At the bSSFP null, this oscillation level was
reached after 176 TRs for regular bSSFP, 165 TRs for the
“1 �1” sequence, and 91 TRs for the “1 �2 1” sequence.

Phantom Experiment

To demonstrate simulated magnetization profiles, bSSFP
images of a uniform MnCl2-doped water phantom (T1/
T2¼ 250/50 ms) were acquired on a 1.5 T GE Signa
Excite scanner (General Electric Healthcare, Milwaukee,
MI) with CV/i gradients (a maximum strength of 40 mT/
m and a maximum slew rate of 150 T/m/s). An addi-
tional linear field gradient was applied in the readout
direction to create varying precession frequency. The
acquisition parameters were: amax ¼ 80o, TRl¼ 4.0 ms,
s¼ 0.9 ms, 662.5 kHz bandwidth, 140 mm field-of-view
(FOV), 0.7 � 0.7 � 4 mm resolution and 96 � 22 phase
encoding. TR/TE¼4.6/2.3 ms and Tscan (scan

FIG. 2. a: Simulated magnetization profile of a fRF ¼ p bSSFP

sequence with a “1 �1” binomial pulse, is shown as a function of
the phase offset per TRl ¼ 4 ms. The location of water and fat

resonances are marked with dashed black and white lines,
respectively. b: Magnetization profile of a fRF ¼ 0 bSSFP
sequence with a “1 �2 1” binomial pulse. Simulations for both

sequences were performed using amax ¼ 80o for the binomial
pulse, T1/T2¼1200/250 ms, TRl¼4.0 ms, and t 2 [0.3 1.0] ms.
For both sequences, longer s values lengthen the overall TR and

increase susceptibility to B0 field inhomogeneities. At the same
time, longer s increases the flip angle created by the binomial

pulse at the water passband, improving passband signal levels.
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time)¼ 10 s with FS-ATR, TR/TE¼5.8/2.9 ms and
Tscan¼ 12 s with the proposed “1 �2 1” sequence, and
TR/TE¼ 6.7/3.4 ms and Tscan¼ 14 s with the “1 �3 3
�1” sequence.

In Vivo Experiments

To demonstrate the proposed sequence in vivo, we
acquired three-dimensional bSSFP images of the lower
leg in healthy subjects. A set of images were collected on
a 1.5 T GE Signa scanner equipped with a transmit/
receive extremity coil. The near-optimal parameters
found earlier were prescribed for binomial pulses. To

prevent bias, the same amax and s values were prescribed
for both FS-ATR and the proposed sequence. The acqui-
sition parameters were amax ¼ 80o, TRl¼4.0 ms, s¼ 0.9
ms, 662.5 kHz bandwidth, 256 mm FOV, 1 � 1 � 1 mm
resolution, and 128 � 128 phase encoding. TR/TE¼ 4.9/
2.5 ms and Tscan¼1 min 21 s with FS-ATR, and TR/
TE¼ 5.8/2.9 ms and Tscan¼ 1 min 36 s with the proposed
“1 �2 1” sequence.

A separate set of images were collected on a 3 T GE
Signa scanner equipped with a transmit/receive quadra-
ture extremity coil and VH/i gradients (a maximum
strength of 40 mT/m and a maximum slew rate of 150 T/
m/s). To improve reliability against B0 field inhomogene-
ities, the total TR for each sequence was set to the mini-
mum possible value constrained by gradient and specific
absorption rate limitations. The acquisition parameters

FIG. 4. To find the optimal sequence parameters for water-fat sep-
aration at 3 T, level of stopband suppression (water-fat contrast)
and level of passband signal (water SNR efficiency) were quanti-

fied for binomial-pulse bSSFP sequences. An aggregate perform-
ance metric was derived as the multiplication of the contrast and
SNR efficiency (see color bar). Simulations were performed using

the same set of parameters as in Figure 3. a: The aggregate per-
formance metric for the fRF ¼ p bSSFP sequence. The “1 �1”

binomial pulse offers better performance compared to higher-
order binomial pulses in conventional sequences. b: The aggre-
gate performance metric for proposed fRF ¼ 0 bSSFP sequences.

The fRF ¼ 0 sequence with “1 �2 1” achieves the optimal per-
formance among all sequences.

