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Profile-Encoding Reconstruction for Multiple-Acquisition
Balanced Steady-State Free Precession Imaging

Efe Ilicak,1,2 Lutfi Kerem Senel,1 Erdem Biyik,1 and Tolga Çukur1,2,3*

Purpose: The scan-efficiency in multiple-acquisition balanced
steady-state free precession imaging can be maintained by

accelerating and reconstructing each phase-cycled acquisition
individually, but this strategy ignores correlated structural infor-

mation among acquisitions. Here, an improved acceleration
framework is proposed that jointly processes undersampled
data across N phase cycles.

Methods: Phase-cycled imaging is cast as a profile-encoding
problem, modeling each image as an artifact-free image multi-

plied with a distinct balanced steady-state free precession
profile. A profile-encoding reconstruction (PE-SSFP) is
employed to recover missing data by enforcing joint sparsity

and total-variation penalties across phase cycles. PE-SSFP is
compared with individual compressed-sensing and parallel-

imaging (ESPIRiT) reconstructions.
Results: In the brain and the knee, PE-SSFP yields improved
image quality compared to individual compressed-sensing and

other tested methods particularly for higher N values. On aver-
age, PE-SSFP improves peak SNR by 3.8 6 3.0 dB (mean 6 s.e.

across N¼2–8) and structural similarity by 1.4 6 1.2% over indi-
vidual compressed-sensing, and peak SNR by 5.6 6 0.7 dB and
structural similarity by 7.1 6 0.5% over ESPIRiT.

Conclusion: PE-SSFP attains improved image quality and
preservation of high-spatial-frequency information at high
acceleration factors, compared to conventional reconstruc-

tions. PE-SSFP is a promising technique for scan-efficient bal-
anced steady-state free precession imaging with improved

reliability against field inhomogeneity. Magn Reson Med
78:1316–1329, 2017. VC 2016 International Society for Mag-
netic Resonance in Medicine
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INTRODUCTION

Balanced steady-state free precession (bSSFP) sequences
provide relatively high magnetization levels for repetition
times (TR) on the order of several milliseconds (1). As
such, they have found use in rapid imaging involving both
dynamic (2–6) and high-spatial-resolution static acquisi-
tions (7–11). One critical concern, however, is that the
bSSFP magnetization profile yields increased sensitivity to
magnetic field inhomogeneities and signal voids at partic-
ular off-resonance frequencies (1). In turn, this profile can
lead to excessive banding artifacts at high field strengths,
with long TRs, and in complex tissue geometries.

Several innovative methods were previously proposed to
alleviate bSSFP banding artifacts. These methods include
modified pulse sequences that reshape magnetization pro-
files (12–15), advanced shimming procedures that limit
field inhomogeneity (16), physical signal models to remove
frequency sensitivity (17,18), and the commonly used
multiple-acquisition methods that combine several phase-
cycled images with nonoverlapping banding artifacts to
improve signal homogeneity (19–24). These approaches
typically compromise between artifact reduction and scan
efficiency. For instance, residual banding artifacts in
multiple-acquisition methods can be reduced by increasing
the number of phase cycles (N). However, with higher N,
the overall scan time is considerably prolonged.

To mitigate banding artifacts while maintaining scan
efficiency, two recent studies proposed to accelerate
phase-cycled bSSFP acquisitions (25,26). In the first study
(25), we leveraged individual compressed-sensing (CS)
reconstructions to recover nonacquired bSSFP data for
each phase cycle separately (27–29). In the second study
(26), individual acquisitions were instead accelerated via
simultaneous multi-slice imaging. While high image qual-
ity was demonstrated for low acceleration factors (around
2–4), data from separate phase-cycles were reconstructed
independently in both studies. Because independent
reconstructions ignore structural information that is inher-
ently correlated across multiple acquisitions (30–32),
image quality can be degraded at high acceleration factors
that are critically needed with increasing N.

Here, we propose an improved framework for acceler-
ating phase-cycled bSSFP imaging that jointly recon-
structs undersampled data across multiple acquisitions.
Analogous to parallel imaging that takes each coil image
as the product of the tissue image with a respective coil
sensitivity (33), this framework models each phase-
cycled bSSFP image as the product of the banding-
artifact-free image with a respective bSSFP spatial profile
(34,35). Thus, inspired by recent approaches for multi-
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coil imaging (32), the joint reconstruction is cast as a
profile-encoding problem (PE-SSFP) where nonacquired
k-space samples are linearly synthesized from acquired
data. To further alleviate aliasing and noise interference,
PE-SSFP leverages joint-sparsity and total-variation pen-
alties. Comprehensive simulations are presented to dem-
onstrate the reliability of PE-SSFP against variations in
sequence and tissue parameters, noise, and field inhomo-
geneity. Phantom and in vivo results clearly indicate
that the proposed framework yields improved image
quality over conventional reconstructions.

METHODS

The goal of the current study is to implement robust,

artifact-free multiple-acquisition bSSFP imaging within a

total scan time equivalent to a single acquisition. Starting

with an overview of phase-cycled bSSFP imaging, the

following sections discuss the sampling and reconstruc-

tion strategies proposed toward this goal.

Multiple-Acquisition Phase-Cycled bSSFP Imaging

In multiple-acquisition bSSFP, several images with dif-

ferent phase-cycling are acquired such that banding arti-

facts are spatially non-overlapping across acquisitions.

