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Abstract—Dense word embeddings, which encode meanings of
words to low-dimensional vector spaces, have become very pop-
ular in natural language processing (NLP) research due to their
state-of-the-art performances in many NLP tasks. Word embed-
dings are substantially successful in capturing semantic relations
among words, so a meaningful semantic structure must be present
in the respective vector spaces. However, in many cases, this seman-
tic structure is broadly and heterogeneously distributed across the
embedding dimensions making interpretation of dimensions a big
challenge. In this study, we propose a statistical method to uncover
the underlying latent semantic structure in the dense word embed-
dings. To perform our analysis, we introduce a new dataset (SEM-
CAT) that contains more than 6500 words semantically grouped
under 110 categories. We further propose a method to quantify the
interpretability of the word embeddings. The proposed method
is a practical alternative to the classical word intrusion test that
requires human intervention.

Index Terms—Interpretability, semantic structure, word embed-
dings.

I. INTRODUCTION

WORDS are the smallest elements of a language with a
practical meaning. Researchers from diverse fields in-

cluding linguistics [1], computer science [2] and statistics [3]
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have developed models that seek to capture “word meaning”
so that these models can accomplish various NLP tasks such
as parsing, word sense disambiguation and machine translation.
Most of the effort in this field is based on the distributional
hypothesis [4] which claims that a word is characterized by
the company it keeps [5]. Building on this idea, several vector
space models such as well known Latent Semantic Analysis
(LSA) [6] and Latent Dirichlet Allocation (LDA) [7] that make
use of word distribution statistics have been proposed in dis-
tributional semantics. Although these methods have been com-
monly used in NLP, more recent techniques that generate dense,
continuous valued vectors, called embeddings, have been receiv-
ing increasing interest in NLP research. Approaches that learn
embeddings include neural network based predictive methods
[2], [8] and count-based matrix-factorization methods [9]. Word
embeddings brought about significant performance improve-
ments in many intrinsic NLP tasks such as analogy or semantic
textual similarity tasks, as well as downstream NLP tasks such
as part-of-speech (POS) tagging [10], named entity recognition
[11], word sense disambiguation [12], sentiment analysis [13]
and cross-lingual studies [14].

Although high levels of success have been reported in many
NLP tasks using word embeddings, the individual embedding di-
mensions are commonly considered to be uninterpretable [15].
Contrary to some earlier sparse vector space models such as
Hyperspace Analogue to Language (HAL) [16], what is repre-
sented in each dimension of word embeddings is often unclear,
rendering them a black-box approach. In contrast, embedding
models that yield dimensions that are more easily interpretable
in terms of the captured information can be better suited for
NLP tasks that require semantic interpretation, including named
entity recognition and retrieval of semantically related words.
Model interpretability is also becoming increasingly relevant
from a regulatory standpoint, as evidenced by the recent EU
regulation that grants people with a “right to explanation” re-
garding automatic decision making algorithms [17].

Although word embeddings are a dominant part of NLP re-
search, most studies aim to maximize the task performance on
standard benchmark tests such as MEN [18] or Simlex-999 [19].
While improved test performance is undoubtedly beneficial, an
embedding with enhanced performance does not necessarily re-
veal any insight about the semantic structure that it captures.
A systematic assessment of the semantic structure intrinsic to
word embeddings would enable an improved understanding of
this popular approach, would allow for comparisons among
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different embeddings in terms of interpretability and potentially
motivate new research directions.

In this study, we aim to bring light to the semantic concepts
implicitly represented by various dimensions of a word embed-
ding. To explore these hidden semantic structures, we leverage
the category theory [20] that defines a category as a grouping of
concepts with similar properties. We use human-designed cate-
gory labels to ensure that our results and interpretations closely
reflect human judgements. Human interpretation can make use
of any kind of semantic relation among words to form a seman-
tic group (category). This does not only significantly increase
the number of possible categories but also makes it difficult
and subjective to define a category. Although several lexical
databases such as WordNet [1] have a representation for rela-
tions among words, they do not provide categories as needed
for this study. Since there is no gold standard for semantic word
categories to the best of our knowledge, we introduce a new cate-
gory dataset where more than 6,500 different words are grouped
in 110 semantic categories. Then, we propose a method based
on distribution statistics of category words within the embed-
ding space in order to uncover the semantic structure of the
dense word vectors. We apply quantitative and qualitative tests
to substantiate our method. Finally, we claim that the semantic
decomposition of the embedding space can be used to quantify
the interpretability of the word embeddings without requiring
any human effort unlike the word intrusion test [21].