FIG. 3. To find the optimal sequence parameters for water-fat sep-

aration at 1.5 T, level of stopband suppression (water-fat contrast)
and level of passband signal (water SNR efficiency) were quanti-
fied for binomial-pulse bSSFP sequences. An aggregate perform-

ance metric was derived as the multiplication of the contrast and
SNR efficiency (see color bar). Magnetization profiles were simu-
lated using T1/T2¼1200/250 ms for water, T1/T2¼270/85 ms for

fat, and TRl¼4 ms. a: The aggregate performance metric for the
fRF ¼ p bSSFP sequence with “1 �1,” “1 �2 1,” and “1 �3 3

�1” binomial pulses. The “1 �1” binomial pulse offers better per-
formance compared to higher-order binomial pulses in conven-
tional sequences. b: The aggregate performance metric for the

proposed fRF ¼ 0 bSSFP sequence with “1 �1,” “1 �2 1,” and “1
�3 3 �1” binomial pulses. In general, the proposed sequences

outperform the conventional methods for any given order of bino-
mial pulse. Furthermore, the fRF ¼ 0 sequence with “1 �2 1”
achieves the optimal performance among all sequences.

Spectrally Selective Imaging with Wideband bSSFP 5



were amax ¼ 64o, TRl¼4.5 ms, s¼0.6 ms, 662.5 kHz
bandwidth, 256 mm FOV, 1 � 1 � 1 mm resolution and
128 � 128 phase encoding. TR/TE¼5.1/2.3 ms, and
Tscan¼ 1 min 25 s with FS-ATR, and TR/TE¼ 5.7/2.6 ms
and Tscan¼1 min 35 s with the proposed “1 �2 1”
sequence. A 1� bulk rotation was detected between
acquisitions using FS-ATR and the proposed sequence.
To account for this rotation, acquired volumes were real-
igned using a rigid-body transformation and a Lanczos
kernel of width three. Experimental protocols were
approved by our institutional review board, and written
informed consent was obtained from all volunteers.

To evaluate sequence performance, blood-fat contrast,
muscle-fat contrast, and blood-muscle CNR were quanti-
fied. Measurements were performed in 13 equispaced
coronal slices spanning across the lower leg. Within a
single slice, blood signal was measured across a region-
of-interest (ROI) located in popliteal, peroneal, or poste-
rior tibial arteries (ROI size 19 6 13 pixels, mean 6 SD).
Muscle signal was measured across a uniform-intensity
ROI neighboring the arteries (203 6 108 pixels). Average

fat signal was measured across four different ROIs
located in superior-left, superior-right, anterior-left, and
anterior-right regions of the subcutaneous adipose tissue
(112 6 73 pixels). Noise was measured across an ROI
void of tissue signals (583 6 290 pixels). Statistical sig-
nificance of measurements was assessed using nonpara-
metric Wilcoxon signed-rank tests.

RESULTS

In this work, we propose a binomial fRF ¼ 0-cycled
bSSFP sequence that increases separation between pass
and stopbands by p radians compared to conventional
binomial bSSFP sequences (e.g., FS-ATR). This increased
separation enables the use of higher-order binomial
pulses while better preserving the passband signal levels
(Fig. 1). Optimum sequence parameters including sub-
pulse spacing (s) and maximum flip angle (amax) were
determined through simulations of water-fat contrast and
water SNR efficiency at 1.5 T and 3 T (Figs. 3 and 4). The
proposed “1 �2 1” binomial-pulse sequence achieves the
maximum performance among all sequences.

To validate the simulated magnetization profiles, we
acquired bSSFP images of a phantom with an additional
linear field gradient in the readout direction. Figure 6
shows the images acquired with FS-ATR and the pro-
posed “1 �2 1” and “1 �3 3 �1” sequences. Inspection
of Figure 6 suggests a close match between actual and
simulated magnetization profiles (Figs. 1 and 2). The
phantom images also reveal the degrading effects of a
fourth-order binomial pulse on the water passband adja-
cent to the stopband. This result indicates that the “1 �2
1” binomial pulse should be preferred particularly at
lower field strengths, where water and fat resonant fre-
quency differences are smaller.

To assess the performance of the proposed sequence in
vivo, three-dimensional bSSFP images of the lower leg
were acquired at both 1.5 T and 3 T. Figures 7 and 8 dis-
play representative axial and sagittal cross sections
acquired with FS-ATR and the proposed “1 �2 1”
sequence. Fat suppression is visibly improved across broad
regions in the lower leg with the proposed sequence.

