
14 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 1, JANUARY 2022

Constrained Ellipse Fitting for Efficient
Parameter Mapping With

Phase-Cycled bSSFP MRI
Kübra Keskin , Uğur Yılmaz, and Tolga Çukur , Senior Member, IEEE

Abstract— Balanced steady-state free precession
(bSSFP) imaging enables high scan efficiency in MRI,
but differs from conventional sequences in terms of
elevated sensitivity to main field inhomogeneity and
nonstandard T2/T1-weighted tissue contrast. To address
these limitations, multiple bSSFP images of the same
anatomy are commonly acquired with a set of different
RF phase-cycling increments. Joint processing of phase-
cycled acquisitions serves to mitigate sensitivity to field
inhomogeneity. Recently phase-cycled bSSFP acquisitions
were also leveraged to estimate relaxation parameters
based on explicit signal models. While effective, these
model-based methods often involve a large number of
acquisitions (N ≈ 10-16), degrading scan efficiency. Here,
we propose a new constrained ellipse fitting method (CELF)
for parameter estimation with improved efficiency and
accuracy in phase-cycled bSSFP MRI. CELF is based on
the elliptical signal model framework for complex bSSFP
signals; and it introduces geometrical constraints on ellipse
properties to improve estimation efficiency, and dictionary-
based identification to improve estimation accuracy. CELF
generates maps of T1, T2, off-resonance and on-resonant
bSSFP signal by employing a separate B1 map to mitigate
sensitivity to flip angle variations. Our results indicate that
CELF can produce accurate off-resonance and banding-
free bSSFP maps with as few as N = 4 acquisitions, while
estimation accuracy for relaxation parameters is notably
limited by biases from microstructural sensitivity of bSSFP
imaging.
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I. INTRODUCTION

BALANCED steady-state free precession (bSSFP) is an
MRI sequence that offers very high signal-to-noise ratios

(SNR) in short scan times [1]. Yet this efficiency comes
at the expense of distinct signal characteristics compared to
conventional sequences. A main difference is the sensitivity of
the bSSFP signal to main field inhomogeneities, which causes
banding artifacts near regions of large off-resonance shifts [2].
While a number of approaches were proposed to mitigate
artifacts [3]–[7], arguably the most common method is phase-
cycled bSSFP imaging [8]. Multiple acquisitions of the same
anatomy are first collected for a range of different RF phase-
cycling increments. A signal combination across phase cycles
then reduces severity of artifacts [8]–[11]. Intensity-based
combinations assume that banding artifacts are spatially non-
overlapping across phase cycles, and that for each voxel
there is at least one phase cycle with high signal intensity.
In practice, intensity-based methods can perform suboptimally
for certain ranges of relaxation parameters or flip angles [8].
For improved artifact suppression, recent studies have pro-
posed model-based approaches to estimate the banding-free
component of the bSSFP signal. To do this, Linearization for
Off-Resonance Estimation-Gauss Newton (LORE-GN) uses a
linearized model of the nonlinear bSSFP signal [12]; Elliptical
Signal Model (ESM) employs an elliptical model for the
complex bSSFP signal [13], [14]; and dictionary-based meth-
ods such as trueCISS simulate the bSSFP signal for various
tissue/imaging parameters and then perform identification via
comparisons against actual measurements [15]. These model-
based techniques can perform reliably across practical ranges
of tissue and sequence parameters.

An equally important difference of bSSFP is its nonstandard
T2/T1-dependent contrast [16], [17], which can be consid-
ered an advantage for applications focusing on bright fluid
signals such as cardiac imaging and angiography [18]–[21].
That said, bSSFP might yield suboptimal contrast for other
applications that focus on primarily T2- or T1-driven differ-
ences among soft tissues. A powerful approach to address
this limitation is to estimate relaxation parameters from
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bSSFP acquisitions, and to either directly examine the esti-
mates [22] or synthesize images of desired contrasts [23].
Many previous methods in this domain rely on introduction of
additional T1- or T2-weighting information into measurements.
Given prior knowledge of T1 values, Driven-equilibrium single
pulse observation of T2 (DESPOT2) estimates T2 values from
N = 2-4 acquisitions using a linearized signal equation [24],
[25]. Yet, T1 values are typically estimated via two SPGR
acquisitions at different flip angles that are not as scan efficient
as bSSFP. An alternative is to use magnetization-preparation
modules in conjunction with bSSFP to enable T1 estima-
tion [26] or simultaneous T1 and T2 estimation [27], [28].
Magnetization-preparation modules reduce scan efficiency, and
these methods can be susceptible to field inhomogeneity when
based on a single phase-cycled acquisition. Dictionary-based
methods for parameter estimation have also been combined
with bSSFP sequences with varying parameters across read-
outs as in Magnetic Resonance Fingerprinting [29]. While
dictionary-based methods enable estimation of many tissue
and imaging parameters including T1 and T2, they require
advanced pulse sequence designs that may not be available
at all sites.

A promising approach based on standard bSSFP sequences
is artificial neural networks for purely data-driven estimation
of T1 and T2 maps. This learning-based method requires train-
ing data from a lengthy protocol with bSSFP and gold-standard
mapping sequences; and it might require retraining for differ-
ent protocols or pathologies [30]. In contrast, the model-based
trueCISS method uses N = 16 acquisitions to compare the
measured signal profile across phase cycles against a simulated
dictionary of signal profiles [15]. While trueCISS can esti-
mate the equilibrium magnetization, the T1/T2 ratio and off-
resonance, it does not consider explicit estimation of T1 or T2.
LORE-GN instead performs least-squares estimation of T1 and
T2 based on linearized equations [12]. That said, accurate T1
and T2 estimation was suggested to be difficult with N = 4 at
practical SNR levels. MIRACLE also uses multiple bSSFP
acquisitions to perform configuration based TESS relaxometry
where N = 8-12 [31]. Recently, the PLANET method based on
ESM was proposed to demonstrate feasability of simultaneous
T1 and T2 estimation [32]. PLANET first fits an ellipse to
multiple-acquisition bSSFP measurements, and then analyti-
cally estimates T1 and T2 values for each voxel by observing
geometric properties [32]. Theoretical treatment suggested that
N ≥ 6 is required for ellipse fitting; and demonstrations were
performed at N = 10 to improve noise resilience [32], [33].
Despite the elegance of these recent approaches, the use of
relatively large N partly limits scan efficiency.

Here, we propose a new method, CELF, for parameter
estimation with fewer number of bSSFP acquisitions, struc-
tured upon the ESM framework. To improve efficiency, CELF
introduces additional geometric constraints to ellipse fitting,
such that the number of unknowns and the required number
of acquisitions can be reduced to N = 4. The central line
of the ellipse is identified via a geometric solution [13], and
then incorporated as prior knowledge for a constrained ellipse
fit. To improve accuracy, a dictionary-based identification is
introduced to obtain a final ellipse fit. T1, T2, off-resonance,
and on-resonant signal intensity values are analytically derived

from the geometric properties of the ellipse. To mitigate
sensitivity to flip angle variations, CELF employs a separately
acquired B1 map. Comprehensive evaluations are performed
via simulations as well as phantom and in vivo experiments.
Our results suggest that CELF yields improved efficiency
in parameter estimation compared to direct ellipse fitting,
and it can produce accurate off-resonance and banding-free
bSSFP maps with as few as N = 4 acquisitions. Meanwhile,
in vivo estimates of relaxation parameters carry biases from
microstructural sensitivity of bSSFP that limit estimation accu-
racy compared to conventional spin-echo methods, so future
mitigation efforts for these biases will be essential to ensure
practicality of CELF in relaxometry applications.

1) Contributions: The novel contributions of this study are
summarized below:

• We introduce an ellipse fitting procedure with a geometric
constraint on the ellipse’s central line for estimation
of T1, T2, off-resonance, and on-resonant signal values
from phase-cycled bSSFP MRI with as few as N = 4
acquisitions.