This paper is organized as follows: Following a discussion
of related work in Section II, we describe our methods in
Section III. In this section we introduce our dataset and also
describe methods we used to investigate the semantic decompo-
sition of the embeddings, to validate our findings and to measure
the interpretability. In Section IV, we present the results of our
experiments and finally we conclude the paper in Section V.

II. RELATED WORK

In the word embedding literature, the problem of inter-
pretability has been approached via several different routes.
For learning sparse, interpretable word representations from co-
occurrence variant matrices, [22] suggested algorithms based
on non-negative matrix factorization (NMF) and the result-
ing representations are called non-negative sparse embeddings
(NNSE). To address memory and scale issues of the algorithms
in [22], [23] proposed an online method of learning interpretable
word embeddings. In both studies, interpretability was evalu-
ated using a word intrusion test introduced in [21]. The word
intrusion test is expensive to apply since it requires manual
evaluations by human observers separately for each embed-
ding dimension. As an alternative method to incorporate human
judgement, [24] proposed joint non-negative sparse embedding
(JNNSE), where the aim is to combine text-based similarity
information among words with brain activity based similarity
information to improve interpretability. Yet, this approach still
requires labor-intensive collection of neuroimaging data from
multiple subjects.

Instead of learning interpretable word representations di-
rectly from co-occurrence matrices, [25] and [26] proposed
to use sparse coding techniques on conventional dense word

embeddings to obtain sparse, higher dimensional and more
interpretable vector spaces. However, since the projection vec-
tors that are used for the transformation are learned from the
word embeddings in an unsupervised manner, they do not have
labels describing the corresponding semantic categories. More-
over, these studies did not attempt to enlighten the dense word
embedding dimensions, rather they learned new high dimen-
sional sparse vectors that perform well on specific tests such as
word similarity and polysemy detection. In [26], interpretabil-
ity of the obtained vector space was evaluated using the word
intrusion test. An alternative approach was proposed in [27],
where interpretability was quantified by the degree of clustering
around embedding dimensions and orthogonal transformations
were examined to increase interpretability while preserving the
performance of the embedding. Note, however, that it was shown
in [27] that total interpretability of an embedding is constant
under any orthogonal transformation and it can only be redis-
tributed across the dimensions. With a similar motivation to
[27], [28] proposed rotation algorithms based on exploratory
factor analysis (EFA) to preserve the expressive performance
of the original word embeddings while improving their inter-
pretability. In [28], interpretability was calculated using a dis-
tance ratio (DR) metric that is effectively proportional to the
metric used in [27]. Although interpretability evaluations used
in [27] and [28] are free of human effort, they do not necessarily
reflect human interpretations since they are directly calculated
from the embeddings.

Taking a different perspective, a recent study, [29], attempted
to elucidate the semantic structure within NNSE space by us-
ing categorized words from the HyperLex dataset [30]. The
interpretability levels of embedding dimensions were quanti-
fied based on the average values of word vectors within cat-
egories. However, HyperLex is constructed based on a single
type of semantic relation (hypernym) and average number of
words representing a category is significantly low (≈2) making
it challenging to conduct a comprehensive analysis.

III. METHODS

To address the limitations of the approaches discussed in
Section II, in this study we introduce a new conceptual category
dataset. Based on this dataset, we propose statistical methods to
capture the hidden semantic concepts in word embeddings and
to measure the interpretability of the embeddings.

A. Dataset

Understanding the hidden semantic structure in dense word
embeddings and providing insights on interpretation of their
dimensions are the main objectives of this study. Since em-
beddings are formed via unsupervised learning on unannotated
large corpora, some conceptual relationships that humans an-
ticipate may be missed and some that humans do not antici-
pate may be formed in the embedding space [31]. Thus, not all
clusters obtained from a word embedding space will be inter-
pretable. Therefore, using the clusters in the dense embedding
space might not take us far towards interpretation. This observa-
tion is also rooted in the need for human judgement in evaluating
interpretability.
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To provide meaningful interpretations for embedding dimen-
sions, we refer to the category theory [20] where concepts with
similar semantic properties are grouped under a common cate-
gory. As mentioned earlier, using clusters from the embedding
space as categories may not reflect human expectations accu-
rately, hence having a basis based on human judgements is
essential for evaluating interpretability. In that sense, semantic
categories as dictated by humans can be considered a gold stan-
dard for categorization tasks since they directly reflect human
expectations. Therefore, using supervised categories can enable
a proper investigation of the word embedding dimensions. In
addition, by comparing the human-categorized semantic con-
cepts with the unsupervised word embeddings, one can acquire
an understanding of what kind of concepts can or cannot be
captured by the current state-of-the-art embedding algorithms.