Blood-fat contrast, muscle-fat contrast, and blood-
muscle CNR measurements on the acquired images are
listed in Table 1 (see also Methods). The proposed
sequence significantly enhances both blood-fat and
muscle-fat contrast at 1.5 T (P< 0.001, Wilcoxon signed-
rank test) and at 3 T (P< 0.004). This improvement is at
the expense of a slightly reduced blood-muscle CNR at
1.5 T (P< 0.004). In contrast, the increased water-fat res-
onant frequency difference at 3 T alleviates passband sig-
nal reduction with higher-order binomial pulses. As a
result, there are no significant differences in blood-
muscle CNR at 3 T (P> 0.150).

DISCUSSION

In this work, we demonstrate that a fRF ¼ 0 sequence
offers performance benefits compared to a conventional
fRF ¼ p sequence for binomial-pulse bSSFP imaging.
The proposed sequence enables the use of higher-order
binomial pulses for a given passband signal level. There-
fore, it enhances the uniformity of stopband suppression

FIG. 5. Transient magnetization profiles of bSSFP sequences
designed for water-selective imaging at 3 T. Simulations were per-

formed for amax ¼ 64o, T1/T2¼1200/250 ms, TRl¼4.0 ms, and
s¼0.6 ms. The location of water and fat resonances are marked

with dashed black and white lines, respectively. a: Transient profile
of a regular fRF ¼ p bSSFP sequence as a function of number of
RF excitations. b: Transient profile of FS-ATR. c: Transient profile

of the proposed “1 �2 1” sequence. The transient signal oscilla-
tions dampen relatively quickly with the proposed sequence com-
pared to both FS-ATR and the regular bSSFP sequence.
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while maintaining high signal efficiency. Furthermore,
the proposed sequence aligns the null point of the bino-
mial excitation profile with a bSSFP null as opposed to
the center of a passband (Fig. 1). As a result, the pro-
posed sequence generates a stopband that is twice as
broad as that of the conventional binomial bSSFP
sequence. Taken together, these improvements make the
proposed sequence more adept for spectrally selective
imaging under moderate to large B0 field inhomogeneity.

Simulated magnetization profiles indicate that the pro-
posed sequence achieves near-optimal performance
across a broad range of subpulse spacings and maximum
flip angles for the binomial pulse. Meanwhile, a “1 �2
1” pulse inserted into the fRF ¼ 0 sequence achieves the
maximum water-fat contrast and water SNR efficiency at
both 1.5 T and 3 T. These results suggest that the pro-
posed sequence is considerably robust against B0 and B1
field inhomogeneities, and that a third-order binomial
pulse yields the optimum performance. Note, however,
that fourth or higher-order pulses may offer improved
performance in two-dimensional imaging due to limited
B0 field inhomogeneity, and at higher field strengths
due to increased separation between water and fat
resonances.

The use of higher-order binomial pulses inevitably
lengthens the total TR, increasing susceptibility to resid-
ual fat signals and banding artifacts in regions of large
B0 field inhomogeneity. This may be a particularly limit-
ing factor for field strengths of 7 T and above. In such
cases, water passbands can be broadened by combining
multiple acquisitions with the center of the passband
shifted to higher and lower frequencies around the water
resonance (38,39). Meanwhile, stopband suppression can
be maintained by performing a minimum-intensity pro-
jection across fat pixels in separate acquisitions, which
can be identified through the image phase (29).

The performance metric used here is resilient against
global variations in contrast or SNR efficiency, but it is
sensitive to the relative normalized ranges (e.g., range/
mean) of these factors. For example, if SNR efficiency is
relatively more uniform across the parameter space (e.g.,
s, amax), contrast will be weighted more heavily. As a
result, sequence parameters that yield higher contrast
will be given preference. Thus the chosen metric inher-
ently emphasizes the factor for which greater improve-
ment can be achieved by tuning of sequence parameters.
If strictly balanced weighting is desired, contrast and
SNR efficiency values can be normalized prior to the

FIG. 6. Balanced SSFP images of a MnCl2-doped water phantom (T1/T2¼250/50 ms) acquired using FS-ATR (a), and a fRF ¼ 0 bSSFP

sequence with a “1 �2 1” (b), and with a “1 �3 3 �1” binomial pulse (c). TR¼4.6, 5.8, and 6.7 ms for FS-ATR and the proposed “1 �2
1” and “1 �3 3 �1” sequences, respectively. The corresponding magnetization profiles are displayed across a central cross-section of

the phantom images (dotted red line segment, right column). A linear field gradient was applied on the horizontal direction to create
spatially varying precession frequency in that direction. The center of the stopband (i.e., fat resonance) is annotated with a dashed white
line. Centers of the water passbands to be used at 1.5 T and 3 T are marked with arrows.
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calculation of the metric. In applications with require-
ments on minimum SNR or contrast levels, the parame-
ter search can be cast as a constrained optimization
problem and the metric can be defined as a weighted lin-
ear combination of contrast and SNR efficiency (40).