Assuming TE¼TR/2, the fully sampled images at each

phase cycle can be expressed as (36):

SnðrÞ ¼ MðrÞ
ei fðrÞþDfnð Þ=2 1�AðrÞe�i fðrÞþDfnð Þ� �

1� BðrÞcos ðfðrÞ þ DfnÞ
[1]

where r denotes spatial location, fðrÞ is phase accrued

in a single TR due to field inhomogeneity, and Dfn is

the phase-cycling value used for the nth acquisition

where n 2 [1 N]. The remaining terms M, A, B depend

on sequence and tissue parameters. Tailored image com-

bination techniques are then used to minimize the

dependence of the bSSFP signal on fðrÞ (20,22). An

artifact-free image (So) could be obtained under the con-

dition that fðrÞ þ Dfn¼ p, which in turn would yield:

SoðrÞ ¼ iMðrÞ1þAðrÞ
1þ BðrÞ [2]

Thus, each phase-cycled image Sn can be modeled as the

multiplication of So with a respective bSSFP profile, Cn

as illustrated in Figure 1:

CnðrÞ ¼
SnðrÞ
SoðrÞ

¼
ei fþDfn�pð Þ=2 1þ Bð Þ 1�Ae�i fþDfnð Þ� �
ð1þAÞð1� Bcos ðfþ DfnÞÞ

[3]

Combination techniques for multiple-acquisition

bSSFP typically assume that data are either fully sam-

pled (20–22) or else adequately reconstructed (25). Esti-

mation of bSSFP profiles has therefore not been of

particular interest, apart from cases where signal-to-noise

ratio (SNR) optimization or fat-water separation is aimed

(23,34). Nonetheless, the bSSFP profiles can be inter-

preted as a means to perform spatial encoding (35), simi-

lar to that implemented by the coil sensitivities in

parallel imaging (33). With this interpretation, we cast

the joint reconstruction of undersampled phase-cycled

acquisitions as a profile-encoding problem:

ynðkÞ ¼ Fn CnðrÞ � SoðrÞf g [4]

Here k indicates k-space location, yn are the k-space data

for the nth acquisition, and F is a Fourier-transform

FIG. 1. In the profile-encoding

framework, each phase-cycled
bSSFP image (Sn) is modeled as
the multiplication of an ideal

image free of banding artifacts
(So) with a respective bSSFP

sensitivity profile (Cn). The value
of the bSSFP profile at each
location is a function of total

phase accrual over a single TR
due to main field inhomogeneity

and RF phase-cycling increment
(Df). Locations of near-zero
phase shift (modulo 2p) lead to

significantly diminished sensitivi-
ty and thereby banding artifacts

in bSSFP images.
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operator. For simplicity, we did not consider the effects

of coil sensitivities on the joint reconstruction. Thus,

assuming that bSSFP spatial profiles can be estimated

based on fully sampled central k-space data (37,38), they

can be used to solve an inverse problem that recovers

the artifact-free bSSFP image SoðrÞ given a collection of

phase-cycled data ynðkÞ.

Undersampling Patterns for Multiple-Acquisition bSSFP
Data

Each of N separate phase-cycled acquisitions were

undersampled by a factor of R¼N. Sampling patterns for

phase-cycled acquisitions can be selected independently.

A common pattern for all acquisitions can better enforce

consistency in the sampling matrix across phase-cycles,

and reduce interpolation errors. On the other hand, dis-

joint patterns across acquisitions can expand k-space

coverage, and reduce aliasing artifacts (25). To optimize

sampling strategy, we compared reconstructions of data

undersampled with common versus disjoint patterns.

Patterns were generated using uniform-density determin-

istic (33,35), variable-density random (28), and Poisson-

disc sampling (32). In all cases, isotropic acceleration

was performed in two dimensions, and a central k-space

region spanning up to 10% of the maximum spatial fre-

quency in each axis was fully sampled. In uniform-

density sampling, the full sampling matrix was linearly

ordered and then undersampled by holding every Nth

sample (e.g., 1, Nþ 1,. . .). Disjoint patterns were generat-

ed by incrementing the starting index by 1 sample (35).

In variable-density sampling, random patterns were gen-

erated based on a polynomial probability density func-

tion (PDF), and sampling patterns were selected among

2000 candidate patterns to minimize aliasing energy

(39). Disjoint patterns were selected by minimizing both

the aliasing energy for each pattern and the pair-wise

correlation among patterns (25). In Poisson sampling, a

polynomial PDF was used to generate a random sam-

pling pattern that maintains locally-uniform inter-sample

distances. Disjoint patterns were generated by using a

distinct starting seed for the sampling algorithm (32).

Profile-Encoding Reconstruction

In a recent study, we proposed to alleviate banding arti-

facts by combining separate CS reconstructions of indi-

vidual phase-cycled bSSFP acquisitions (25). The

individual-CS reconstruction (iCS) was implemented via

a Lagrangian formulation:

min
mn

jjyn � FPn mnf gjj22 þ l1jjc mnf gjj1 þ l2jjr mnf gjj1
[5]

This formulation comprised a data-consistency term

(where yn is the acquired data, FPn is the partial Fourier

operator, and mn is the reconstructed image for the nth

phase cycle), a sparsity term (where w is a wavelet-

transform operator), and a total-variation term (TV;

where r is the finite difference operator). While iCS was

shown to maintain good reconstruction quality for small

N, loss of high-spatial-frequency information became

prominent for N � 4 due to increasingly heavier under-

sampling factors (25).
To address this limitation, we propose a profile-

encoding bSSFP (PE-SSFP) reconstruction that solves the

problem in Equation [4] by synthesizing missing k-space

samples from acquired data. First, an interpolation operator

estimated from calibration data is used to iteratively syn-

thesize nonacquired data across phase-cycles. Inspired by

the SPIRiT model (iterative self-consistent parallel imaging)

(32), the iterative estimation procedure enforces the consis-

tency of reconstructed data with both the acquired and the

calibration data. Lastly, PE-SSFP leverages joint sparsity

(30,31,40) and TV penalties (28) to dampen aliasing and

noise interference. Here PE-SSFP was implemented as a

constrained optimization problem:

min
m

l1jj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n

jcfmngj2
r

jj1 þ l2

X
n

jjr mnf gjj1

subj: to jjðG � IÞ mf gjj22 ¼ 0X
n

jjyn � FPn mnf gjj22 ¼ 0

[6]

where m is the aggregate vector containing mn across all

phase-cycles. The objective comprises a joint sparsity

term and a cumulative TV term across phase cycles. The

first constraint enforces consistency of reconstructed

data with the calibration data (where G is the aggregate

interpolation operator, I is the identity operator). Mean-

while, the second constraint enforces cumulative data-

consistency across phase cycles.
To efficiently solve the constrained optimization for-

mulated in Equation [6], we leveraged an alternating

projection-onto-sets scheme with the aim to produce a

quasi-optimal solution at the intersection of multiple

sets (40). The optimization was split into four projection

operators, namely calibration consistency, joint sparsity,

TV, and data consistency projections. These projections

were successively repeated to enforce relevant properties

in the reconstructed data (see Fig. 2).

