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Fast System Calibration With Coded Calibration
Scenes for Magnetic Particle Imaging

Serhat Ilbey , Can Barış Top , Alper Güngör , Tolga Çukur ,
Emine Ulku Saritas , and H. Emre Güven

Abstract— Magnetic particle imaging (MPI) is a relatively
new medical imaging modality, which detects the nonlin-
ear response of magnetic nanoparticles (MNPs) that are
exposed to external magnetic fields. The system matrix (SM)
method for MPI image reconstruction requires a time con-
suming system calibration scan prior to image acquisition,
where a single MNP sample is measured at each voxel
position in the field-of-view (FOV). The scanned sample has
the maximum size of a voxel so that the calibration mea-
surements have relatively poor signal-to-noise ratio (SNR).
In this paper, we present the coded calibration scene (CCS)
framework, where we place multiple MNP samples inside
the FOV in a random or pseudo-random fashion. Taking
advantage of the sparsity of the SM, we reconstruct the SM
by solving a convex optimization problem with alternating
direction method of multipliers using CCS measurements.
We analyze the effects of filling rate, number of measure-
ments, and SNR on the SM reconstructionusing simulations
and demonstrate different implementations of CCS for prac-
tical realization. We also compare the imaging performance
of the proposed framework with that of a standard com-
pressed sensing SM reconstruction that utilizes a subset
of calibration measurements from a single MNP sample.
The results show that CCS significantly reduces calibration
time while increasing both the SM reconstruction and image
reconstruction performances.
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I. INTRODUCTION

MAGNETIC particle imaging (MPI) is a medical imaging
modality, which uses the nonlinear response of mag-

netic nanoparticles (MNPs) to image their distribution [1].
Angiography, stem cell tracking, and cancer imaging are some
of the potential clinical applications of MPI [2]–[5]. In MPI,
a static magnetic field called the selection field (SF) generates
a field free region (FFR) in the field-of-view (FOV). A time-
varying magnetic field called the drive field (DF) generates
a time-varying magnetization of the MNPs inside the FFR.
A signal is induced in the receive coils by this magnetization
response. MNP response quickly decreases with increasing
distance from the FFR, reaching saturation.

There are two main approaches for image reconstruction in
MPI [6]: model-based and measurement-based methods. In the
model-based methods, the system matrix (SM) or the point
spread function (PSF) is estimated analytically based on the
physical model of the MNPs and the hardware of the system
[7], [8]. On the other hand, the measurement-based methods
require imaging an MNP sample with known concentration
and shape to obtain the SM or PSF [1], [9]. For instance,
to form the SM, an MNP sample is scanned at each voxel
position in the FOV, and the Fourier transform of the received
signal is recorded at each position. After this system calibra-
tion procedure, one can solve a linear system of equations
for image reconstruction using regularization or optimization
algorithms such as the algebraic reconstruction technique [10],
nonnegative fused LASSO [11], and Alternating Direction
Method of Multipliers (ADMM) [12]. The explicit calibra-
tion procedure in the measurement-based methods increases
reliability against system imperfections compared to the
model-based methods [12]. This is especially important for
systems using complex trajectories (e.g., Lissajous trajectory)
that involve fast rotation of the magnetization vector [13].
However, the additional measurements introduce a scan time
cost, e.g., even for a small FOV with 20 × 20 × 20 voxels,
the calibration would take nearly 3 hours with each position
captured in 1.3 seconds [14]. As this work focuses on improv-
ing the measurement-based methods, SM will refer to a system
matrix formed after a calibration process.
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In the literature, there are Compressed Sensing (CS) meth-
ods to mitigate the cost of long calibration scans [15]–[18].
The motivation for CS is that the SM has highly
sparse or compressible representations in several known trans-
form domains [15], [16]. As such, a previously proposed CS
method (hereinafter, referred to as the “standard CS method”)
was shown to successfully recover the SM using as low as
10-20% of the full set of calibration measurements, using a
5.5 T/m SF gradient and a two-dimensional (2D) Lissajous
trajectory with 18 mT DF strength [17]. The quality of the
SM reconstruction inevitably degrades with measurement sets
reduced to fit within clinically acceptable calibration times.
Besides that, a recently proposed hybrid approach shows that
performing calibration in a separate device emulating the MPI
system enhances the SM reconstruction quality [14]. While
promising, this approach has challenges in practice, since it
requires explicit knowledge of the magnetic field distribu-
tion across time and space. A recently proposed approach
enhances the signal-to-noise ratio (SNR) of SM measurements
by decreasing the SF gradient and increasing the grid size [19].
However, a large calibration time is still required as this
method does not involve an undersampling of SM.

In this work, we introduce a Coded Calibration Scene (CCS)
framework for fast system calibration. We implement CCS as
a calibration phantom that includes multiple MNP samples
placed at random positions, with a size larger than or equal
to the imaging FOV. One of the main advantages of CCS
is that it yields a significantly higher SNR than the standard
calibration measurement performed in a single location. More-
over, the received signal induced from the MNPs at multiple
positions increases the information content of each calibration
measurement [20].

Using simulations, we thoroughly analyze the performance
of the CCS framework based on several practical implementa-
tions relevant to realistic imaging scenarios. We use ADMM
to rapidly reconstruct the SM using CCS measurements [21].
We show that CCS significantly improves image quality
relative to the standard CS method [17], even with highly
accelerated calibrations. We also investigate the effects of CCS
filling rate, number of measurements, SNR, and positioning
error on the accuracy of the SM reconstruction via extensive
simulations.