• We derive an analytical solution for the constrained
ellipse fit to avoid brute-force search or iterative opti-
mization approaches.

• We introduce a dictionary-based identification procedure
on the ellipse fits to further improve estimation accuracy.
Identification is performed on the ellipses as opposed to
raw bSSFP signals for reliability against off-resonance.

II. THEORY AND METHODS

The proposed method leverages an elliptical signal model
for the bSSFP signal to estimate the equilibrium magnetiza-
tion, off-resonance, and T1 and T2 values. In contrast to direct
ellipse fitting, CELF employs additional geometric constraints
to improve scan efficiency and a dictionary-based ellipse iden-
tification to improve accuracy. In the following subsections,
we overview ESM and direct ellipse fitting. We then describe
the proposed constrained ellipse fitting framework.

A. Elliptical Signal Model for Phase-Cycled bSSFP

1) Analytical Expression of the bSSFP Signal: The steady-
state signal generated by a phase-cycled bSSFP sequence right
after the radio-frequency (RF) excitation can be expressed
as [13]:

Sbase(r) = M(r)
1 − a(r)eiθ(r)

1 − b(r) cos θ(r)
(1)

where

a(r) = E2(r), b(r) = E2(r)(1−E1(r))(1+cosα(r))
1−E1(r) cos α(r)−E2(r)2(E1(r)−cos α(r))

M(r) = M0(r)(1−E1(r)) sinα(r)
1−E1(r) cosα(r)−E2(r)2(E1(r)−cos α(r))

(2)

In Eq. (2), r denotes spatial location, E1(r) =
ex p(−T R/T1(r)) and E2(r) = ex p(−T R/T2(r)) character-
ize exponential decay for longitudinal and transverse mag-
netization with T1 and T2 relaxation times. T R denotes the
repetition time, M0 is the equilibrium magnetization, and
α is the spatially-varying flip angle of the RF excitation.
Meanwhile, θ = θ0 − �θ , where θ0 = 2π(� f0 + δcs)TR
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reflects phase accrual due to main field inhomogeneity at off-
resonance frequency � f0 and chemical shift frequency δcs , and
�θ reflects phase accrual due to RF phase-cycling. In multiple-
acquisition bSSFP, N separate measurements are obtained
while the �θ is spanned across [0, 2π) in equispaced intervals
(e.g. �θ = {0, π/2, π, 3π/2} for N = 4).

For measurements performed at the echo time T E , the base
signal expressed in Eq. (1) gets scaled and rotated as follows:

S(r) = K (r)M(r)e−T E/T2(r) 1 − a(r)eiθ(r)

1 − b(r) cos θ(r)
eiφ(r) (3)

where K is a complex scalar denoting coil sensitivity, φ =
2π(� f0 + δcs)T E + φtotal represents the aggregate phase
accrual, and φtotal captures phase accumulation due to system
imperfections including eddy currents and main field drifts.

The unknown tissue-dependent parameters to be estimated
are T1, T2, M0 and � f0. In this study, based on preliminary
observations, we assume that phase accrued due to eddy
currents and main field drifts is stationary across separate
phase cycles, so it reflects a constant phase offset for all
acquisitions. Meanwhile, the values of user-controlled imaging
parameters T R, T E and �θ are known. To mitigate RF field
inhomogeneity, we include a B1-mapping scan in the MRI
protocol for this study, so we assume that a spatial map of
the flip angle α will be available. Thus, M , a, b and θ that
parametrize the bSSFP signal in Eq. (3) depend on a priori
known or measured parameters via nonlinear relations.

2) Elliptical Signal Model: A powerful framework to examine
the link between the signal parameters and the actual mea-
surements is the elliptical signal model (ESM) by Xiang and
Hoff [13]. The ESM framework observes that for a given voxel
Eq. (1) describes an ellipse in the complex plane for bSSFP
signals. Each bSSFP measurement acquired with a specific
phase-cycling increment (�θ ) projects onto a point on this
ellipse, as demonstrated in Fig. 1a. Characteristic properties
of the bSSFP ellipse in terms of the parameters in Eq. (2) are
defined below [13]:

• Semi-major, semi-minor axes: M a√
1−b2 and M |a−b|

1−b2 (4)

• Geometric center: (M 1−ab
1−b2 , 0) (5)

• Eccentricity:
√

1 − (a−b)2

a2(1−b2 ) (6)

• Condition for vertically-oriented ellipse: b < 2a
1+a2 (7)

Note that the ellipse for the measured bSSFP signals in
Eq. (3) is a scaled and rotated version of the ellipse of the
base signals in Eq. (1), as illustrated in Fig. 1b.

3) Geometric Solution: An effective method to analytically
compute an on-resonant bSSFP image via ESM involves the
geometric solution (GS) of the ellipse [13]. Measurements
are paired based on the difference between phase-cycling
increments such that (i, j) is a pair if |�θi − �θ j | = π .
GS is defined as the cross-point of all formulated pairs. For
example, the pairs for N = 4 are: (1,3) with |0−π | = π ; (2,4)
with |π

2 − 3π
2 | = π . Note that GS of the ellipse in Eq. (1)

corresponds to the parameter M in Eq. (2), and GS of the
ellipse in Eq. (3) is a scaled and rotated version of M . Since
M does not depend on θ , it represents an on-resonant bSSFP
image [13]. The original GS can be extended to N acquisitions

as follows:⎡
⎢⎣

ym+1 − y1 x1 − xm+1
...

...
yN − ym xm − xN

⎤
⎥⎦

[
x0
y0

]
=

⎡
⎢⎣

x1ym+1 − xm+1 y1
...

xm yN − xN ym

⎤
⎥⎦(8)

where (x, y)i denote the real and imaginary components of S
in the i th acquisition, (x, y)i and (x, y)m+i form a π-separated
signal pair (m = N/2 and i = 1, 2, . . . , m), and q = (x0, y0)
is the cross-point that can be estimated by ordinary least-
squares.

B. Direct Ellipse Fitting

The unknown parameters (T1, T2, M0, � f0) can be esti-
mated by fitting an ellipse to the collection of N phase-cycled
bSSFP signals for a given voxel. To do this, the PLANET
method uses Fitzgibbon’s direct least square fitting of
ellipses [34]. In quadratic form, an ellipse can be described
as:

f (x) = ν1x2 + ν2xy + ν3 y2 + ν4x + ν5 y + ν6 = 0 (9)

where ν = [
ν1:6

]T is the polynomial coefficient vector,

and x = [
x y

]T is a point on the ellipse where x and y
denote the real and imaginary components of S. Minimizing
algebraic distance between measured data points and fit ellipse,
the following least-squares formulation can be obtained:∥∥∥∥∥∥∥

⎡
⎢⎣

f (x1)
...

f (xN )

⎤
⎥⎦

∥∥∥∥∥∥∥

2

2

=

∥∥∥∥∥∥∥

⎡
⎢⎣

x2
1 x1y1 y2

1 x1 y1 1
...

...
...

...
...