Calibration Consistency

Prior to reconstruction, an interpolation kernel for profile

encoding (K) was obtained from aggregate calibration data

ycalib (designated as the fully sampled part of central k-

space). Kernel weights that capture linear relationships

among 11 � 11 neighborhoods of k-space samples were esti-

mated based on the calibration constraint ðK � IÞ:ycalib ¼ 0.

A 13 � 13 kernel was used at N¼ 2 to leverage the relatively

higher sampling density in central k-space. The solution of

this inverse problem was obtained via Tikhonov regulariza-

tion (with weight a ¼ 0:01) to enhance noise resilience and

conditioning (40). Finally, an image-space operator G equiva-

lent to the trained k-space kernel K was computed. During

reconstruction, calibration-consistency projections were

implemented by applying G on the image reconstructed in

the previous iteration, mðkÞ ¼ G mðk�1Þ� �
.

Joint Sparsity

Assuming insignificant motion between separate acquisi-

tions, tissue boundaries and sparsity patterns are

1318 Ilicak et al.



expected to appear in identical locations across phase-
cycled images. To leverage this correlated structural
information, we utilized a joint-sparsity model that has
been shown to offer benefits in other MR applications
(30–32,41,42). During PE-SSFP, the joint-sparsity term in
Equation [6] based on the Daubechies 4 wavelet can offer
increased detection sensitivity for relatively small coeffi-
cients shared across phase cycles.

Wavelet-domain sparsity is conventionally enforced
via shrinkage methods based on hard- ShðxÞ ¼ x

jxj�l
:max ð

0; jxj � lÞ or soft-thresholding SsðxÞ ¼ x
jxj :max ð0; jxj � lÞ,

where k is the threshold (43). Both functions null wave-
let coefficients below k, potentially reducing detection
sensitivity for small coefficients. To alleviate this issue,
here we used a modified Huber function (44):

ShuberðxÞ ¼
x2=ð2lÞ ; jxj < l

jxj � l=2 ; otherwise

(
[7]

This function behaves similarly to soft-thresholding above
k, but it applies squared-weighting on small coefficients
to increase detection sensitivity. Note that iterative
thresholding based on this function provides a quasi-
proximal mapping for the ‘1-norm, thus k was set to k1 in
Equation [6]. During PE-SSFP, the following joint-sparsity
projections were applied: mð

_k Þ ¼ c�1 ShuberðcfmðkÞgÞ
� �

.
TV: Total-variation projections were employed to reduce

aliasing interference and noise. The projections were
implemented by minimizing the objective JðxÞ ¼ jjmn � xj
j22 þ l2jjrxjj1 using a fast iterative-clipping algorithm:

xðiÞ ¼ mð
_k Þ

n �rtzði�1Þ

zðiÞ ¼ Sclip zði�1Þ þ rxðiÞ=a
� �

[8]

where rt is the adjoint finite-difference operator, zð1Þ ¼ 0
and the update rate parameter a¼ 8 (45). The clipping
function was modified to handle complex values:

SclipðzÞ ¼
z ; jzj < l2=2

ðl2=2Þ � expðj/ðzÞÞ ; otherwise

(
[9]

where /ðzÞ is the phase of z. This algorithm converges

rapidly, and the percentage change in the objective fell

to 0.01% within 5 iterations during each TV projection:

mð
€k Þ ¼ TVprojfmð

_k Þg.

Data Consistency

To ensure consistency of reconstructed and acquired k-

space data, reconstructed data were projected onto the

constraint
P

n jjyn � FPn mnf gjj22 ¼ 0. This projection was

implemented by replacing reconstructed data with the

acquired data in sampled locations (40):

mð&k Þ ¼ F�1fðF � FPÞfmð
€k Þg þ yg.

The successive projections listed above were repeated

until the percentage difference between the recon-

structed images in consecutive iterations fell to 0.001%.

Convergence was achieved within 15 iterations for the

datasets considered here (see Supporting Fig. S1 for typi-

cal changes in joint sparsity, TV and cumulative cost

terms during PE-SSFP). The total reconstruction times

are listed in Supporting Table S1. The penalty weights

l1;2 were varied separately in the range 0 10½ � � 10�3

with a step size of 10�3 for phantom data, and in the

range 0 15½ � � 10�3 with a step size of 0.05 �10�3 for in

vivo data (39). To minimize potential block artifacts and

resolution losses, the smallest set of l1;2 that yielded sat-

isfactory artifact/noise suppression were selected via

visual inspection (see Supporting Table S2). To obtain a

final bSSFP image, reconstructions for each phase-cycle

were combined with the p-norm method (p¼ 4), which

was selected for its computational simplicity and favor-

able performance in artifact suppression and SNR effi-

ciency (34).

FIG. 2. Flowchart of the profile-encoding bSSFP (PE-SSFP) reconstruction that recovers missing data in undersampled phase-cycled

acquisitions. PE-SSFP employs an alternating projection-onto-sets scheme with four projection operators: calibration, joint-sparsity, TV,
and data-consistency projections. In the calibration projection, an interpolation kernel estimated from calibration data is used to synthe-

size missing samples linearly from acquired data across phase-cycles. In the joint-sparsity projection, wavelet coefficients of phase-
cycled bSSFP images are thresholded with a Huber function. In the TV projection, bSSFP images are denoised with a fast iterative-
clipping algorithm. In the data-consistency projection, reconstructed data in sampled locations are replaced with their acquired values.