II. METHODS

Here, we define Ny and Nz as the number of pixels along
the y- and z-directions, respectively, “measurement rate” (δ)
for the calibration procedure as the ratio of the number of mea-
surements to the number of pixels in the FOV (N = Ny × Nz ),
“filling rate” (ν) of a CCS as the number of pixels filled with
MNP samples divided by N , and M as twice the number of
used frequency components of the signal spectrum (due to
separating and appending real and imaginary parts).

A. MPI System Calibration With Compressed Sensing

A linear set of equations represents the imaging problem
in MPI [1]:

b = Ax + n, (1)

Fig. 1. Examples of the Multi-CCS (M-CCS) implementation that are
randomly created with 0.1, 0.3, and 0.5 filling rates (ν), from left to right.
These CCSs have dimensions 20 mm × 10 mm with 40 × 20 pixels.

where A ∈ R
M×N is the full SM, x ∈ R

N×1 is the
vectorized representation of the MPI image to be recon-
structed, b ∈ R

M×1 is the measurement vector including addi-
tive noise n ∈ R

M×1. Conventionally, one obtains the SM by
measuring a single MNP sample at each voxel position in the
FOV. The SM is sparse in discrete Chebyshev transform, dis-
crete cosine transform (DCT), and discrete Fourier transform
domains, and the CS methods can be used to decrease the num-
ber of calibration measurements. The standard CS method sug-
gests randomly selecting voxel positions in the FOV grid and
moving an MNP sample to those positions to take calibration
data. As such, one reconstructs the SM using convex optimiza-
tion algorithms utilizing the sparsity property of the SM [17].
Accordingly, the following optimization problem is solved:

argmin
A

∥∥D AT
∥∥

1

subject to �AC − Ac�F < εc,
(2)

where D ∈ R
N×N is the matrix representation of the DCT

and Ac ∈ R
M×δN is the matrix of undersampled calibration

measurements. C ∈ R
N×δN is the masking matrix that chooses

the columns of A corresponding to the positions for which
there are calibration measurements. �·�F is the Frobenius
norm of a matrix and �·�1 denotes the sum of absolute values
of all elements of a matrix in this paper.

B. MPI System Calibration With
Coded Calibration Scenes

In this work, we propose the use of CCSs for SM calibra-
tion. In the standard CS method, each column of the C matrix
in Eqn. (2) has only one non-zero entry at the position of the
MNP sample for the corresponding calibration measurement.
Note that an identity C matrix corresponds to measuring
the response of the MNP sample at each voxel position,
which is the conventional calibration procedure without CS
or undersampling. For that case, there is no need to solve the
optimization problem in Eqn. (2). In contrast, multiple MNP
samples are present in each CCS. Therefore, each column of
the C matrix corresponds to the nanoparticle distribution of a
single CCS.

This work proposes five different approaches for CCS-based
calibration, as described below:

1) Multi-CCS (M-CCS): This is the basic implementation of
CCS. Multiple CCSs are used for calibration. Each CCS has
the size of the FOV. For each CCS, we randomly place voxel-
sized MNP samples on the FOV grid with a certain filling
rate, ν. For a given δ and ν, we use the C matrix with the
smallest mutual coherence among all possible set of matrices
to decrease the coherency between the CCSs used in the
calibration [22]. We show examples of M-CCS with different
ν values in Fig. 1. For calibration measurements, we place a
CCS in the FOV, measure, and then replace by another CCS.
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Fig. 2. Practical implementations of CCSs. a) Sliding CCS (S-CCS)
filled randomly with MNPs and slided through the FOV. Number of
measurements and the amount of shift between consecutive measure-
ments determine the length of the CCS. b) Rotating CCS (R-CCS) filled
randomly with MNPs and rotated about its center. R-CCS can be slided
after a 360◦ turn, and rotated about a different axis, which is named as a
Rotating and Sliding CCS (RS-CCS). c) Rotating and Sliding Contiguous
CCS (RSC-CCS), where the MNPs are contiguously distributed for a
more practical implementation. ν of these examples is 0.1.

2) Sliding CCS (S-CCS): This is an extended size CCS,
which can be slided through the FOV. This way, the need
for multiple CCS preparations and replacements is eliminated.
We show an S-CCS in Fig. 2a. We slide the S-CCS along the
y-direction by a predetermined number of grids before each
calibration measurement.

Let CS ∈ R
Nz×L be the mathematical representation of

S-CCS where L is number of the grids in the CCS along
the y-direction, Ci ∈ R

Nz×Ny be the 2D representation of the
i th column of C , and S�y ∈ R

L×Ny be the shift matrix that
shifts CS in the y-direction by �y grids. Then, one can show
that

Ci = CS S�y , (3)

where

S�y =
⎡
⎣ 0l×Ny

ST(Ny +1)×Ny

0k×Ny

⎤
⎦. (4)

Here, 0i× j is the zero matrix of size i × j , l = L − Ny −k −1,
k is the maximum non-negative integer satisfying �y = k+�,
where � ∈ (0, 1) allows off-grid shifts of CCS, and

ST =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

� 0 0 0 0 . . . 0
1 − � � 0 0 0 . . . 0

0 1 − � � 0 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 1 − � �
0 0 0 0 0 0 1 − �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(5)

3) Rotating CCS (R-CCS): In R-CCS, we rotate a single
CCS larger than the FOV during calibration measurements.
We show an R-CCS example in Fig. 2b, also depicting the

size and position of the FOV. We position the FOV as far
away from the center of R-CCS as possible, so that rotations
cause maximal change in the MNP distribution that fall within
the FOV. While the calibration phantom is implemented on
a rectangular grid, rotation naturally leads to off-grid MNP
distributions. When the phantom is rotated, we analytically
calculate the percentage of MNPs that fall on each grid, and
generate the C matrix using this information. Note that the
elements of C are no longer binary in this case (e.g., the
R-CCS in Fig. 2b have non-binary pixel values).