...

x2
N xN yN y2

N xN yN 1

⎤
⎥⎦

⎡
⎢⎣

ν1
...
ν6

⎤
⎥⎦

∥∥∥∥∥∥∥

2

2

= ‖Dν‖2
2 (10)

where f (xi ) denotes the value of the polynomial function
evaluated at the i th data point xi , and D is the aggregate data
matrix for N acquisitions. Minimization of sum of squared
errors

∑N
i=1 | f (xi )|2 yields:

minimize
ν

‖Dν‖2
2

subject to νT Cν = 1 (11)

where C =
⎡
⎢⎣

0 0 2
0 −1 0
2 0 0

03×3

03×3 03×3

⎤
⎥⎦ is the constraint matrix ensuring

that the fit polynomial is an ellipse. An analytical solution can
be obtained by solving an equivalent generalized eigenvalue
problem (GEP):

DT Dν = λCν (12)

In sum, Fitzgibbon’s method solves Eq. (12) to obtain
the best fit ellipse in a non-iterative and numerically sta-
ble way [35]. The quadratic form of an ellipse is uniquely
specified by six scalar coefficients in ν, so a theoretical
minimum of N = 6 is needed for fitting. Yet MRI acquisitions
are inherently noisy, and this can reduce fit accuracy for
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Fig. 1. (a) The complex-valued base bSSFP signal Sbase following the
RF excitation defines a vertically-oriented ellipse. The signal values at
different phase-cycling increments Δθ project onto separate points on
this ellipse (shown with red dots). (b) The measured bSSFP signal at
echo time (TE) constitutes a scaled and rotated version of the ellipse for
Sbase. (c) The ellipse cross-point is at the intersection of line segments
that connect measurement pairs: (i, j ) is a pair if |Δθi − Δθj| = π. The
central line of the ellipse passes through both the ellipse center and
cross-point.

relatively lower N. To mitigate this problem, previous studies
have used up to N = 10 at the expense of prolonged scan
times [32], [33]. In this paper, PLANET was used for direct
ellipse fitting as described in [32]. In PLANET, the ellipse for
S is back-rotated to vertical orientation with a rotation angle
ϕrot = 0.5 tan−1 (ν2/(ν1 − ν3)). Here, we observed that ϕrot
does not always assure a strict vertical orientation due to noise.
We reasoned that the rotation angle that back-rotates the fit
ellipse should be φ. Therefore, we implemented two variants:
back-rotation with ϕrot , and with φ. Since we observed that
the latter is less prone to estimation errors, here we presented
results from back-rotation with φ variant. Comparison of the
two variants is given in Supp. Fig. 1.

C. Constrained Ellipse Fitting

To improve scan efficiency, constrained ellipse fitting
(CELF) incorporates geometric prior knowledge to enable
unique ellipse specification with N = 4 [36]. Specifically,
the ellipse center and thereby the ellipse orientation are
identified via the geometric solution. (Note that in recent
studies the GS phase was also used for correcting geometric
distortions [37] and mapping the main field strength [38].)
To improve fit quality, CELF then employs dictionary-based
ellipse identification. Parameters are extracted from the iden-
tified ellipses. These steps are described below.

1) Formulation of CELF: To facilitate integration of the
geometric prior, here we use the matrix form of a linearly
translated central conic quadratic equation to describe the
ellipse:

f (x) = (x − xc)
T A(x − xc) + g = 0 (13)

where A =
[

c1
c2
2c2

2 c3

]
is a positive definite matrix describing

the ellipse orientation and eccentricity, x = [
x y

]T
is a point

on the ellipse, xc = [
xc yc

]T is the ellipse center, and g is a
finite negative scalar determining the ellipse area. The scalar
form of Eq. (13) is given as:

c1(x − xc)
2 + c2(x − xc)(y − yc) + c3(y − yc)

2 + g = 0

(14)

Eq. (14) still has six unknowns: c1, c2, c3, g, xc and yc.

CELF uses prior knowledge on the ellipse’s central line for
improved ellipse fitting at lower N. To leverage this prior,
we first observe that the base bSSFP signal Sbase in Eq. (1)
forms a vertically-oriented ellipse —with the semi-major axis
perpendicular to the line passing through its center and the
origin (see Fig. 1a)—, whereas the measured bSSFP signal S
in Eq. (3) can be obtained by rotating the base ellipse at an
arbitrary angle (see Fig. 1b). It can be also observed that both
the ellipse center and the cross-point lie on the semi-minor
axis. Thus, the semi-minor axis is a line segment on the central
line, and the central line can be identified by finding the cross-
point (see Fig. 1c). Here we found the cross-point q via the
geometric solution described in Eq. (8). Therefore, to produce
the vertically-oriented base version, the ellipse for S can be
back-rotated around the origin by an angle φ, i.e. the angle that
the central line makes with the real axis. (Note that the vertical-
orientation constraint in CELF ensures that ϕrot equals φ.)
This back-rotation will place the central line of the ellipse
along the x-axis. The orientation-eccentricity matrix will then

be diagonal (c2 = 0; Ã =
[

c1 0
0 c3

]
), the center x̃c will only

have a real component.
Next, we express the ellipse center as a scaled version of

the cross-point q , which is given by the geometric solution.

In particular, x̃c = [
xc yc

] = [
γ q 0

]T , where γ is an
unknown scaling parameter. With a transformation of the
coordinate system, the spatial coordinates of the data points
in the back-rotated ellipse can be described as x̃ = [

x̃ ỹ
]T .

The ellipse equation in Eq. (13) then becomes:

f (x̃) = [
x̃ − γ q ỹ

] [
c1 0
0 c3

] [
x̃ − γ q

ỹ

]
+ g

= c1 x̃2 + c3 ỹ2 − 2γ c1qx̃ + h (15)

where h = g + c1γ
2q2 is a scalar, and the set of unknowns

is reduced to c1, c3, γ , and h. Thus, N = 4 acquisitions are
sufficient for ellipse fitting in principle.

Similar to direct ellipse fitting, the error measure of alge-
braic distance between measured data points and the fit ellipse
leads to a least-squares problem:∥∥∥∥∥∥∥

⎡
⎢⎣

f (x̃1)
...

f (x̃N )

⎤
⎥⎦

∥∥∥∥∥∥∥

2

2

=

∥∥∥∥∥∥∥

⎛
⎜⎝

⎡
⎢⎣

x̃2
1 ỹ2

1 1
...

...
...

x̃2
N ỹ2

N 1

⎤
⎥⎦ − γ

⎡
⎢⎣

2q x̃1 0 0
...

...
...

2q x̃N 0 0

⎤
⎥⎦

⎞
⎟⎠

⎡
⎣c1

c3
h

⎤
⎦

∥∥∥∥∥∥∥

2

2

=
∥∥∥∥([

D0 1N
] − γ

[
D1 0N

]) [
u
h

]∥∥∥∥
2

2
= Q(γ, u, h) (16)

where f (x̃i ) denotes the value of the polynomial function
evaluated at the i th back-rotated data point x̃i , D0 and D1

are aggregate data matrices for N acquisitions, u = [
c1 c3

]T

is defined as a parameter vector for Ã. The cost function is
taken as Q = ∑N

i=1 | f (x̃i )|2.
To constrain the solution of Eq. (16) to a strict ellipse,

A must be positive definite, i.e., all leading principal minors
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of A are positive: det
([

c1
]) = c1 > 0 and det(A) = (4c1c3 −

c2
2)/4 > 0. To introduce rotation/translation invariance and to

reduce the degrees of freedom, det(A) is set to a constant
positive number without loss of generality [34]. In this case,
constraining the fit to an ellipse is equivalent to the following
conditions [36]: 4 det(A) = 4c1c3 − c2

2 = 1 and c1 > 0. Since
c2 = 0 in the back-rotated form Ã, these conditions simplify
to 4c1c3 = 1 and c1 > 0. These two conditions are integrated
to the ellipse fitting procedure as additional constraints:

uT Bu = [
c1 c3

] [
0 2
2 0

] [
c1
c3

]
= 1,

uT d = [
c1 c3

] [
1
0

]
> 0 (17)

where B is the constraint matrix and d is the constraint vector.
Lastly, defining the cost function in terms of the unknown

parameters γ , u and h, the constrained ellipse fitting problem
can be stated as follows:

minimize
γ,u,h

Q(γ, u, h)

subject to uT Bu = 1, and uT d > 0 (18)

2) Solution of CELF: It is challenging to obtain a single-
shot solution to Eq. (18) that estimates all unknowns simul-
taneously as in direct ellipse fitting. Here we instead use a
progressive approach to sequentially identify the unknown
parameters [36]:

min
γ,u,h

uT Bu=1
uT d>0

Q(γ, u, h) = min
γ

min
u

uT Bu=1
uT d>0

min
h

Q(γ, u, h)

= min
γ

min
u

uT Bu=1
uT d>0

Q2(γ, u)

= min
γ

Q3(γ ) (19)

where the minimization is decomposed into three subproblems
to estimate h, u, and γ , respectively.