The angiography application considered here uses 3D
imaging over large volumes, and it does not require spa-
tially selective excitations. In principle, noncomposite
spectrally selective pulses can be used to improve fat
suppression for the same pulse duration or to attain the
same suppression for a shorter pulse duration. In either
case the use of spectral pulses can reduce specific
absorption rate deposition compared to binomial pulses.
Nonetheless binomial pulses make it easier to adapt the
proposed strategy to slab- and slice-selective imaging
applications. Furthermore, because spectral selection in
binomial pulses is due to free precession during sub-
pulse intervals, these pulses are also more robust against
B1 inhomogeneity compared to spectral pulses (37). This
benefit can also be attained by other composite pulses
based on symmetric filter coefficients such as moving-
average filters. However, we prefer binomial pulses that
generate smooth, approximately Gaussian spectral pro-
files with minimal pass and stopband ripples, minimiz-
ing image artifacts (27,33,34,37).

Spectral-shaping based on binomial pulses inherently
relies on the assumption that relaxation effects during
the subpulse intervals are negligible. While imaging with

relatively longer TRs or targeting short T2 tissues,
designs based on this approximation may be suboptimal.
In such cases, composite pulses can be used with com-
plex patterns of variable subpulse spacings, flip angles,
and phases. Sequence optimization over such large
parameter spaces can then be performed by setting up a
search algorithm as proposed by Lee et al. (40).

FIG. 7. Balanced SSFP images of the lower leg of a healthy volun-
teer acquired at 1.5 T using FS-ATR (left column), and the pro-

posed “1 �2 1” sequence (right column). Axial (a) and sagittal
slices (b) are shown with identical display windowing for both

sequences. The proposed sequence achieves relatively more uni-
form fat suppression across broad regions. Arrows point to loca-
tions of visible improvement in fat suppression with the proposed

technique.

FIG. 8. Balanced SSFP images of the lower leg of a healthy volun-
teer acquired at 3 T using FS-ATR (left column), and the proposed
“1 �2 1” sequence (right column). Axial (a) and sagittal slices (b)
are shown with identical display windowing for both sequences.
The proposed sequence achieves more reliable fat suppression

across the lower leg compared with the conventional technique.
Arrows point to locations of improved fat suppression.

Table 1
In Vivo Contrast Measurements

FS-ATR Proposed Significance

Measurements at 1.5 T
Contrastblood-fat 2.41 6 0.24 5.17 6 0.57 P<0.001

Contrastmuscle-fat 1.07 6 0.07 2.44 6 0.09 P<0.001
CNRblood-muscle 15.72 6 3.01 12.86 6 2.42 P<0.004
Tscan 1 min 21 s 1 min 36 s

Measurements at 3 T
Contrastblood-fat 2.55 6 0.25 4.35 6 0.58 P<0.004

Contrastmuscle-fat 1.83 6 0.07 3.41 6 0.28 P<0.001
CNRblood-muscle 38.82 6 7.92 37.57 6 8.08 P>0.150
Tscan 1 min 25 s 1 min 35 s

Blood-fat contrast, muscle-fat contrast and blood-muscle CNR
measurements were performed on lower leg images acquired at

1.5 T and 3 T. Measurements were performed across 13 coronal
slices equispaced to span across the entire volume. Mean and
standard deviation of the measurements are listed along with the

scan times for FS-ATR and the proposed sequence. Significant
differences were tested using Wilcoxon signed-rank tests.
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Binomial pulse bSSFP sequences are expected to
exhibit similar sensitivity to flow-related ghost artifacts
as regular bSSFP sequences (31). Nonzero flow moment
of the phase-encode gradients in binomial bSSFP acquis-
itions, causes some ghosting artifacts near the superior
end of lower leg angiograms. Because this study focuses
on excitation schemes for spectral-shaping of bSSFP pro-
files, residual flow artifacts due to spatial encoding do
not bias the performance comparisons reported here.
Nonetheless, future work will focus on dampening this
unwanted flow sensitivity using improved phase-encode
gradients with zero first-order moments (41,42).