These projections are successively repeated, and the individual phase-cycled images are finally combined with the p-norm method.
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Alternative Reconstructions

To comparatively demonstrate PE-SSFP, zero-filled Fou-
rier (ZF), individual CS (iCS) and ESPIRiT (46) recon-
structions were also implemented. All methods
reconstructed individual phase-cycled images that were
then p-norm combined (p¼ 4).

ZF: Nonacquired k-space data were filled with zeros.
Data for each phase-cycle were compensated for the sam-
pling density across k-space. An inverse Fourier transfor-
mation was then performed to reconstruct each phase-
cycled image.

iCS: Individual CS reconstructions of phase-cycled
acquisitions were implemented as described in Equation
[5]. The sparsifying transform was selected as the Daube-
chies 4 wavelet. The optimization was performed using
an iterative conjugate-gradient algorithm (28). Iterations
were repeated until the percentage difference between
the reconstructed images in consecutive iterations fell to
0.01%. Convergence was achieved within 30 iterations
for the datasets considered here. Further iterations were
avoided because they were observed to cause undesirable
blurring in the reconstructions. The regularization
weights were scaled proportionately to those in PE-
SSFP. Specifically, k1 was set to maintain the same ratio
of sparsity to data-consistency terms (

ffiffiffiffiffi
N
p
� l1;PE�SSFP),

k2 was set to maintain the same ratio of TV to data-
consistency terms (l2;PE�SSFP).

ESPIRiT: A soft-SENSE reconstruction (33) based on
multiple sets of bSSFP profiles was implemented using
the ‘1-ESPIRiT framework (46). Profile estimates were
obtained via eigenvector decomposition of G in the image
domain. Separate sets of profile estimates were obtained
for each phase cycle (Ĉ

j

n for the jth set, j 2 ½1 J �), by
selecting eigenvalues above a fixed threshold of 0.9 with
a null-space cut-off s2

cutoff¼0.02. This yielded two sets of
bSSFP profiles estimates for the datasets reported here.
Individual phase-cycled images mn were then recon-
structed via the following optimization:

min
m

X
n

jjyn �FPn mnf gjj22 þ l1jj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n

jcfmngj2
r

jj1 [10]

where mn ¼
P

j Ĉ
j

nm
j
n. Variable splitting with a splitting

parameter of 0.4 was implemented to decompose the
optimization into two subproblems that minimize the
profile-encoding cost (first term in the objective) and the
joint-sparsity cost (second term) respectively (47). The
profile-encoding subproblem was solved via a conjugate
gradient algorithm with 20 iterations (40). Remaining
reconstruction parameters including the number of outer
iterations were kept identical to PE-SSFP.

Simulations

Simulations were performed based on a realistic brain
phantom at 0.5 mm isotropic resolution (http://www.bic.
mni.mcgill.ca/brainweb). Phase-cycled bSSFP signals for
each tissue were calculated based on Equation [1],
assuming the following T1/T2: 3000/1000 ms for cerebro-
spinal fluid (CSF), 1200/250 ms for blood, 1000/80 ms
for white matter, 1300/110 ms for gray matter, 1400/30
ms for muscle, and 370/130 ms for fat. Meanwhile,

three-dimensional (3D) acquisitions were simulated
using a¼ 45� (flip angle), TR¼ 5.0 ms, TE¼2.5 ms, 10
axial cross-sections equispaced to cover the whole brain
in the superior-inferior direction, and Df¼ 2p

½0:1:ðN�1Þ�
N .

The simulations used a realistic field-inhomogeneity dis-
tribution corresponding to an off-resonance shift of
0 6 62 Hz (mean 6 std; see Fig. 1).

To demonstrate the auto-calibration approach used in
PE-SSFP, we examined how well the acquired data can
be represented via the bSSFP profiles estimated from cal-
ibration data. Using the profiles extracted by the ESPIRiT
method (46), each phase-cycled image was projected
onto the subspace spanned by the bSSFP profiles. A dif-
ference map was then calculated between each image
and its projection onto this subspace. An aggregate error
map was finally formed via sum-of-squares combination
of difference maps across phase cycles. Error maps were
generated for varying kernel sizes (5,7,9,11,13,15,17), cal-
ibration area sizes (6%, 8%, 10%, 12%, 14% of the max-
imum spatial frequency), and null-space cut-offs
(s2

cutoff¼2 � 10�1;�2;�3;�4;�5).
Next, simulated brain images were undersampled by a

factor of N in two phase-encode dimensions using pat-
terns generated for uniform-density, variable-density,
and Poisson disc sampling. Separate acquisitions were
obtained for common and disjoint sampling patterns
across phase cycles. PE-SSFP and alternative reconstruc-
tions were performed.

Reconstruction quality was assessed by several differ-
ent metrics measured on combined bSSFP images. For a
given cross-section, a mean-squared error (MSE) was first
measured between the image reconstructed from N
undersampled acquisitions and a reference image Fourier
reconstructed from N¼8 fully sampled acquisitions.
Because N¼8 is typically sufficient for artifact suppres-
sion, MSE assessed the reconstruction performance in
reducing banding artifacts in addition to aliasing/noise
interference. The peak signal-to-noise (PSNR) metric was
then derived from this MSE measurement to summarize
the overall image quality. Lastly, a mean structural simi-
larity index (SSIM) was measured between the recon-
structed image and the reference image for N¼8,
following histogram matching to account for large-scale
intensity variations (25). SSIM assessed the degree of
visual similarity in tissue structure to the reference
image. To assess the reliability of PE-SSFP against field
inhomogeneity, residual banding artifacts were evaluated
on combined bSSFP images. CSF, white matter and gray
matter signals were segregated via tissue masks. The lev-
el of residual artifact for each tissue was then character-
ized based on a percentage ripple metric. Ripple was
taken as the ratio of the range of signal intensity to the
mean intensity level. All metrics were pooled across 10
cross-sections in the phantom.