Subproblem 1: The first subproblem is defined as a min-
imization over the parameter h, and it aims to optimize h
conditioned on the values of the remaining parameters (γ, u).
The analytical solution to this problem can be expressed as
(see Supp. Text 1.1 for derivation):

hopt(γ, u) = − 1

N
1T

N (D0 − γ D1)u (20)

Subproblem 2: Once its optimal value is identified, h can be
factored out of the optimization by substituting hopt into Q.
This new cost function is denoted as Q2, and it represents the
minimum of Q over h (see Supp. Text 1.2 for derivation):

Q2(γ, u) = uT
(

C0 + γ C1 + γ 2C2

)
u (21)

where C0 = DT
0 Z D0, C1 = −DT

0 Z D1 − DT
1 Z D0, C2 =

DT
1 Z D1 and Z = IN − 1

N 1N×N .
The second problem is then defined as a minimization

over u conditioned on γ :

minimize
u

uT
(

C0 + γ C1 + γ 2C2

)
u

subject to uT Bu = 1, and uT d > 0 (22)

This subproblem can be cast as a generalized eigenvalue
problem (see Supp. Text 1.3 for proof):(

C0 + γ C1 + γ 2C2

)
u = λBu (23)

The minimum value of the function Q2 is the maximum
eigenvalue λmax , and this minimum is attained at the respective
eigenvector uopt (see Supp. 1.3 for derivation):

uopt (γ ) = sign(uT
max d)√

uT
max Bumax

umax (24)

Subproblem 3: Once uopt is identified, it is factored out
by substitution into Q2. This results in a new cost function
denoted as Q3 depending only on γ that controls the location
of the ellipse center (see Supp. Text 1.4 for detailed deriva-
tion):

Q3(γ ) = λmax

(
C0 + γ C1 + γ 2C2, B

)
(25)

Thus, Eq. (18) is equivalent to:

minimize
γ

Q3(γ ) (26)

In sum, the original multi-dimensional minimization is
reduced to a one-dimensional problem, where we seek γ
that minimizes λmax . Such problems are commonly solved
via iterative methods or brute-force search over γ . For com-
putational efficiency, however, we derive for the first time
in this study the analytical solution for γ (see Supp. Text
1.5 for derivation), which disregards measurement noise. Yet,
excessive noise can cause complex valued γ1,2 (Eq. (S.1.5)).
In such cases, we instead selected γ through a bounded
search to minimize λmax . Note that the ellipse center given
by xc = M 1−ab

1−b2 can also be expressed in terms of the cross-
point as xc = γ q . Since q corresponds to M , γ should ideally
equal 1−ab

1−b2 . We computed γ for all possible signal parameters
a and b where T1 ∈ [200 5000] ms, T2 ∈ [10 1500] ms, flip
angle ∈ [20 80]◦, and T R ∈ [4 10] ms (see Supp. Fig. 2
for an example where T R is 8 ms, and flip angle is 40◦). The
bounded search was accordingly restricted to γ ∈ [0.5 1]. Once
the optimum value is identified, the remaining parameters can
be extracted from γ ∗ as follows:

u∗ = uopt(γ
∗)

h∗ = hopt (γ
∗, u∗)

A∗ =
[

u∗
1 0

0 u∗
2

]

x∗
c = [

γ ∗q 0
]

g∗ = h∗ − γ ∗2q2u∗T d (27)

The constrained formulation allows for an ellipse fit
with as few as N = 4 samples. Note that, CELF esti-
mates have several singularities precisely localized to θ0 =
{±π

4 ,± 3π
4 } for N = 4. For these θ0, bSSFP signals on the

vertically-oriented ellipse are symmetrically distributed about
the x-axis, forming two pairs of conjugate symmetric data
points (see Supp. Fig. 3). As such, only 2 independent
measurements are available to solve (16), leading to an
underdetermined system. While the singularities do not affect
banding-free signal or off-resonance estimates, they might
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introduce errors in T1 and T2 estimates. To address this
issue, a voxel-wise singularity detection was performed (see
Supp. Text 1.6 for details). For a singular voxel, data from the
immediate 3×3 neighborhood of the central voxel within axial
cross-sections were aggregated, and the ellipse fit was per-
formed based on the aggregate data. Note that all processing
stages in CELF operate on single voxels, with the exception
of singular voxels.

3) Dictionary-Based Ellipse Identification: Inherent noise in
bSSFP measurements can limit the accuracy of ellipse fits
with lower N. This in turn can degrade the quality of T1
and T2 estimates. To improve ellipse fits, here we introduce
a dictionary-based ellipse identification procedure. The dictio-
nary only contains the following ellipse properties: the semi-
axes radii and the distance between the ellipse center and
the origin. Since these properties are not affected by main-
field inhomogeneity, we did not consider off-resonance. The
simulations also excluded non-stationary effects on bSSFP
signals due to motion, eddy currents, drifts and noise.

To construct the dictionary, we simulated bSSFP signal
parameters M , a and b according to Eq. (2). The simulations
used T R, T E , and nominal flip angle α matched to the bSSFP
sequence whose measurements are to be analyzed. Ellipses
were simulated for all possible pairs (T1,T2), where T1 ranged
from 50 to 5000 ms in 5-ms steps, and T2 ranged from 10 to
500 ms in 1-ms steps and from 500 to 1500 ms in 5-ms steps.
Simulated M , a, b values were then used to calculate the semi-
axes radii and the distance between the ellipse center and the
origin (Eqs. (4)-(5)). The equilibrium magnetization was taken
as 1 during the simulations without loss of generality, since
ellipse properties were normalized by the cross-point distances
(i.e. |M| for the dictionary ellipse). The resulting dictionary
contains semi-axes radii and center distance properties for all
pairs of T1-T2 examined.

For identification, a comparison is performed between prop-
erties of the dictionary ellipses and the fit ellipse for S. The
semi-axes radii of the fit ellipse can be extracted from the
solution in Eq. (27) as follows:

• Semi-minor radius: rmin = √−g∗/u∗
1 (28)

• Semi-major radius: rmaj = √−g∗/u∗
2 (29)

Meanwhile, the center distance can be directly calculated
from the x∗

c in Eq. (27). The summed �2 − norm distance
between the properties of the dictionary and fit ellipse’s
are computed. To prevent biases due to differences in signal
scales, all ellipse properties were normalized by the cross-
point distances (i.e. |M| for the dictionary ellipse, |q| for the
fit ellipse). Distances between the dictionary and fit ellipses
were computed following this normalization. The dictionary
ellipse that minimizes the distance to the fit ellipse was then
selected as the final ellipse estimate.