First, we calculate the coordinates of the central positions
of the MNP samples in the scene. Let Xθ ∈ R

NR ×2 be the
matrix that holds the 2D coordinates of the MNPs when the
R-CCS is θ degrees rotated, where NR is number of grids in
the CCS. Then one can show that

Xθ = X0° Rθ , (6)

where

X0° =
⎡
⎢⎣

x1 y1
...

...
xNR yNR

⎤
⎥⎦ , and Rθ =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
.

(7)

Then, for a given θ , the amount of MNPs inside each grid is
computed based on these coordinates.

4) Rotating and Sliding CCS (RS-CCS): RS-CCS is a vari-
ation of R-CCS, where we shift the scene after a full
(360°) turn, and we take further measurements around the new
rotation axis (Fig. 2b) [21]. The advantage of this implemen-
tation is that one can perform the calibration using a smaller
sized CCS compared to S-CCS and R-CCS.

5) Rotating and Sliding Contiguous CCS (RSC-CCS): This,
in our view, is a more practical implementation of RS-CCS,
in which we distribute the MNP samples in a contiguous
fashion (Fig. 2c). This implementation allows filling (and
emptying) the CCS with nanoparticles easily, e.g., by using
a capillary tube filled with MNP solution.

There are a number of design parameters for the CCS
implementations such as ν, δ, the step size for sliding (�y),
and the angular step size (�θ ) for R-CCS and its variations.
We analyze the effects of these parameters on the SM recon-
struction performance via simulations. We also compare the
MPI images reconstructed using the SMs obtained by the
proposed CCS implementations.

C. MPI Simulations

We evaluated the proposed methods using an in-house MPI
simulator. We set the magnetic field gradients to 1.25 T/m
and 2.5 T/m in the y- and z-directions, respectively. We used
a Lissajous trajectory with fy = 26.042 kHz and fz =
25.253 kHz frequencies to scan the field free point at the
entire FOV [23]. We assumed a mono-disperse MNP model
with 25 nm diameter [24], [25] and 37 ◦C temperature. For
the imaging analyses, we performed simulations for a FOV
of 50 mm × 25 mm (100 × 50 pixels) with 31.25 mT DF
amplitudes. For the SM reconstruction performance analyses,
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Fig. 3. The flowchart for CCS-based MPI system calibration and image reconstruction. The calibration measurements (Ac) are taken using the
CCSs (represented as C in the problem formulations). First, we use ADMM, by minimizing the �1-norm of the DCT of the SM, subject to the data
fidelity constraint, to estimate the full system matrix (A) with these measurements. Next, the image acquisition starts. With the estimated A and
imaging measurements b, we use ADMM by minimizing the weighted sum of the total variation and the �1-norm of the reconstructed image with
data fidelity and nonnegativity constraints to reconstruct the MPI image.

a smaller FOV with 20 mm × 10 mm was used to accel-
erate the extensive analyses targeted in this work. For that
case, the FOV was discretized into a 40 × 20 pixel grid,
and the corresponding DF amplitudes were 12.5 mT for both
y- and z-directions.

We calculated the received signal using the following
equation [26]:

u(t) =
∫

FOV
−μ0 pR(r) · ∂m(r, t)

∂ t
x(r)d3r, (8)

where x is the three-dimensional (3D) MNP distribution in the
FOV, pR is the sensitivity profile of the receive coils, modeled
as uniform, μ0 is the free space magnetic permeability, and
m is the average magnetic moment of the MNPs [26].

The sampling rate of the received signal was 20 MHz.
We stored and used the 30 kHz – 1 MHz band of the signal.
The additive white Gaussian noise was generated with the
built-in wgn function of MATLAB. We used the signal power
obtained with a single-voxel MNP sample as the reference
when calculating the standard deviation of the noise at differ-
ent SNR levels.

D. System Matrix Reconstruction

To solve the problem defined in Eqn. (2), which is a simple
�1-norm based problem that has been discussed thoroughly in
the literature [27]–[29], we used ADMM for both the standard
CS and the proposed CCS implementations [21]. ADMM is an
optimization algorithm that solves a given convex optimization
problem by augmenting a Lagrangian term and dividing it
into two easier sub-problems. In this study, we use convex
functions as objectives and intersection of convex sets as con-
straints. For these types of convex problems, ADMM is proven
to converge [30]. Moreover, ADMM requires the existence of
the exact or an approximate solution of the sub-problems [30],
and we previously presented details of the exact solutions of
each sub-problem in [12]. In Fig. 3, we show the flowchart
for the system calibration and SM reconstruction procedure.
In standard CS reconstruction, we used a single-voxel MNP
sample instead of coded scenes.