Several variants of PE-SSFP were implemented to
assess the relative importance of the individual projec-
tion stages of the proposed method: PEcalib with only cal-
ibration and data-consistency projections; PEhuber with
calibration, sparsity (based on Huber thresholding) and
data-consistency projections; PEsoft�TV with calibration,
sparsity (based on soft thresholding), TV and data-
consistency projections. Each additional projection
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included in PE-SSFP significantly improved the PSNR

and SSIM values (P<0.005, signed-rank test; see Sup-

porting Table S3). Furthermore, PE-SSFP outperformed

that PEsoft�TV for all N>2 (P< 0.005). Thus, Huber

thresholding was prescribed for all PE-SSFP reconstruc-

tions thereafter.
To examine the effect of tissue and sequence parame-

ters on reconstruction performance, additional simula-

tions were performed based on varying T1/T2 ratios, flip

angles, TRs (with TE¼TR/2), SNR levels, and accelera-

tion factors (R). The following parameters were consid-

ered: (�40%, �20%, 0%, 20%, 40%) deviation in T1/T2

ratios, a ¼ ð15
�
;30

�
;45

�
;60

�
; 75

� Þ, TR¼ (5 ms, 10 ms, 15

ms), SNR levels ranging in [10 30] for CSF. To examine

performance when R exceeds number of acquisitions (N),

the following cases were simulated (N¼ 2, R¼ 4), (N¼4,

R¼ 6), (N¼4, R¼ 8), and (N¼ 6, R¼8).
To evaluate noise performance, the SNR levels in the

reconstructed images were compared against those in

fully sampled images. For this analysis, 30 separate

noise instances with a bivariate Gaussian distribution

were added to phase-cycled bSSFP images to attain

acquisition SNR¼20 for CSF. Each dataset was recon-

structed to yield 30 separate combined bSSFP images.

The SNR of each voxel was taken as the ratio of the

mean to standard deviation of signal intensity across 30

images. A noise amplification map was then computed

as the SNR ratio between the fully sampled reference

and reconstructed images. Significance of differences

among reconstruction methods were assessed with non-

parametric Wilcoxon signed-rank tests.

In Vivo Experiments

In vivo phase-cycled bSSFP images of the brain and the

knee were collected on a 3 T Siemens Magnetom scanner

(maximum gradient strength of 45 mT/m and slew rate

of 200 T/m/s) with a 3D Cartesian sequence. The brain

imaging protocol comprised a flip angle of 30
�
, a TR/TE

of 5.1/2.65 ms, a field-of-view (FOV) of 218 mm, an iso-

tropic resolution of 0.85 mm, superior/inferior readout

direction, N¼8 separate acquisitions with phase-cycling

values (Df) spanning ½0;2pÞ in equispaced intervals, and

a 32-channel receive-only head coil. The knee imaging

protocol comprised a flip angle of 30
�
, a TR/TE of 5.0/

2.5 ms, an FOV of 192 mm, an isotropic resolution of

1 mm, left/right readout direction, N¼ 8, and a 15-

channel receive-only knee coil. Fully sampled images

were combined across coils to obtain single-channel mul-

tiple acquisition datasets. All participants gave written

informed consent, and the imaging protocols were

approved by the local ethics committee.
The brain and knee acquisitions were variable-density

undersampled in the phase-encode dimensions to yield

acceleration factors of 2-8, and profile-encoding recon-

structions were performed. The following phase-cycling

values were selected for reconstruction: Df¼ 2 p
½0:1:ðN�1Þ�

N

for N¼2, 4, and 8. The phase cycles for N¼6 were

selected as a subset of those for N ¼8 (0, p/2, 3p/4, p, 5p/

4, 7p/4) to reduce overall scan time and minimize poten-

tial motion artifacts.

To examine the quality of reconstructed images,
PSNR and SSIM metrics were measured across 10 equi-
spaced cross-sections. For brain images, axial cross-
sections were used that spanned across the entire
volume in the superior-inferior direction. For knee
images, sagittal cross-sections in the left-right direction
were used. The reference image was taken as the com-
bined Fourier reconstruction of N¼ 8 fully sampled
acquisitions.

RESULTS

Simulation Analyses

PE-SSFP was first demonstrated on bSSFP images of a
numerical brain phantom. Figure 3 shows the combina-
tion bSSFP images reconstructed via ZF, iCS and PE-
SSFP. As expected, heavier undersampling applied at
higher N values increases aliasing interference in ZF
images. Meanwhile iCS reconstructions, which process
phase cycles independently, suffer from prominent
losses in spatial resolution. In contrast, PE-SSFP success-
fully reduces aliasing interference while maintaining
detailed tissue depiction even at N¼8.

Several complementary analyses were performed to
elucidate factors contributing to reconstruction perfor-
mance. To demonstrate the auto-calibration approach in
PE-SSFP, errors were examined in representing acquired
data in terms of the bSSFP profiles estimated from cali-
bration data (Supporting Figs. S2 and S3). For the kernel
size, calibration area and null-space cutoff prescribed in
PE-SSFP, residual high-spatial-frequency errors occur
near banding artifacts for each phase cycle. When com-
bined across phase-cycles, the auto-calibration errors
appear near tissue boundaries rather uniformly across
the FOV. The average auto-calibration error relative to
the maximum signal intensity is 3.2 6 0.6% (mean 6 s.e.
across N). The percentage improvement that can be
attained by advancing the kernel size, calibration area or
null-space cutoff to their optimal values in the tested
range is merely 1.0 6 0.3%. Thus, the selected PE-SSFP
parameters yield near-optimal results with relatively
low error levels. To determine the effects of individual
projection operators in PE-SSFP, several variant recon-
structions and respective squared-error maps relative to
a fully sampled image were computed (Fig. 4). The
inclusion of each projection visibly reduces error across
the image. To examine noise statistics of the reconstruc-
tions, noise amplification factors were calculated across
the images (Fig. 5). Although the heavier undersampling
at high N increases noise in ZF, penalty terms in iCS
and PE-SSFP help maintain lower noise. In PE-SSFP, rel-
atively higher amplification is observed near tissue
boundaries that are more susceptible to resolution loss
due to variable-density undersampling.