4) Parameter Estimation: Given the center x∗
c and semi-

axes radii rmin and rmaj of the final ellipse estimate, we can
compute the parameters in Eq. (2) as follows [32]:

b∗ =
−rmin x∗

c + rmaj

√
x∗2

c − r2
min + r2

maj

x∗2
c + r2

maj

a∗ = rmaj

x∗
c

√
1 − b∗2 + rmaj b∗ , M∗ = x∗

c (1 − b∗2)

1 − a∗b∗ (30)

Once (M∗, a∗, b∗) are known, T1 and T2 values can be
derived analytically [32]:

T1 = − T R

ln a∗(1+cos α−a∗b∗ cos α)−b∗
a∗(1+cos α−a∗b∗)−b∗ cos α

, T2 = − T R

ln a∗ (31)

Please note that ellipse fits do not yield estimates of the flip
angle. Since the actual flip angle for a voxel might deviate
from the nominal flip angle prescribed during the bSSFP scans,
α in Eq. (31) is taken as the measured flip angle corrected
according to the B1 mapping scan. Note that M∗ serves as
an estimate for the banding-free image as it does not show
any off-resonance dependency [13]. Meanwhile, given (x̃i , x∗

c ,
rmin , b∗, �θi ), off-resonance in each voxel can be calculated
via ordinary least squares solution of the following system of
equations:⎡

⎢⎣
cos (�θ1) sin (�θ1)

...
...

cos (�θN ) sin (�θN )

⎤
⎥⎦

[
K1
K2

]
=

⎡
⎢⎣

cos (θ1)
...

cos (θN )

⎤
⎥⎦ (32)

where

cos (θi ) =
cos

(
x̃i−x∗

c
rmin

)
− b∗

cos
(

x̃i−x∗
c

rmin

)
b∗ − 1

(33)

Lastly, θ0 = tan−1 (K2/K1). While this proposed cal-
culation is similar to the fourth step of reconstruction in
PLANET [32], it differs in that cos(θi) is directly calculated.

A flowchart of CELF is given in Fig. 2. Implementation of
CELF will be available for general use at http://github.com/
icon-lab/mrirecon.

III. EXPERIMENTS

A. Simulations

To comprehensively assess estimation performance, three
separate simulations were performed. First, phase-cycled
bSSFP signals were simulated for nine different tissues under
varying noise levels. The following tissues were considered:
fat, bone marrow, liver, white matter, myocardium, vessels,
gray matter, muscle and CSF. The relaxation times of the
tissues at 3T were selected according to [39], as listed in
Supp. Tab. I. T R = 8ms, T E = 4ms, flip angle α = 40◦
and N = {6, 8} were assumed. Bi-variate Gaussian noise was
added to simulated signals to attain SNR values in the range
[20, 100]. SNR values were calculated separately for each
tissue, so at a fixed SNR level the standard deviation of noise
varied across tissues with respect to the level of tissue signal.
SNR was taken as defined in [12], [32]:

SNR =
∑N

n=1 |Sn |
Nσ

(34)

where Sn is the signal for the nth phase-cycled acquisition,
σ is the standard deviation of noise. Monte-Carlo simulations
were repeated 10000 times with independent noise instances.
At each instance, θ0 was chosen from uniformly distributed
values between −π and π . T1 and T2 estimation was per-
formed via CELF and PLANET. Performance was quantified
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Fig. 2. Flowchart of the proposed constrained ellipse fitting (CELF) approach. For a given voxel, the ESM model observes that each phase-cycled
bSSFP measurement should project to an ellipse in the complex plane. In CELF: (b) The ellipse cross-point is first computed via the geometric
solution to identify the central line of the ellipse; (c) Measurement points are back-rotated by the angle between central line and real-axis; (d) The
prior knowledge of the cross-point is then used to enable constrained ellipse fitting with as few as N = 4; (e) Geometric properties of the fit ellipse
including center and semi-axes are extracted; (f) A dictionary-based ellipse identification is performed to improve accuracy; (g) Lastly, parameters
estimates are obtained based on the geometric properties of the final ellipse fit.

as mean absolute percentage error (MAPE):

MAPE(%) = 100

K

K∑
k=1

∣∣∣∣∣
T k

i,true − T k
i,est imated

T k
i,true

∣∣∣∣∣ (35)

where K is the number of repetitions and T k
i is the value of

Ti (i ∈ 1, 2) in the kth repeat.
Second, phase-cycled bSSFP signals were simulated for

the same set of tissues for varying flip angles and
off-resonance. T R = 8ms, T E = 4ms, flip angle α =
20◦ − 60◦, off-resonance from −62.5 Hz to 62.5 Hz
(i.e., −0.5/T R to 0.5/T R), and N = {4, 6, 8} were consid-
ered. The noise level was adjusted for an SNR of 200 for
CSF, and was kept uniform across tissues. Simulations were
repeated 20 times with independent noise. T1, T2, off-
resonance, and banding-free images were estimated via CELF
and PLANET.

Third, performance of CELF was examined under mod-
erate deviations in flip angle from its prescribed nominal
value. Phase-cycled bSSFP signals were simulated for the
same set of tissues under the following parameters: T R =
8ms, T E = 4ms, zero additive noise and off-resonant
frequency shift, N = 4. Within each block, the nominal
flip angle was varied in [20◦ 60◦] vertically, and the ratio
of actual to nominal flip angle was varied in [0.9 1.1]
horizontally (Supp. Fig. 4). CELF was performed on the
simulated bSSFP signals, and the percentage error was
calculated between the CELF-estimates and true parameter
values.

Lastly, the utility of CELF in synthesizing bSSFP images
at varying flip angles was assessed. To do this, banding-free
bSSFP images at flip angles (α = 20◦, 30◦, 50◦, 60◦) were
generated based on CELF parameter estimates obtained at
α = 40◦. Phase-cycled bSSFP signals were simulated for the
same set of tissue under the following parameters: T R = 8ms,
T E = 4ms, flip angle, off-resonance varying from −62.5 Hz
to 62.5 Hz (i.e., −0.5/T R to 0.5/T R) horizontally, and
N = {4, 6, 8}. T1, T2, and banding-free image estimates were
obtained via CELF. Banding-free bSSFP images were then
generated based on Eq. (1). Synthetic images obtained using
N = {4, 6, 8} acquisition were compared against reference
banding-free bSSFP images directly simulated at the target
flip angles (α = 20◦, 30◦, 50◦, 60◦).

B. Phantom and in Vivo Studies

Phantom and in vivo experiments were performed on a
3T scanner (Siemens Magnetom Trio, Erlangen, Germany)
equipped with gradients of maximum strength 45 mT/m
and maximum slew rate 200 T/m/s. Imaging protocols were
approved by the local ethics committee at Bilkent University,
and informed consent was obtained from all participants.
Phase-cycled bSSFP acquisitions were collected without delay
using a 3D Cartesian sequence. Standard volumetric shim-
ming was performed at the beginning of the session, and
the shim was unaltered thereafter. A subset of acquisitions
from an N = 8 scan were selected for assessments with
N = 4 (�θ = {0, π/2, π, 3π/2}) and N = 6 (�θ =
{0, π/4, π/2, π, 5π/4, 3π/2}). Details regarding the scan pro-
tocols are listed below.

1) Phantom bSSFP: Phase-cycled bSSFP acquisitions of
a cylindrical phantom were performed using a 12-channel
head coil. The phantom contained a homogeneous mixture
of 2.42 mM/L Ni SO4 and 8.56 mM/L NaCl in a plastic
casing of diameter 115 mm and height 200 mm. The sequence
parameters were a T R/T E of 8.89/4.445 ms, a flip angle
of 55◦, an FOV of 175 mm × 175 mm × 120 mm, a matrix
size of 128 × 128 × 40, a readout bandwidth of 160 Hz/Px,
N = 8 with �θ spanning [0, 2π) in equispaced intervals. Total
scan time for N = 8 was 6:32.

2) In Vivo bSSFP: Phase-cycled bSSFP acquisitions of the
brain were performed using a 32-channel head coil for two
healthy subjects. The sequence parameters were a T R/T E
of 8.18/4.09 ms, a flip angle of 40◦, an FOV of 256 mm ×
256 mm×120 mm, a matrix size of 256×256×30, a readout
bandwidth of 190 Hz/Px, N = 8 with �θ spanning [0, 2π) in
equispaced intervals. Total scan time for N = 8 was 8:40.

3) Additional Scans: Reference T1 and T2 maps were
obtained using gold-standard sequences near the central cross-
section of the bSSFP acquisitions. B1 maps were acquired to
estimate the actual flip angle across the field-of-view (FOV).
The collected B1 maps were denoised using a non-local means
filter with the following parameters: 21 × 21 search window,
5 × 5 comparison window, and 0.01 degree of smoothing.
Afterwards, B1 correction was performed to adjust the nominal
flip angle at each voxel. B0 maps were acquired to check for
potential drifts in the main field inhomogeneity during the
session. No significant main field drift was observed during
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the scans, so B0 maps were not utilized for correction. Please
see Supp. Text 2 for further details.