We analyzed the effects of CCS design parameters on SM
reconstruction performance via the following simulations:

1) First, we analyzed the effect of ν on the SM reconstruc-
tion for M-CCS at different measurement rates (δ = 0.5, 0.2,
0.1, and 0.05) and various SNR levels (0 dB, 10 dB, 20 dB,
30 dB, and without added noise). The simulated ν values were

1/800, 0.1, 0.3, 0.5, 0.7, 0.9, and 799/800. Note that for the
40 × 20 pixel FOV used in these simulations, ν = 1/800
corresponds to a CCS with a single-voxel MNP sample, which
is equivalent to the standard CS method. The dual case is
ν = 799/800, in which all voxels except for one voxel are
filled with MNP samples. We also performed a similar analysis
for the full rotation of R-CCS at δ = 0.45, 0.18, 0.1, and 0.05,
corresponding to �θ = 1◦, 2.5◦, 4.5◦, and 9◦, respectively.
The simulated ν values were 0.1, 0.3, 0.5, 0.7, and 0.9. The
size of the R-CCS was 50 mm × 50 mm (corresponding to
100 × 100 voxels), and the distance between the FOV center
and the rotation center was 17.5 mm in these simulations.

2) The frequency components of the SM can be for-
mulated with respect to the mixing factors my and mz as
follows [15], [26]:

k = my(κ + 1) + mzκ, (9)

where k is the frequency index of the SM, and κ/(κ + 1) =
fz/ fy . We compared the SM reconstruction performances of
M-CCS and R-CCS with the standard CS method qualitatively
with respect to different mixing orders.

3) For S-CCS, we analyzed the effect of �y on the SM
reconstruction for �y values ranging from 1 to 40 grids.
Similarly for R-CCS, we analyzed the effect of �θ with �θ

ranging from 0.5◦ to 5◦. Both analyses were performed for
δ = 0.2 at ν = 0.1 and 10 dB SNR.

4) One may not know the position of S-CCS or R-CCS
precisely during a continuous sliding/rotation movement. For
S-CCS with �y = 40 grids (i.e., the equivalent of M-CCS),
we analyzed the effect of positioning error on the SM recon-
struction for random errors drawn from a uniform distribution
with maximum error ranging between 1% and 20% of the
length of 1 grid. For R-CCS, we analyzed the effect of angular
positioning error on the SM reconstruction for errors ranging
from 0.01◦ to 0.2◦. For each measurement, the positioning
error was drawn from a discretized uniform distribution with
0.01◦ steps to reduce the computational cost of Monte-Carlo
simulations.

5) For a limited system calibration duration, an important
question is how many different CCSs one should measure
for optimal performance for a given measurement SNR and
duration. Hence, we analyzed the trade-off between using the
time budget to increase the SNR (via averaging) and varying
the effective CCS. We used an S-CCS with �y = 40 grids.
We assumed that the time required for sliding between
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Fig. 4. Numerical phantom used in the simulations, with an overall size
of 50 mm × 25 mm. The disks have 5 mm (left) and 4 mm (bottom right)
diameters. The squares (top right) have 2.5 mm side lengths.

consecutive measurements is 1 second, the measurement
time for a single Lissajous cycle is 1 millisecond, the SNR
is −30 dB, and ν = 0.1. We fixed the total calibration time to
∼320 seconds. We performed a similar analysis for R-CCS,
with the assumption that 1 second is required for mechanical
rotation between consecutive measurements. �θ for rotation
was set according to the number of calibration measurements
to complete 1 full turn, fixing the total calibration time
to ∼360 seconds. For example, for 144 measurements, �θ

was 2.5◦. Again, we assumed that a single Lissajous cycle is
1 millisecond, the SNR is −30 dB, and ν = 0.1.

To quantitatively assess the performance of the SM
reconstructions, we calculated the estimation errors of
the reconstructed SMs using normalized root-mean-squared
error (nRMSE), defined as:

nRMSE = 20 log10

⎛
⎜⎜⎝

√∑M
i=1

∑N
j=1

(
Ai j − Ãi j

)2

M N

σÃ

⎞
⎟⎟⎠, (10)

where scalars M and N are the number of rows and columns
of A, respectively. Ã is the ideal SM obtained with a full
calibration measurement without noise and σÃ is the standard
deviation of the elements of Ã.

We ran MC simulations until convergence for each CCS
analysis, where we defined convergence as reaching a change
in the mean nRMSE level below −60 dB between consecu-
tive iterations. 200 MC simulations were sufficient to reach
convergence for all analyses.

E. Image Reconstruction

For the image reconstruction, we solved the following
problem with ADMM [12], [31]:

argmin
x

α�1�x�1 + αT V TV(x)

subject to �Ax − b�2 < εim

xi ≥ 0, ∀i ∈ {1, 2, . . . , N},
(11)

where α�1 and αT V are scalar weights of the �1-norm and
total variation (TV) terms, respectively, εim is the bound
on the data fidelity error, and xi is the voxel value at the
i th position of x . We define the problem in a way that a
weighted sum of the �1-norm and TV of the reconstructed
images is minimized. Moreover, we also used a nonnegativity
constraint, as the MNP density cannot be negative [12], [32].
We previously presented the details of image reconstruction
with ADMM algorithm in [12]. Defining the problem with TV
and �1-norm cost functions is highly suitable for the medical
imaging applications targeted by MPI, since the images are

Fig. 5. Contour plots of the nRMSE of the estimated system matrices
for different filling rates (ν) and δ values for M-CCS. For ν, we used the
following values: 1/800, 0.1, 0.3, 0.5, 0.7, 0.9, and 799/800. a) δ = 0.5.
b) δ = 0.2. c) δ = 0.1. d) δ = 0.05.

block-wise contiguous and sparse. For example, the images of
blood vessels have these properties naturally.

We present the schematic describing the image reconstruc-
tion in Fig. 3 for M-CCS. We show the 100 × 50 pixel
numerical phantom used in the study in Fig. 4. This phantom
has disk objects with 4 mm and 5 mm diameters, and squares
with side lengths of 2.5 mm.