CONCLUSION

Spectral-shaping techniques for bSSFP imaging pose a
fundamental trade-off between stopband uniformity and
passband signal. While stopband suppression can often
be improved by more complex patterns of RF excitations
and repetition times, this improvement is at the expense
of a degraded passband. The proposed binomial wide-
band bSSFP sequence achieves a more favorable trade-
off compared to conventional binomial bSSFP sequences,
by increasing the separation between pass and stop-
bands. At the same time, it is also more reliable against
variations in excitation parameters and B0 field inhomo-
geneities. Therefore, binomial wideband bSSFP can be a
useful technique for spectrally selective imaging when
large field inhomogeneities are expected.

APPENDIX

In this section, we first provide analytical expressions
for the sequence- and tissue-parameters dependent terms
in the bSSFP signal equation Eq. [1]:

Mss ¼ iMoe�
TE
T2

1� E1ð Þsin a

1� E1cos a� E1 � cos að ÞE2
2

[6]

A ¼ E2 [7]

B ¼ E2 1� E1ð Þ 1þ cos að Þ
1� E1cos a� E1 � cos að ÞE2

2

[8]

where E1;2 ¼ e
� TR

T1;2 , TR/TE are the repetition and echo
times, respectively.

Next, we present detailed derivations of the approxi-
mate bSSFP signal equations in Eqs. [1] and [4]. The for-
mer equation is an approximation to the passband signal
for an RF phase increment of fRF ¼ p and an off-
resonant frequency shift of Df ¼ 0. Starting with the
complete expression in Eq. [1]:

MpassðaÞ ¼
Moð1� E1Þð1þ E2Þsin a

1� E1cos a� ðE1 � cos aÞE2
2 þ E2ð1� E1Þð1þ cos aÞ

¼ Moð1� E1Þð1þ E2Þsin a

ðE1 � cos aÞð1� E2
2Þ þ ð1� E1Þð1þ E2Þð1þ cos aÞ

¼ Mosin a

ðE1 � cos aÞð1� E2Þ
ð1� E1Þ

þ ð1þ cos aÞ

[9]

When TR � (T1,T2), a good approximation to the
exponential decay terms is E1;2 � 1� TR

T1;2

� �
. With this

substitution, the final expression for the passband signal
can be obtained:

MpassðaÞ �
Mosin a

1� cos að Þ TR

T2

� �

TR

T1

� � þ 1þ cos að Þ

� Mosin a

T1

T2
þ 1

� �
� T1

T2
� 1

� �
cos a

:

[10]

The approximate signal equation for the bSSFP signal
null can also be derived from the complete analytical
expression for an RF phase increment of fRF ¼ 0 and an
off-resonant frequency shift of Df ¼ 0. Starting again
with the complete expression in Eq. [1]:

MnullðaÞ ¼
Moð1� E1Þð1� E2Þsin a

1� E1cos a� ðE1 � cos aÞE2
2 � E2ð1� E1Þð1þ cos aÞ

¼ Moð1� E1Þð1� E2Þsin a

ðE1 � cos aÞð1� E2
2Þ þ ð1� E1Þð1� E2Þð1þ cos aÞ

¼ Mosin a

ðE1 � cos aÞð1þ E2Þ
ð1� E1Þ

þ ð1þ cos aÞ

[11]

Using the aforementioned first-order approximations
for the exponential decay terms under the condition that
TR � (T1,T2):

MnullðaÞ �
Mosin a

1� TR

T1
� cos a

� �
2� TR

T2

� �

TR

T1

� � þ 1þ cos að Þ

� Mosin a

2T1

TR
� T1

T2
� 1þ TR

T2

� �
� 2T1

TR
� T1

T2
� 1

� �
cos a

:

[12]
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39. Çukur T, Bangerter NK, Nishimura DG. Enhanced spectral shaping in

steady-state free precession imaging. Magn Reson Med 2007;58:1216–

1223.

40. Lee KJ, Lee HL, Hennig J, Leupold J. Use of simulated annealing for

the design of multiple repetition time balanced steady-state free pre-

cession imaging. Magn Reson Med 2012;68:220–226.

41. Markl M, Alley MT, Elkins CJ, Pelc NJ. Flow effects in balanced steady

state free precession imaging. Magn Reson Med 2003;50:892–903.

42. Nayak KS, Hargreaves BA, Hu BS, Nishimura DG, Pauly JM, Meyer

CH. Spiral balanced SSFP cardiac imaging. Magn Reson Med 2005;

53:1468–1473.
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