An adaptive coil-combination was performed on multi-coil
images to produce a complex-valued image [40]. All analyses
were performed voxel-wise (with the exception of singular
voxels) on this coil-combined image using MATLAB R2015b
(The MathWorks, Inc., MA, USA). The adaptive combination
performs local block-wise combinations based on spatial-
matched filters estimated from signal and noise correlation
matrices. For a given block, the signal correlation matrix is
estimated on a broader surrounding neighborhood, while the
noise correlation matrix is estimated on peripheral regions
without tissues. The stock implementation of the adaptive-
combination method was adopted with default parameters on
the 3T Siemens platform used here. T1, T2, off-resonance, and
banding-free images were estimated via CELF and PLANET.
A variant of PLANET (PLANET + � f0) was also imple-
mented to adopt the off-resonance step from CELF. Tissue-
specific evaluation of parameter estimates was performed on
white matter, gray matter and CSF region-of-interests (ROI)
manually defined in each subject (see Supp. Figs. 5 and 6).
ROIs were selected as spatially-contiguous regions containing
homogeneous parameter values.

To demonstrate CELF’s utility in synthesizing bSSFP
images, banding-free bSSFP images at flip angles (α =
20◦, 30◦, 50◦, 60◦) were generated based on CELF parameter
estimates obtained at α = 40◦. Separate sets of T1, T2,
and banding-free image estimates were obtained via CELF
at N = {4, 6, 8}. Banding-free bSSFP images at target flip
angles were then generated based on Eq. (1).

Finally, we explored the feasability of a learning-based
correction for CELF parameter estimates. Artificial neural
networks were recently demonstrated to reproduce non-bSSFP
relaxometry maps from phase-cycled bSSFP signals [30].
Inspired by this recent method, we reasoned that neural
network models can be trained to predict reference parameter
maps given CELF-derived parameter estimates as input, and
that the trained models can further improve accuracy as a post-
correction step to CELF. For proof-of-concept demonstrations,
data from four subjects were analyzed. Model training was
performed on three subjects, and the resulting model was
tested on the held-out subject; and this procedure was repeated
for all possible training sets. A fully-connected feedforward
architecture was used with a total of 942 parameters. This
architecture comprised an input layer that received CELF
estimates for T(1,2), 3 hidden layers of 20 neurons each and
sigmoid activations, an output layer with 2 neurons and linear
activations for final T(1,2) predictions. The network performed
voxel-wise processing, where CELF parameter estimates at
N = 8 were taken as input and parameter estimates from
the gold-standard mapping sequence were taken as ground
truth. T1 and T2 values were independently normalized to
a maximum of 1 across voxels in the training set, and this
global scaling factor was reapplied to the network output
during testing. Model training was performed using the RProp
algorithm to minimize mean absolute error between network
predictions and ground truth [41]. Network weights and bias
terms were randomly initialized as uniform variables in the
range [−1 1]. Training data were split randomly, with 15%

of voxels held-out as validation set. Network training was
stopped when the error in the validation set did not diminish
in 10 consecutive epochs.

IV. RESULTS

A. Simulations

The proposed method was first evaluated on simulated
bSSFP signals. Parameter estimation was performed for vary-
ing SNR levels ([20 100]) and number of acquisitions (N =
{4, 6, 8} for CELF, N = {6, 8} for PLANET). Mean absolute
percentage of estimation error (MAPE) was calculated sepa-
rately for each SNR, tissue type and N. Supp. Fig. 7 displays
MAPE for T1 and T2 as a function of SNR. For all tissue types,
CELF yields lower MAPE compared to PLANET consistently
across SNR levels. Most substantial differences are observed
in T1 estimation for tissues with relatively higher T1/T2 ratio,
including liver, myocardium, muscle and vessels. In general,
the performance difference between the two methods dimin-
ishes towards higher SNR, and tissues with similar T1/T2 ratio
exhibit similar errors.

Next, evaluations were performed for T1, T2, off-resonance,
and banding free image estimation on a numerical phantom.
The numerical phantom comprised nine tissue blocks, off-
resonance varied in θ0 ∈ [−π, π] horizontally and flip
angle varied in [20 60]◦ vertically within each block (see
Supp. Fig. 8 for phase-cycled bSSFP images). Estimates were
obtained with CELF (N = {4, 6, 8}) and PLANET (N =
{6, 8}). Fig. 3 shows the estimation results for T1, T2, off-
resonance terms for each N along with reference ground-truth
parameter maps (see Supp. Fig. 9 for estimates of banding-
free images, Supp. Fig. 10 for comparison of results with and
without singularity detection). CELF produces more accurate
maps than PLANET for T1, T2, and off-resonance terms.
Performance benefits with CELF become more noticeable
towards lower N, and in off-resonance estimation.

To examine effect of B1 inhomogeneity on CELF estimates,
a separate set of T1, T2, off-resonance, and banding-free image
estimates was obtained in the numerical phantom. In this
case, the nominal flip angle varied in [20 60]◦ vertically, and
the ratio of actual to nominal flip angle varied in [0.9 1.1]
horizontally within each block. Percentage error in parameter
estimates is displayed in Supp. Fig. 11. Averaged across tissue
blocks, the mean estimation errors are %11.11 for T1, %0.0 for
T2, %2.32 for banding-free image, and %0.0 for off-resonance
estimates. We observe that T2 and off-resonance estimates
are not affected. Note that this is in contrast to PLANET
that shows elevated errors in off-resonance estimates due to
flip angle deviations (Supp. Fig. 12). Meanwhile, banding-
free images and T1 estimates show modest effects due to
disparity between nominal and actual flip angles. Regardless,
the proposed procedure for CELF includes a B1-mapping step
to surmount potential disparities.

Lastly, we demonstrated CELF’s utility in synthesizing
bSSFP images at varying flip angles. Phase-cycled bSSFP
images of the numerical phantom were simulated for matching
nominal and actual flip angles of α = 40◦. T1, T2, and
banding free image estimates at flip angle = 40◦ were
obtained with CELF. CELF parameter estimates were then
used to synthesize banding-free bSSFP images at different flip
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Fig. 3. Phase-cycled bSSFP signals were simulated for nine tissue blocks (left column from top to bottom: fat, bone marrow, liver; middle column from
top to bottom: white matter, myocardium, vessels; right column from top to bottom: gray matter, muscle, and CSF). In each block off-resonance varied
from −62.5 Hz to 62.5 Hz (1/2.TR) along the horizontal axis, and flip angle varied from 20◦ to 60◦ along the vertical axis. Remaining parameters
were: TR = 8ms, TE = 4ms, N = {4, 6,8}, and SNR = 200 (with respect to CSF signal intensity). T1, T2, and off-resonance estimates via CELF
and PLANET are displayed. Note that PLANET cannot compute estimates for N = 4.

Fig. 4. T1 and T2 estimation was performed with CELF and PLANET on phase-cycled bSSFP images of a homogeneous phantom. Results are
shown in a representative cross-section for N = {4,6, 8}. Note that PLANET cannot compute estimates for N = {4}. T1 and T2 estimates are displayed
along with the reference maps from gold-standard mapping sequences. To better visualize differences among methods, variation of estimates are
also plotted across a central line (black line in reference maps).

angles {20◦, 30◦, 50◦, 60◦}. The CELF-derived bSSFP images
at N = {4, 6, 8} were compared against reference images
directly simulated at the respective flip angles (Supp. Fig. 13).
CELF-derived synthetic bSSFP images are virtually identical
to reference bSSFP images.