To determine the effect of the sampling strategy on PE-
SSFP, uniform-density, variable-density and Poisson
disc undersampling patterns were tested. Each type of
pattern was applied both commonly and disjointly
across phase cycles. While all sampling strategies yield
similar PSNR and SSIM values at N¼2 (Supporting
Table S4), variable-density (VD) disjoint sampling out-
performs all other methods for N>2 (P <0.005). VD

Profile-Encoding Reconstruction for bSSFP 1321



FIG. 3. Phase-cycled bSSFP images of a numerical phantom were simulated for N¼2–8, a ¼ 45
�
, TR/TE¼5.0/2.5 ms, a field map of

0 6 62 Hz (mean 6 std). Phantom images were undersampled by a factor of N via variable-density random sampling, disjointly across
phase cycles. Zero-filled Fourier (ZF, top row), individual compressed sensing (iCS, middle row), and PE-SSFP (bottom row) reconstruc-

tions are shown. White boxes display a zoomed-in portion of the images. ZF reconstructions suffer from elevated aliasing/noise interfer-
ence at high N due to the heavier undersampling factors used. While iCS reconstructions employ regularization terms that limit this
interference, the heavy undersampling factors at high N cause visible loss of spatial resolution. In contrast, PE-SSFP successfully allevi-

ates noise and aliasing interference while maintaining detailed depiction of tissue boundaries.

FIG. 4. Representative bSSFP images of the numerical phantom for N¼4 were reconstructed using ZF and PE-SSFP. Images from three
variants of PE-SSFP are shown (top row). PEcalib only uses calibration and data-consistency projections, PEhuber uses calibration, joint-
sparsity and data-consistency projections, and PE-SSFP additionally uses TV projections. Reconstructions were compared against a

combination of fully sampled images (for N¼8). Squared-error maps are shown in logarithmic scale (bottom row; see colorbar). Each
additional projection in PE-SSFP yields visibly reduced reconstruction error in bSSFP images.
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disjoint sampling improves PSNR by 4.0 6 1.9 dB
(mean 6 s.e. across N) and SSIM by 0.8 6 0.5% over VD
common sampling, and PSNR by 3.2 6 1.6 dB and SSIM
by 0.4 6 0.2% over Poisson-disc disjoint sampling. Thus
VD disjoint sampling was used for all reconstructions
reported here.

Finally, PE-SSFP was comparatively evaluated
against ZF, iCS and ESPIRiT. Representative images for
N¼8 are shown in Figure 6 along with the squared-
error maps in reference to a fully sampled image.
While ZF shows broadly distributed errors across the
field-of-view, iCS reduces noise and aliasing interfer-
ence at the expense of losses in high-spatial-frequency
information. While ESPIRiT reconstructions alleviate
this loss via joint-sparsity penalties, the respective
images still show distributed errors. In contrast, PE-
SSFP using both joint-sparsity and TV regularization

effectively dampens the reconstruction errors in phase-
cycled bSSFP images.

The observations regarding PE-SSFP’s superior image
quality are supported by the quantitative assessments
listed in Table 1. For each N, PE-SSFP yields significant-
ly higher PSNR and SSIM values compared to all other
reconstructions (P<0.005), with the exception of N¼ 2
where iCS and PE-SSFP yield similar values. PE-SSFP
improves PSNR by 13.1 6 5.0 dB and SSIM by
4.8 6 2.5% over iCS, and PSNR by 14.5 6 3.2 dB and
SSIM by 3.4 6 0.6% over ESPIRiT. Extended simulations
presented in Supporting Tables S5 and S6 indicate that
these results are valid (P<0.005) broadly across varying
flip angles (15�–75�), T1/T2 ratios (�40% to 40%), TRs
(5–15 ms), noise levels (SNR¼ 10–30), and when the
acceleration factor exceeds N. The percentage ripple
measurements listed in Table 1 indicate that PE-SSFP

FIG. 5. The noise-amplification maps for ZF, iCS, and PE-SSFP methods are displayed for N¼2–8. Although the heavier undersampling
at high N increases noise amplification in ZF reconstructions, reconstructions with penalty terms iCS and PE-SSFP maintain relatively

low noise amplification even at high N. The lower noise amplification with iCS likely reflects a bias from excessive loss of high-spatial-
frequency information. In PE-SSFP, relatively higher amplification is observed near tissue boundaries that are more susceptible to resolu-
tion loss due to variable-density undersampling.
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yields more homogeneous tissue signals compared to

alternative methods for all N (P<0.005). Taken together,

these results suggest that PE-SSFP reliably enhances

image quality and artifact suppression compared to con-

ventional reconstructions.

In Vivo Analyses

PE-SSFP was demonstrated on bSSFP acquisitions of the
brain and the knee. Similar to phantom results, the auto-
calibration error was relatively low with 6.1 6 1.3% error

FIG. 6. Phase-cycled bSSFP reconstructions of the numerical phantom (top row), and the squared-error maps with respect to the fully
sampled combination image (bottom row) are displayed for N¼8. ZF has broadly distributed errors across the field-of-view due to alias-

ing and noise interference. iCS reconstructions reduce this interference via TV regularization at the expense of elevated errors near tis-
sue boundaries, due to significant loss of high-spatial-frequency information. While ESPIRiT reconstructions alleviate this loss via joint-
sparsity penalties, the respective images still show broadly distributed errors. In contrast, PE-SSFP using both joint-sparsity and TV reg-

ularization further dampens the reconstruction errors in phase-cycled bSSFP images.