To analyze the image reconstruction performance, we tested
three different scenarios: δ = 0.2 and 10 dB SNR, δ = 0.2 and
0 dB SNR, and δ = 0.1 and 0 dB SNR. We utilized a practical
filling rate of ν = 0.1 for all CCSs and for all scenarios.
For S-CCS, �y was 5 grids in the y-direction. The sizes of
RS-CCS and RSC-CCS were 250×250 voxels, corresponding
to a 12.5 times larger area than the FOV. The distance between
the center of the FOV and the rotation center was 45 mm in the
z-direction, and �θ was 1°. After each full turn, we slided
the CCS 30 grids in the z-direction twice for the δ = 0.2
case. This corresponds to 1080 measurements (δ = 0.216)
in total with three full turns of the CCS. On the other hand,
for δ = 0.1 case, we used 1.5° angle-steps and slided the
CCS once for 40 grids in the z-direction. This corresponds to
480 measurements (δ = 0.096) in total with two full turns of
the CCS.

In addition, for S-CCS, we analyzed the effect of �y on
the reconstructed images for the cases of �y = 1, 5, and
10 grids. For this analysis, the other parameters were δ = 0.2,
10 dB SNR, and ν = 0.1.

To compare the quality of the normalized recon-
structed images, we calculated the structural similarity
index (SSIM) [33] and Peak SNR (PSNR) values using the
built-in ssim and psnr functions of MATLAB with the
default parameters.

III. RESULTS

A. Effects of Filling Rate (ν), Measurement
Rate (δ), and SNR

We analyzed the robustness of the SM reconstruction for
M-CCS and R-CCS, with the contour plots of the nRMSE
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Fig. 6. Contour plots of the nRMSE of the estimated system matrices
for different filling rates (ν) and δ values for R-CCS. For ν, we used the
following values: 0.1, 0.3, 0.5, 0.7, and 0.9. a) δ = 0.45. b) δ = 0.18.
c) δ = 0.1. d) δ = 0.05.

Fig. 7. The nRMSE (dB) as a function of filling rate (ν) for 10 dB SNR
for a) M-CCS, and b) R-CCS. The mean values and standard deviations
across repeated Monte Carlo simulations are plotted.

values given in Fig. 5 and Fig. 6, respectively. In addition,
we present cross sections of these plots for 10 dB SNR
in Fig. 7. For M-CCS, the results show that for δ = 0.5
and δ = 0.2 cases, the best ν is 0.5, independent of the
SNR level. At lower measurement rates of δ = 0.1 and
δ = 0.05, the effect of ν is much less prominent, as clearly
shown in Fig. 7a. At δ = 0.1, while the best ν is 0.3,
ν values between 0.1–0.9 also have comparable performances.
At δ = 0.05, the contour plot in Fig. 5d is not monotonous
along the vertical direction due to both the reduced effect
of ν and the high standard deviation of the MC simulations
(see the error bars in Fig. 7a). For the optimal ν values at
10 dB SNR, nRMSE is improved by 16 dB, 10 dB, 3 dB, and
0.5 dB compared to standard CS (i.e., ν = 1/800) for δ = 0.5,
0.2, 0.1, and 0.05, respectively (Fig. 7a). As seen in Fig. 5,
for all four measurement rates, choosing the correct ν causes
even more significant improvements in nRMSE at SNRs lower
than 10 dB.

For R-CCS robustness analysis, the results are given in
Fig. 6 and Fig. 7b. Note that a single-voxel MNP version
and its dual case (i.e., ν = 1/800 and ν = 799/800)
were not included, as they are not feasible with the R-CCS
implementation. These results indicate that for δ = 0.45,
the best ν is 0.7, whereas for δ = 0.18, it is 0.5. Similar to
M-CCS, the effect of ν is less significant at lower measurement
rates (see Fig. 7b). At δ = 0.1, ν values between 0.3–0.7
yield similar performances. At δ = 0.05, all ν values between

Fig. 8. The percentage error as a function of energy of rows of the SM
for a) M-CCS, and b) R-CCS with parameters: ν = 0.1, δ = 0.2, and
10 dB SNR.

Fig. 9. Selected rows of the reconstructed SMs. The top row shows
the fully sampled ideal case as reference without the additive noise.
The rows estimated with M-CCS (third row) and R-CCS (bottom row)
have finer structures than the ones estimated with the standard CS case
(second row) for parameters: ν = 0.1, δ = 0.2, and 10 dB SNR.

0.1–0.9 yield similar SM reconstruction performances, causing
the contour plot to be dominated by the standard deviation of
the MC simulations.

These SM reconstruction analyses show that a significant
improvement over the standard CS method is obtained for ν
ranging between 0.1–0.9. Note that a ν of 0.1 has the added
practical advantage of requiring a smaller volume of MNPs.
For both M-CCS and R-CCS, ν has a smaller effect at lower
δ values, i.e., for highly accelerated calibrations.

B. Row-wise Analysis of SM Reconstruction
Performance

Figure 8 shows the percentage error as a function of energy
of rows of the SM for M-CCS and R-CCS (with a compar-
ison to the standard CS method) with parameters ν = 0.1,
δ = 0.2, and 10 dB SNR. When the standard CS method
was used for SM reconstruction, 5.3% of the SM rows were
reconstructed with a relative error less than 20%. This rate is
increased to 17.2% for the M-CCS, and 14.6% for the R-CCS
methods.