B. Phantom and in Vivo Studies

To validate the proposed method, phase-cycled bSSFP
acquisitions were performed on a homogeneous phantom.
Phantom images for individual phase cycles are shown in
Supp. Fig. 14. T1 and T2 maps were then estimated with CELF
(N = {4, 6, 8}) and PLANET (N = {6, 8}). Estimates in a
representative cross-section are presented in Fig. 4 along with
reference maps obtained via conventional mapping sequences.
Compared to PLANET, CELF produces more accurate results
with improved homogeneity of parameter estimates across the
phantom. Moreover, parameter estimates by CELF are highly
consistent across N = {4, 6, 8} as listed in Supp. Table III.

Next, in vivo phase-cycled bSSFP brain images were
acquired in two subjects (see Supp. Figs. 15 and 16 for
individual phase-cycles). T1, T2 and off-resonance maps were

estimated along with banding-free bSSFP images. Estimations
were performed with CELF (N = {4, 6, 8}) and PLANET
(N = {6, 8}). Estimated maps in representative axial cross-
sections are displayed in Fig. 5 and Supp. Fig. 17 for Subject 1,
and in Supp. Fig. 18 for Subject 2. (See Supp. Fig. 19
for location of bounded search procedure for γ in
Subjects 1 and 2.) For T1 and T2 estimation, CELF-derived
maps show visually lower levels of noise and residual arti-
facts than PLANET-derived maps, particularly near tissue
boundaries. This improvement can be partly attributed to
the dictionary-based ellipse identification in CELF as illus-
trated in Supp. Fig. 20. For off-resonance estimation, CELF
yields noticeably more accurate maps than PLANET, and
this difference grows towards lower N . This improvement
can be attributed to the improved procedure in CELF for Bo
estimation as demonstrated in Supp. Figs. 21 and 22.

To assess the synthesis ability of CELF, banding-free
bSSFP images at varying flip angles were generated based
on CELF-parameter estimates obtained for a fixed flip angle.
Specifically, T1, T2, and banding-free image estimates at
flip angle = 40◦ were obtained with CELF. CELF parameter
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Fig. 5. Parameter estimation was performed with CELF and PLANET on phase-cycled bSSFP images of the brain. Results are shown in a cross-
section of a representative subject for N = {4, 6,8}. Note that PLANET cannot compute estimates for N = {4}. T1, T2, and off-resonance estimates
are displayed along with the reference maps from gold-standard mapping sequences.

TABLE I
ESTIMATED T1 AND T2 VALUES FOR IN VIVO BRAIN IMAGES

estimates were then used to synthesize banding-free
bSSFP images at different flip angles {20◦, 30◦, 50◦, 60◦}
(Supp. Figs. 23 and 24). CELF-derived synthetic bSSFP
images are virtually identical to reference bSSFP images.
As theoretically expected, CSF appears brighter towards higher
flip angles resulting in bright fluid contrast, whereas gray-
matter and white-matter signals diminish in intensity.

Average T1 and T2 values across white matter (WM),
grey matter (GM), and CSF ROIs in a central cross-section
are listed in Table I, Supp. Tables IV-VI for Subjects 1-4.
PLANET yielded negative parameter estimates for many CSF
voxels, so no measurements were reported. Overall, CELF and
PLANET yield consistent results in WM and GM ROIs. There
is also good agreement between CELF-estimated and reference
T2 values for WM and GM. Meanwhile, T1 is moderately
underestimated in WM and GM. Note that although CELF-
derived T2 values are higher than reference T2 values in
CSF, CELF-derived values are in better accordance with prior
studies reporting T2 values at least greater than 1500 ms [42].

Lastly, we explored the feasibility of learning-based post-
correction to CELF for enhanced performance in relaxation
parameter estimation. A neural-network model was trained to
receive as input CELF-derived T1 and T2 estimates, and output
reference parameter values from the gold-standard mapping
sequences. Cross-validated parameter estimates were obtained
in each subject. Representative parameter maps following

the correction are displayed in Supp. Fig. 25. Percentage
difference between the CELF-based parameter estimates and
reference parameter values before and after the correction
are listed in Supp. Table VII. Across subjects, the average
discrepancy between CELF-based and reference parameter
values is reduced from 22.8% to 7.9% in WM, from 13.4% to
11.8% in GM, and from 46.7% to 34.5% in CSF. These results
imply that a model-based learning method that combines
CELF with neural networks can offer high estimation accuracy
in WM and GM particularly.

V. DISCUSSION

In this study, we introduced a constrained ellipse fitting
(CELF) method for parameter estimation in phase-cycled
bSSFP imaging. CELF devises an ellipse fit with a reduced
number of unknowns by leveraging prior knowledge on the
geometrical properties of the bSSFP signal ellipse. Specif-
ically, the central line and orientation of the ellipse are
considered to enable ellipse fits with a minimum of 4 (see
Eq. (16)) as opposed to 6 (see Eq. (10)) data points. The
proposed method was demonstrated for estimation of T1,
T2 and off-resonance values as well as banding-free bSSFP
images from phase-cycled bSSFP acquisitions. CELF shows
improved estimation accuracy compared to PLANET. It also
offers higher scan efficiency by reducing the number of phase-
cycles required, albeit it employs a separate B1 map to mitigate
sensitivity to flip angle variations. We find that CELF yields
accurate estimates of off-resonance and banding-free bSSFP
images with as few as N = 4 acquisitions. At the same
time, in vivo estimates of relaxation parameters with CELF
show biases compared to conventional spin-echo methods,
due to microstructural sensitivity of bSSFP imaging. Further
development of CELF is warranted to resolve these estimation
errors, which might eventually provide useful opportunities for
CELF in quantitative MRI applications including relaxometry,
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magnetization transfer (MT) mapping [43] and conductivity
mapping [44].

A. Parameter Estimates
Analyses performed on simulated bSSFP signals indicate

that both PLANET and CELF yield higher performance in T1
and T2 estimation at relatively low flip angles. This property
can facilitate bSSFP parametric mapping by reducing specific
absorption rate (SAR), particularly at higher field strengths.
Performance losses are observed towards relatively high flip
angles, where the bSSFP signal intensities for many tissues
diminish. Furthermore, the ellipse shape tends towards a circle
for higher flip angles, diminishing shape differences among
different tissues and increasing difficulty of T1, T2 estima-
tion. While PLANET yields relatively improved off-resonance
estimates towards low flip angles, CELF maintains consistent
performance across a broad range of flip angles and N. This
difference is also observed for in vivo experiments, clearly
demonstrating the benefit of the off-resonance estimation step
in CELF. Reducing error propagation in parameter estimation
by removing intermediate steps renders the off-resonance
estimate of CELF more robust to variability in N and flip
angle. This robust estimation of off-resonance might be helpful
in transceive phase mapping [44].

Here, CELF accurately estimated off-resonance maps and
produced banding-free bSSFP images in all scenarios con-
sidered. Moderate agreement was also observed between
estimated and reference relaxation parameters for simulation
and phantom experiments. One exception was the parameter
estimates for the homogeneous cylindrical phantom, where
artefactually high parameter estimates were observed towards
the left rim. It is likely that the estimation errors are induced
by inhomogeneous intravoxel frequency distribution due to
mechanical vibrations and residual air within the phantom.
There was also some apparent discrepancy for in vivo T1-
T2 estimates from both PLANET and CELF, particularly for
white matter. Our observations match well to previous studies
on bSSFP-based relaxometry reporting similar effects in the
human brain [31], [32]. This discrepancy is best attributed
to the intravoxel frequency distribution when multiple tissue
compartments reside in a single voxel. Frequency inhomo-
geneities in multi-compartment voxels in turn induce asymme-
tries in the bSSFP signal profile [45], [46]. Such asymmetries
are not evident in bSSFP signals during simulation or phantom
experiments, but bSSFP signals in the brain reflect contri-
butions from both micro- and macro-structural components
such as myelin and water. Therefore, the single compartment
bSSFP signal model used in CELF can be affected by the
microstructural sensitivity of bSSFP imaging.