Table 1

Image Assessments for the Brain Phantom

N¼2 N¼4 N¼6 N¼8

Peak SNR and structural similarity

ZF PSNR 51.8 6 0.1 50.0 6 0.2 47.2 6 0.1 45.9 6 0.1
SSIM 72.8 6 0.6 65.4 6 0.8 62.4 6 0.8 61.2 6 0.8

iCS PSNR 57.5 6 0.5 61.3 6 0.3 52.3 6 0.4 49.0 6 0.3
SSIM 97.9 6 0.1 97.0 6 0.0 91.4 6 0.3 88.2 6 0.3

ESPIRiT PSNR 48.0 6 0.1 56.3 6 0.1 56.1 6 0.3 54.1 6 0.3

SSIM 93.5 6 0.1 95.8 6 0.1 95.6 6 0.1 95.1 6 0.1
PE-SSFP PSNR 57.9 6 0.4 78.2 6 0.3 71.5 6 0.4 64.9 6 0.3

SSIM 98.4 6 0.1 98.8 6 0.0 98.4 6 0.0 98.0 6 0.0

Percentage ripple
ZF CSF 38.8 6 2.1 29.7 6 1.6 31.9 6 2.1 32.5 6 2.1

White 72.9 6 4.0 94.7 6 6.4 94.0 6 5.3 97.2 6 6.5
Gray 53.8 6 2.1 73.2 6 5.1 76.3 6 3.2 77.8 6 5.5

iCS CSF 23.2 6 0.8 8.9 6 1.1 17.9 6 1.4 23.9 6 2.6

White 8.5 6 1.1 21.4 6 3.0 40.9 6 5.9 48.8 6 4.3
Gray 9.7 6 1.1 17.7 6 1.4 30.8 6 4.6 36.7 6 6.2

ESPIRiT CSF 43.9 6 1.1 17.5 6 2.1 18.8 6 1.5 19.7 6 1.4
White 43.7 6 5.8 41.3 6 7.9 47.2 6 6.3 51.4 6 8.7
Gray 39.0 6 3.8 28.7 6 2.7 34.5 6 3.8 36.1 6 5.0

PE-SSFP CSF 22.5 6 0.2 2.1 6 0.2 3.4 6 0.5 3.1 6 0.5
White 5.4 6 0.4 5.9 6 0.5 6.3 6 0.7 6.6 6 0.7

Gray 8.3 6 0.3 6.9 6 0.4 6.8 6 0.4 7.4 6 1.1

Image assessment metrics measured in reconstructed bSSFP images of the numerical brain phantom. Metrics are reported separately
for each reconstruction method as mean 6 std across 10 cross-sections. The top panel lists the peak SNR (PSNR) and structural simi-

larity (SSIM) measurements obtained for a¼ 45�, TR¼5 ms, fixed T1/T2 values, and a realistic off-resonance frequency map (0 6 62 Hz).
The bottom panel lists the percentage ripple measurements for CSF, white matter and gray matter separately.
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(mean 6 s.e. across N) in the brain, and 3.7 6 0.7% error
in the knee. Figure 7 shows the combined PE-SSFP
images and the squared-error maps for N¼2–8. As
expected, prominent errors due to residual banding are
visible for lower N values. These errors are alleviated
towards high N, while maintaining high-quality tissue
depiction. Representative images from ZF, iCS, ESPIRiT,
and PE-SSFP are displayed in Figure 8. While iCS incurs
losses at high spatial frequencies and coherent interfer-
ence at low frequencies, ESPIRiT suffers from broadly
distributed reconstruction errors across the images. In
contrast, PE-SSFP visibly reduces reconstruction errors
and preserves high-spatial-frequency information.

Quantitative assessments of in vivo reconstructions are
listed in Table 2. In both the brain and the knee, PE-
SSFP yields significantly higher PSNR and SSIM values
compared to iCS for N>2 (P<0.05). PE-SSFP also
improves PSNR and SSIM compared to all other

alternative reconstructions for all N (P <0.05), with the

exception of knee images at N¼ 8 where PE-SSFP and

ESPIRiT yield similar PSNR. In the brain, PE-SSFP

improves PSNR by 3.0 6 2.6 dB and SSIM by 1.4 6 1.2%

over iCS, and PSNR by 8.5 6 0.8 dB and SSIM by

7.1 6 0.5% over ESPIRiT. In the knee, PE-SSFP improves

PSNR by 4.7 6 3.5 dB and SSIM by 1.8 6 0.6% over iCS,

and PSNR by 2.8 6 1.2 dB and SSIM by 8.3 6 0.4% over

ESPIRiT. Taken together, these results strongly suggest

that the proposed method enables scan-efficient suppres-

sion of banding artifacts at high N values, while main-

taining detailed tissue structure via the joint

reconstruction.

DISCUSSION

Here, we evaluated an improved acceleration framework

for multiple-acquisition 3D bSSFP based on variable-

FIG. 7. In vivo bSSFP acquisi-
tions of the brain (a) and the

knee (b) were reconstructed
using PE-SSFP. Squared-error
maps are shown in logarithmic

scale (see colorbar). The error
maps clearly suggest that band-

ing artifact suppression
improves for higher N, while PE-
SSFP maintains detailed depic-

tion of high-spatial-frequency
information.
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density random undersampling in two phase-encode
dimensions. In this framework, nonacquired data across
phase-cycles are simultaneously synthesized using a
profile-encoding reconstruction that enforces joint sparsi-
ty and TV penalties. A p-norm combination of individual
phase-cycled images yields a final artifact-suppressed
bSSFP image.

Several alternative approaches were previously pro-
posed for reducing banding artifacts. One strategy is to
increase the tolerable range of field inhomogeneity by
modifying the bSSFP magnetization profile (12–15). Alter-
natively, advanced shimming procedures can be per-
formed to directly limit field inhomogeneity (16). While
both strategies aim to reduce banding artifacts during
acquisition, they require complex pulse-sequence modifi-
cations and prolonged scan times. In contrast, our pro-
posed framework can be implemented via standard bSSFP
sequences without separate calibration procedures.