In Fig. 9, some selected rows of the reconstructed
SMs are presented for standard CS method, M-CCS, and
R-CCS. The fully sampled ideal rows with infinite SNR
are also shown for comparison. As clearly seen, the
quality of the rows reconstructed with the standard CS
method reduces rapidly for high mixing orders, whereas the
rows reconstructed with M-CCS and R-CCS preserve their
structures.



Fig. 10. The nRMSE (dB) as a function of a) the number of slided
grids (Δy ) for S-CCS, and b) the angular step size (Δθ) for R-CCS before
each measurement with parameters: ν = 0.1, δ = 0.2, and 10 dB SNR.

Fig. 11. The effect of random positioning error on the nRMSE for
a) S-CCS and b) R-CCS with parameters: ν = 0.1, δ = 0.2, and
10 dB SNR.

C. Effects of Sliding Step Size (�y) and
Angular Step Size (�θ )

For S-CCS, we show the effect of �y on SM reconstruction
in Fig. 10a. In this analysis, the FOV size was 40 × 20 pixels
with δ = 0.2, corresponding to a total of 160 calibration
measurements. Therefore, sliding along the y-direction with
�y = 1 grid before each measurement required an S-CCS
with a total length of 199 grids (Ny + �y(δN − 1)), whereas
using a �y = 40 grids corresponded to fully replacing the
effective CCS before each measurement (i.e., equivalent to
M-CCS), and required an S-CCS with a length of 6400 grids.
The results in Fig. 10a show that nRMSE for SM reconstruc-
tion decays sharply from one to four grid steps, emphasizing
the need for a sufficient level of variation among the effective
regions of S-CCS that fall within the FOV. On the other hand,
performance remains almost unaffected when we increase �y

from 10 to 40 grids.
For R-CCS, we show the effect of �θ in Fig. 10b. In this

analysis, with the total number of calibration measurements
fixed to 160, �θ ranged from 0.5◦ to 5◦. The results show
that increasing �θ up to 2.25◦ improves the performance
significantly, once again emphasizing the need for variation
among effective portions of the R-CCS. However, for �θ

values larger than 2.25◦, R-CCS rotates more than 360◦ in
total. Without incorporating a sliding movement, the mea-
surements exceeding one full turn result in redundant and/or
similar measurements increasing the reconstruction error as
given in Fig. 10b.

D. Effects of Positioning Error

In Fig. 11a, we plotted nRMSE of SM reconstruction for
S-CCS with �y = 40 grids as a function of positioning error
for δ = 0.2, ν = 0.1, and 10 dB SNR. For this scenario, to
limit the increase in the reconstruction error to less than 1 dB,
the random positioning error should be smaller than ∼5% of

Fig. 12. Performance under limited calibration time. The nRMSE and
SNR after averaging (SNRave, given in dB and shown in red) as a function
of the total number of measurements for a) S-CCS with 40-grid step size,
and b) R-CCS, both with ν = 0.1.

the length of 1 grid, such that for a uniform distribution the
positioning error stays within ±5% of the length of 1 grid
from the true position. Even though the nRMSE increases by
6.33 dB at 20% positioning error, it still remains 2.54 dB
better than nRMSE for the standard CS method at the same
measurement rate and SNR.

In Fig. 11b, we plotted nRMSE of SM reconstruction for
R-CCS as a function of angular positioning error for δ = 0.2,
ν = 0.1, and 10 dB SNR. For this scenario, up to a maximum
angular positioning error of 0.01◦, the reconstruction error is
still better than that of the standard CS method.

E. Performance Under a Limited Calibration
Time Constraint

Figure 12 shows the results of the limited calibration time
analysis, clearly demonstrating the trade-off between using the
time budget to increase the SNR via averaging vs. to vary the
effective CCS. For the results we show in Fig. 12a, we used
an S-CCS with �y = 40 grids with the total calibration time
fixed to ∼320 seconds. Hence, when we reduced the number
of calibration measurements, we increased the time allocated
for each measurement. For instance, when 160 calibration
measurements were used instead of 320, the allocated scan
time for each measurement was increased to 2 seconds. With
the assumption that 1 second is required for the mechanical
movement, the remaining 1 second was used to acquire
1000 Lissajous scans from the same scene. Averaging those
acquisitions increased the SNR by 30 dB, so that the SNR
after averaging (SNRave) became 0 dB (see red labels in
Fig. 12a). We give the nRMSE and the corresponding SNRave
levels as a function of the number of calibration measurements
in Fig. 12a. These results show that the optimal strategy is
to set the number of calibration measurements as high as
possible, while simultaneously ensuring sufficient SNRave for
each measurement. For the analyzed scenario, we reached the
optimal trade-off for 200 measurements (δ = 0.25), where
SNRave is −2.2 dB.

As we show in Fig. 12b, we obtained similar results
for R-CCS, where we fixed the total calibration time to
∼360 seconds. The optimal number of measurements
is 144 for this case (i.e., δ = 0.18), where SNRave is 1.8 dB.

F. Image Reconstruction Results

We present the images reconstructed using the resultant
SMs of standard CS, M-CCS, S-CCS, R-CCS, RS-CCS, and
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Fig. 13. Reconstructed images with system matrices reconstructed via the standard CS method, M-CCS, S-CCS (with Δy = 5 grids), R-CCS,
RS-CCS, and RSC-CCS, for a) δ = 0.2 and 10 dB SNR, b) δ = 0.2 and 0 dB SNR, and c) δ = 0.1 and 0 dB SNR scenarios. Images are shown with
identical windowing. ν of the CCSs were 0.1.