CELF based on a single-compartment model with inher-
ent microstructural sensitivity can have several practical
applications. The microstructural bias on bSSFP signals is
expected to be relatively limited at lower field strengths [45].
As such, one application domain for CELF is parameter
mapping in the brain using low-field systems, particularly
1.5 T or lower. While relaxation parameter estimates can carry
some microstructural bias, off-resonance maps derived by
CELF show strong correlation to reference maps. Therefore,
the enhanced reliability of off-resonance estimates with CELF

can improve applications that rely on assessment of signal
phase such as electrical impedance tomography. CELF can
also be leveraged to produce synthetic bSSFP images at
varying flip angles, to improve tissue delineation at multiple
distinct contrasts [15]. Lastly, the intrinsic microstructural
sensitivity in CELF can be viewed as an additional con-
trast mechanism, and concurrent analysis of spin-echo and
bSSFP-based parameter maps can allow estimation of tissue
microstructural properties [30].

Several approaches can be adopted to alleviate the
microstructural bias in CELF estimates when necessary.
A two-compartment model was recently proposed for
PLANET to improve accuracy for parameter estimation [33].
Similarly, the base bSSFP signal equation in CELF can be gen-
eralized via a multi-compartment model to enhance parameter
estimates in the brain, albeit a greater number of measurements
might be necessary due to increased degrees of freedom in the
model. Alternatively, learning-based methods can be leveraged
in conjunction with CELF to reduce discrepancy in relaxation
parameter estimates. Here, a proof-of-concept demonstration
was provided suggesting the potential for enhanced estimation
accuracy with neural-network-based post-correction of CELF
estimates. Demonstrations on broader datasets are needed to
fully outline the potential benefits of this model-based learning
approach.

B. Potential Improvements and Future Work

CELF performs constrained ellipse fits based on an ana-
lytical model of the bSSFP signal, followed by parameter
estimation via dictionary-based ellipse identification. Similar
to the PLANET formulation, the analytical model used for
the fits and simulation of the ellipse dictionary assume neg-
ligible non-stationary effects on measurements from motion,
eddy currents or main field drifts. In theory, incorporating
additional phase-cycled measurements during ellipse fitting
should improve estimation accuracy for CELF. Yet, CELF
estimates for relaxation parameters were occasionally observed
to be somewhat more accurate at lower N. Note that bSSFP
protocols with greater N increase the risk of differential
measurement biases among phase cycles due to non-stationary
effects. Such perturbations could then counter the benefits of
additional measurement points on ellipse fits. In cases where
substantial biases are present, biasing factors can be separately
measured or else estimated from bSSFP data, and the bSSFP
measurements can be corrected a priori to improve corre-
spondence with the underlying signal model. Note that CELF
allows lower N that inherently reduces potential for motion
artifacts. That said, parameter estimates can be suboptimal
under severe motion. A potential solution is to spatially align
images for separate phase-cycles prior to ellipse fitting. Sen-
sitivity to subject motion can also be limited by accelerating
individual bSSFP acquisitions [47]–[49]. To check for drifts in
the main field, B0 maps were collected at the beginning and
end of the scan sessions. No significant effects were observed,
so no correction procedures were applied here. Yet main field
changes might be an important factor for high-resolution and
large-FOV protocols that require prolonged scan times. In such
cases, the recently proposed B0 drift-correction method can be
applied to improve estimation accuracy [50].
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The current CELF implementation assumes that noise
is independent and identically distributed across separate
phase-cycled acquisitions. If the noise distribution varies
substantially across acquisitions, the loss terms in the ellipse
fitting or identification stages might be biased by higher
levels of noise in a subset of measurements. Note that both
ellipse fitting errors between the analytical signal model
and measurements, and ellipse identification errors between
the dictionary ellipse and measured ellipse are accumu-
lated across points on the ellipse (i.e., individual phase-
cycled acquisitions). Therefore, to minimize bias due to
non-stationary noise, the loss terms can be modified to
weigh errors from individual points inversely with their noise
level.

Here parameter estimation was performed separately for
each voxel in phase-cycled bSSFP images, omitting potential
correlations among neighboring voxels. In the presence of
high measurement noise, voxel-wise processing might lead to
spatially unsmooth estimates even in regions with a homo-
geneous distribution of parameters. In such cases, estimation
accuracy can be improved by recasting the optimization
problem in CELF to enforce locally-coherent parameter esti-
mates at the expense of potential blurring. Alternatively,
non-local means (NLM) filtering can be applied on the
CELF-derived parameter maps to improve accuracy without
excessive smoothing [51]. Note that spatially distant tissues
with similar T1 and T2 values could still manifest different off-
resonance values. Since CELF back-rotates ellipses to remove
off-resonance effects prior to ellipse fitting, it is well suited to
NLM methods.

Simulation results suggest that CELF incurs moderate per-
formance losses in T1 estimation with up to %20 mismatch
between the nominal and actual flip angles. Given this sensitiv-
ity to flip angles, accuracy of T1 estimates rely on knowledge
of the spatial distribution of the flip angle. To mitigate potential
errors, in this study, we obtained B1 maps to correct the
nominal flip angle at each voxel. Since additional B1 mapping
scans lower scan efficiency, they may not be desirable in all
protocols. Moreover, accurate B1 mapping might be relatively
difficult in higher field systems. In those cases, generalizing
CELF to additionally estimate flip angle maps would improve
estimation accuracy.

In this study, both PLANET and CELF implementations
performed parameter estimation on coil-combined complex
bSSFP images. To do this, multi-coil bSSFP images were
combined using the adaptive combination method prior to
ellipse fitting. This method can offer better noise suppression
than the conventional sum-of-squares method in regions of
lower signal intensity, and it reduces computational burden
by lowering data dimensionality across the coil dimension.
That said, prior studies suggest that coil combination methods
primarily devised for magnitude images might introduce insta-
bilities in reconstructed phase images [52]. Thus, accuracy of
ellipse fits based on coil-combined images from the adaptive
combination method might be limited by instability-driven
phase variability across phase-cycles. It remains important
future work to inquire the potential benefits of more advanced
approaches for processing of multi-coil information in con-
junction with the elliptical signal models [53], [54].

Compared to PLANET that involves direct ellipse fitting,
CELF has an added dictionary-based ellipse identification step
to refine the estimates. As a result, CELF run times also reflect
the computational cost of this identification step. Note that the
ellipse dictionary can be constructed once a priori, and so the
inference cost stems from the search process to match the
bSSFP signal ellipse to the closest dictionary ellipse. Here
a brute-force search was performed since parameter maps
could be extracted within several minutes for all datasets
considered. When desired, the computational efficiency of
CELF can be boosted by leveraging advanced matching pro-
cedures [55] or GPU accelerated implementations [56].

In summary, we introduced the analytical foundation of a
constrained ellipse fitting procedure (CELF) for bSSFP-based
parameter estimation. Given phase-cycled bSSFP images along
with a separate B1 map, CELF can estimate relaxation para-
meters, off-resonance and banding-free bSSFP images. Here,
we demonstrated CELF using simulated, phantom and in
vivo experiments. Our results indicate that CELF achieves
improved efficiency compared to direct ellipse fitting. CELF
can produce accurate estimates of off-resonance and banding-
free bSSFP images with as few as N = 4 acquisitions, yet in
vivo estimation accuracy of relaxation parameters is limited
due to microstructural sensitivity of bSSFP imaging. Further
work to mitigate errors in relaxation parameter estimates is
needed to render CELF a candidate for relaxometry applica-
tions. Broader assessments on physical phantoms with system-
atic variation of field inhomogeneity and relaxation parame-
ters, and on patients with pathology are critical steps towards
validation. CELF might contribute to the clinical utility of
bSSFP imaging following these technical improvements and
validations, as it can improve scan efficiency and reliability
against main field inhomogeneity.
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