Improvements in scan efficiency of multiple-
acquisition bSSFP have been considered in several previ-
ous reports. Recently, we proposed to undersample and
individually reconstruct phase-cycled acquisitions using
CS (25). The CS framework yielded high quality recon-
structions up to an acceleration factor of N¼ 4. Another
study employed simultaneous multislice imaging to
accelerate each acquisition separately, and similarly con-
sidered N � 4 (26). While these previous studies disre-
garded image features shared across phase-cycles, here
we used a joint-sparsity model to enhance recovery of
wavelet coefficients, and TV regularization to reduce ali-
asing and noise interference. Due to these advances, PE-
SSFP maintains high-quality reconstructions up to N¼8.
Spatial encoding by coil arrays was not leveraged in the
reconstructions reported here. However, if more effective
artifact suppression is needed (e.g., while imaging at 7T
or near air-tissue interfaces), a higher N value and a

FIG. 8. In vivo phase-cycled
bSSFP reconstructions of the
brain (a) and the knee (b) are

displayed for N¼8. ZF and
ESPIRiT reconstructions suffer

from broadly distributed recon-
struction error across the
images. Meanwhile, iCS recon-

structions show substantial loss
of high-spatial-frequency infor-
mation and coherent low-

frequency interference. In con-
trast, PE-SSFP effectively

reduces errors due to aliasing
and noise interference, while
maintaining detailed tissue

depiction.
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respectively higher acceleration factor might be main-
tained by also leveraging coil sensitivity information.
Note, however, that each phase-cycled acquisition
involves a fixed-duration overhead due to the preparato-
ry RF pulses employed to reach steady state. This over-
head will become more prominent for larger N values,
reducing the overall scan efficiency.

With similar motivations to PE-SSFP, one earlier study
proposed a SENSE-type reconstruction performed jointly
across phase-cycled acquisitions, each accelerated via
uniform-density undersampling (35). Sensitivity esti-
mates were taken as the ratio of low resolution phase-
cycled images to a maximum-intensity combination of
these images. In contrast, here we used variable-density
sampling, and we did not assume any combination mod-
el while calibrating the interpolation kernel. Our results
clearly indicate that variable-density sampling offers
improved performance compared to uniform sampling.

PE-SSFP can be potentially improved by addressing
several limitations. First, if significant motion occurs in
between separate acquisitions, image structure can be
displaced across phase-cycles. These displacements may
in turn violate the joint-sparsity model and yield subop-
timal reconstructions. A motion-correction operator
could be incorporated to alleviate motion-induced per-
formance loss. Second, the auto-calibration approach in
PE-SSFP relies on the assumption that bSSFP spatial
profiles vary gradually. Rapid profile variations near tis-
sue boundaries or bSSFP nulls can yield suboptimal
interpolation operators, increasing reconstruction errors.
This issue may be of particular concern with high field
strengths, long TRs, and certain combinations of T1/T2

and flip angles. In such cases, the k-space calibration
area could be expanded and interpolation kernels of vari-
able widths across k-space could be used to improve
accuracy of the interpolation operator (48,49). Third,

while a p-norm combination was observed to yield good

artifact suppression in this study, it could be replaced

with sophisticated techniques that leverage analytical

signal models to further improve artifact suppression

(17,18). Lastly, optimization with the projection-onto-

sets method does not guarantee convergence onto a fixed

solution in the absence of overlap between the projection

sets. While we observed good convergence behavior

here, reconstruction stability can be improved by modern

approaches such as the alternating direction method of

multipliers (50).
In conclusion, the proposed PE-SSFP framework joint-

ly reconstructs multiple-acquisition bSSFP data by

leveraging shared sparsity patterns across phase-cycles.

PE-SSFP was primarily demonstrated for brain and knee

imaging in the current study. Nonetheless, the scan-

efficient acquisitions and high-quality reconstructions

enabled by PE-SSFP could improve other multiple-

acquisition bSSFP applications such as peripheral angi-

ography (51), coronary imaging (52), and fat/water sepa-

ration (23,53).
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.
Fig. S1. Undersampled acquisitions of the numerical brain phantom were
reconstructed using PE-SSFP. The percentage difference between the
reconstructed images in consecutive iterations fell to 0.001% within 15 iter-
ations. The evolution of the PE-SSFP cost terms (calculated after the data-
consistency projection) across these iterations are shown for N52-8: (a)
joint-sparsity cost, (b) TV cost, (c) combined cost in Equation [6]. The cost
at each iteration is displayed as mean6std across 10 cross sections. The
cost terms diminish smoothly across iterations.
Fig. S2. The auto-calibration approach was demonstrated by examining
how well the acquired data can be represented via the bSSFP profiles
estimated from calibration data. A separate error map was first calculat-
ed between the fully-sampled image at each phase cycle and its projec-
tion onto the subspace spanned by the bSSFP profiles. These individual
error maps were then sum-of-squares combined across phase cycles.
Representative maps are shown for N54. (a) Actual bSSFP profiles for

each phase-cycle. (b-d) Individual and combined error maps for varying
calibration-kernel sizes ([5, 8, 11]), calibration-area sizes ([2%, 6%, 10%]
of the maximum spatial frequency), and null-space cut-offs
(rcutoff5231021, 931022, 231022). The relatively small calibration area/
kernel size and high rcutoff in b cause prominent low- and high-spatial-
frequency errors, whereas the more optimal parameters in d (those used
in PE-SSFP) significantly dampen the low-spatial-frequency errors. In all
cases, relatively higher errors occur in the vicinity of banding artifacts in
individual maps. Because banding artifacts for distinct phase-cycles are
in non-overlapping locations, the combined maps show a rather uniform
error distribution.
Fig. S3. The success of the auto-calibration approach in estimating bSSFP
profiles was analyzed for a broad range of calibration-kernel sizes, calibra-
tion-area sizes and null-space cut-offs. Representative error maps com-
bined across phase-cycles are shown for N58. (a) Error maps for different
calibration-kernel sizes. (b) Error maps for different calibration-area sizes.
(c) Error maps for different null-space cut-offs. PE-SSFP parameters are
emphasized in bold font within each panel. The errors predominantly occur
in regions of sharp signal transition near tissue boundaries.
Table S1. Reconstruction Times
Table S2. Regularization Parameters
Table S3. Image Quality: Contribution of PE-SSFP projections
Table S4. Image Quality: Sampling Patterns
Table S5. Image Quality: Variations in Tissue and Sequence Parameters
Table S6. Image Quality: Acceleration Factor
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