TABLE I
SSIMS OF RECONSTRUCTED IMAGES (ν = 0.1)

RSC-CCS methods in Fig. 13 for the phantom in Fig. 4 with
a FOV size of 100 × 50 voxels.

For all scenarios in Fig. 13, all CCS outperforms the
standard CS method, as evident by both visual inspection
and the quantitative results in Tables I and II. For instance,
for δ = 0.1 and 0 dB SNR, the SSIM and PSNR values
increase by 0.41 and 5.7 dB, respectively, for RSC-CCS imple-
mentation. All of the CCS-based methods, except R-CCS,
successfully resolved the smaller square objects at the top
right part of the numerical phantom, whereas the standard
CS method fell short. R-CCS did not resolve the smaller
objects as successfully as other CCS methods, as a result of
high mutual coherence among measurements. Although the
randomness of the CCS is partially violated for the RSC-CCS,
the corresponding reconstructions shown in Fig. 13 have the
highest quality.

TABLE II
PSNRS OF RECONSTRUCTED IMAGES (ν = 0.1)

For S-CCS, we show the effects of �y on the reconstructed
images in Fig. 14. While sliding only a single grid after each
measurement yielded a blurred image, sliding 5 grids per step
was sufficient to reach a high-quality reconstruction. In addi-
tion, sliding 10 grids per step resulted in nearly identical image
quality as sliding 5 grids per step. This result is consistent with
the SM reconstruction analysis in Fig. 10a, and highlights the
fact that the effective CCS needs to vary among measurements
to ensure that each measurement provides maximal amount of
new additional information.

IV. DISCUSSION

The proposed CCS framework results in significantly
improved image quality compared to the standard CS method
for the same SNR and measurement rate. This is a con-
sequence of (i) the higher effective SNR of each CCS
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Fig. 14. Image reconstruction results for S-CCS with Δy values a) 1 grid, b) 5 grids, and c) 10 grids. δ = 0.2, 0 dB SNR, and ν = 0.1. Images are
shown with identical windowing.

measurement compared to single-voxel MNP measurements,
and (ii) the higher amount of information gathered from a
single measurement. In the literature, several other techniques
were presented to improve the SNR and measurement time
of SM measurements. One such technique proposed a hybrid
approach for performing calibrations in a separate device emu-
lating the MPI system [14]. Although this method decreases
calibration time with high SNR measurements, system imper-
fections such as the inhomogeneity of the magnetic fields,
analog and digital perturbations of the MPI system are not
present in the measurements. Another method decreases the
SF gradients to enhance the SNR by increasing the amount
of responsive MNPs [19]. The increase in the SNR is limited
by the maximum number of MNPs that can be placed inside
one voxel in this case. The proposed CCS approach directly
measures the SM under the effects of the aforementioned non-
idealities, with a relatively high SNR and in a convenient
measurement duration.

The filling rate analyses show that the optimal ν is between
0.1 and 0.9. While SNR increases with increasing ν above 0.5,
the coherency of the measurements also increases, limiting the
SM reconstruction performance. The symmetrical behaviour
with respect to ν shows that the reconstruction performance
is limited by the ill-posedness of the problem, rather than the
measurement noise. Furthermore, the effect of measurement
noise on the SM reconstruction is reduced at lower δ values.
In this work, we tested the image reconstruction performances
for ν = 0.1. We chose this ν as it provides a significant
improvement over the standard CS method, while requiring a
relatively small volume of MNPs. Higher ν values can provide
further but modest improvements over ν = 0.1. For example,
with ν = 0.3 at δ = 0.2 and 10 dB SNR, the SSIM and PSNR
values for the images reconstructed for M-CCS are improved
by 0.02 and 1.3 dB, respectively (results not shown). ν values
of 0.3 and 0.5, on the other hand, result in nearly identical
image quality metrics. These improvements over ν = 0.1 are
gradually reduced for more difficult cases with reduced SNR
and smaller δ.

The CCS framework is based on measuring multiple
“scenes” with randomly positioned MNPs, i.e., M-CCS.
We proposed other CCS variations from a practical imple-
mentation point of view. While we place the MNP samples
at random positions in S-CCS and R-CCS, the successive
measurements become correlated during sliding and rotating
movements. Although the CS conditions to collect random and
incoherent measurements are partly violated, our analyses on
slided grid and angular step sizes suggest that the SM is suf-
ficiently sparse [17] to enable successful SM reconstructions
even in these implementations. For example, we can slide a
long CCS with 4–5 grid step size between measurements to

enable successful SM reconstructions for a 40-grid FOV and
a measurement rate of 0.2. Note, however, the practicality of
the particular CCS implementation is a separate issue. In this
case, a large CCS that is at least 20 times the size of the FOV
is required.

We proposed the R-CCS implementation to mitigate the
large size requirement of S-CCS. However, using only
rotations resulted in reduced SM reconstruction performance
compared to M-CCS, despite using an R-CCS with a size
12.5 times the FOV. As a solution, we proposed the RS-CCS
implementation to combine rotations and translations,
so that the measurements could be diversified. For example,
we showed RS-CCS with only 2–3 rotation centers result in
a similar imaging performance to M-CCS and S-CCS. For
closed-bore MPI scanners, the diameter of R-CCS and its
variations cannot be larger than that of the bore. The range of
the sliding movement is also limited in that case. Therefore,
for the scanners that have a small bore, S-CCS option may
be preferred.

In MPI, MNPs outside the DF-FOV can induce signal
in the receiver coils, causing artefacts along the edges of
the image [34]. For calibration using a single MNP sample,
these artefacts can be mitigated by calibrating the SM for a
larger FOV than the DF-FOV [35]. However, the calibration
time would considerably increase in that case. In contrast,
S-CCS and R-CCS implementations are already larger than
the DF-FOV. Therefore, one can easily reconstruct a larger
SM to take into account the response of the MNPs that are
outside the DF-FOV. Importantly, this procedure would not
cause any increase in the calibration duration, as these CCSs
already contain MNP samples outside the DF-FOV.

In CS methods, the number of measurements are fewer
than the total number of grids. Therefore, the C matrix
in Eqn. (2), which represents the CCSs, is not invertible.
Here, we designed full column rank C matrices. This design
ensures having linearly independent measurements that maxi-
mize information content.

In this work, we used the DCT domain for a sparse
reconstruction of the SM. The proposed method can also be
adapted to other sparse transformation domains by simply
replacing the matrix D in Eqn. (2) with the corresponding
transformation matrices. For example, when Chebyshev trans-
formation is used for sparsity representation [36], the amount
of MNPs positioned in non-equidistant and non-equally sized
grids required for Chebyshev transformation can be measured
and calculated. SM and image reconstruction can be performed
based on that new gridding.

We used the ADMM algorithm to solve the optimiza-
tion problems of SM and image reconstructions. The
time required for SM reconstruction was 933 seconds
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(300 ADMM iterations), whereas it was 96 seconds for
image reconstruction (100 ADMM iterations) for 100 ×
50 grids using a standard workstation having 2 Intel® Xeon®
E5-2620 v3 CPUs and 64 GB RAM. SM reconstruction time
for the standard CS method is also similar, since the problem
definition in Eqn. (2) applies for both cases. Accordingly,
SM reconstruction time depends on the number of frequency
components and the δ. With that said, CCS approach may
yield faster convergence compared to the standard CS due to
its improved SNR. While the computational load of ADMM
is relatively high, we previously showed that the speed of
the ADMM algorithm for MPI image reconstruction can
be accelerated using GPUs [37]. In that study, a 40-fold
acceleration was achieved with a single NVIDIA® GeForce
GTX 1080. As ADMM is a highly parallelizable algorithm,
even higher accelerations are expected using multiple GPUs.

One of the main advantages of the CCS framework is the
increased SNR of the calibration measurements, which reduces
the need for signal averaging. Accordingly, calibration data
can be acquired during a continuous movement of the CCS,
which would significantly reduce the calibration duration at
the risk of introducing movement artefacts. The speed of the
movement should be adjusted and the calibration data should
be acquired in a relatively short time interval, such that the
position change of the MNP samples do not degrade the SM
reconstruction. One can optimize the level of signal averag-
ing, the measurement rate, and the speed of the continuous
movement according to the measurement SNR.

For continuous motion, we would need to know the position
of the CCS precisely to accurately generate the calibration
masking matrix, C . Our analysis on positioning errors shows
that for 5% positioning error, nRMSE of SM reconstruction
increases only marginally by 1 dB at δ = 0.2, ν = 0.1, and
10 dB SNR. To fully compensate for positioning errors, we can
track the position of the CCS in real time using precision
position measurement devices such as laser trackers.

Implementing the CCS as a mold that can be filled with
MNP samples may prove challenging to fill and empty the
random CCS pattern with MNP samples. Here, we proposed
the RSC-CCS implementation featuring a contiguous CCS
pattern as a solution. To minimize the size, it incorporates
a combination of rotations and translations. The imaging
results show that this implementation has the highest image
quality among all proposed implementations. The voxels with
MNPs are contiguous in this case rather than being randomly
distributed, which improved the signal power during the scan.
Experimental demonstration of this practical approach remains
a future work.

Practically, fabrication errors can affect the success of the
calibrations using CCS. Errors from imprecise CCS fabrication
can be mitigated by imaging the CCS using a CT/micro-CT
scanner to determine the exact positions of MNPs. For contigu-
ous CCSs, additional precautions must be taken in order not to
introduce air bubbles in the nanoparticle channels, as bubble
movement might cause variations in MNP distribution over
time. In this work, nanoparticle concentration was assumed
to be constant at all MNP positions. The reconstruction

performance can deteriorate if nanoparticle density fluctuates
throughout the CCS.

Another practical consideration may be the amount of tracer
material used in CCSs. For the CCS parameters used in
Fig. 13b (100×50 pixels, δ = 0.2, ν = 0.1, and 0.25 mm3 grid
size), the required tracer volumes can be calculated as 125 ml
for M-CCS, 6.37 ml for S-CCS, and 1.56 ml for R-CCS
and its variations. Hence, R-CCS and its variations are also
advantageous in this sense.

In this work, the CCS method was analyzed for the 2D
case, however, the same principles can easily be extended
to the 3D case. For M-CCS and S-CCS, the CCS can be
implemented as a rectangular prism, and S-CCS can slide in
any direction in space. For R-CCS and its variations, the CCS
can be implemented as a sphere that can slide in any direction
and rotate around any axis.

V. CONCLUSION

We proposed a fast calibration method for the system matrix
in MPI by combining CCS-based measurements with CS
recovery. We demonstrated five different practical implemen-
tations of CCS for realistic imaging scenarios. The results
show that MPI system calibration using CCS outperforms the
standard CS method, which uses a single-voxel MNP sample.
CCS enhances the quality of reconstructed SM and MPI
images for the same measurement rate and SNR. Therefore,
CCS can substantially reduce calibration time, and further
improvements may be viable by considering on-the-move data
acquisitions.
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