In the literature, the concept of category is commonly used
to indicate super-subordinate (hyperonym-hyponym) relations
where words within a category are types or examples of that
category. For instance, the furniture category includes words
for furniture names such as bed or table. The HyperLex cat-
egory dataset [30], which was used in [29] to investigate em-
bedding dimensions, is constructed based on this type of rela-
tion that is also the most frequently encoded relation among
sets of synonymous words in the WordNet database [1]. How-
ever, there are many other types of semantic relations such as
meronymy (part-whole relations), antonymy (opposite meaning
words), synonymy (words having the same sense) and cross-Part
of Speech (POS) relations (i.e., lexical entailments). Although
WordNet provides representations for a subset of these rela-
tions, there is no clear procedure for constructing unified cate-
gories based on multiple different types of relations. It remains
unclear what should be considered as a category, how many
categories there should be, how narrow or broad they should
be, and which words they should contain. Furthermore, humans
can group words by inference, based on various physical or nu-
merical properties such as color, shape, material, size or speed,
increasing the number of possible groups almost unboundedly.
For instance, words that may not be related according to clas-
sical hypernym or synonym relations might still be grouped
under a category due to shared physical properties: sun, lemon
and honey are similar in terms of color; spaghetti, limousine
and sky-scanner are considered as tall; snail, tractor and tortoise
are slow.

In sum, diverse types of semantic relationships or properties
can be leveraged by humans for semantic interpretation. There-
fore, to investigate the semantic structure of the word embedding
space using categorized words, we need categories that repre-
sent a broad variety of distinct concepts and distinct types of
relations. To the best of our knowledge, there is no comprehen-
sive word category dataset that captures the many diverse types
of relations mentioned above. What we have found closest to
the required dataset are the online categorized word-lists1 that
were constructed for educational purposes. There are a total of
168 categories on these word-lists. To build a word-category
dataset suited for assessing the semantic structure in word

1www.enchantedlearning.com/wordlist/

TABLE I
SUMMARY STATISTICS OF SEMCAT AND HYPERLEX

TABLE II
TEN SAMPLE WORDS FROM EACH OF THE SIX

REPRESENTATIVE SEMCAT CATEGORIES

embeddings, we took these word-lists as a foundational ba-
sis. We filtered out words that are not semantically related but
share a common nuisance property such as their POS tagging
(verbs, adverbs, adjectives etc.) or being compound words. Sev-
eral categories containing proper words or word phrases such as
the chinese new year and good luck symbols categories, which
we consider too specific, are also removed from the dataset.
Vocabulary is limited to the most frequent 50,000 words, where
frequencies are calculated from English Wikipedia, and words
that are not contained in this vocabulary are removed from the
dataset. We call the resulting semantically grouped word dataset
“SEMCAT2” (SEMantic CATegories). Summary statistics of
SEMCAT and HyperLex datasets are given in Table I. 10 sam-
ple words from each of 6 representative SEMCAT categories
are given in Table II.

B. Semantic Decomposition

In this study, we use GloVe [9] as the source algorithm for
learning dense word vectors. The entire content of English
Wikipedia is utilized as the corpus. In the preprocessing step,
all non-alphabetic characters (punctuations, digits, etc.) are re-
moved from the corpus and all letters are converted to low-
ercase. Letters coming after apostrophes are taken as separate
words (she’ll becomes she ll). The resulting corpus is
input to the GloVe algorithm. Window size is set to 15, vector
length is chosen to be 300 and minimum occurrence count is set
to 20 for the words in the corpus. Default values are used for
the remaining parameters. The word embedding matrix, E , is
obtained from GloVe after limiting vocabulary to the most fre-
quent 50,000 words in the corpus (i.e. E is 50,000 × 300). The
GloVe algorithm is again used for the second time on the same
corpus generating a second embedding space, E2 , to examine

2github.com/avaapm/SEMCATdataset2018
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the effects of different initializations of the word vectors prior
to training.

To quantify the significance of word embedding dimensions
for a given semantic category, one should first understand how
a semantic concept can be captured by a dimension, and then
find a suitable metric to measure it. [29] assumed that a di-
mension represents a semantic category if the average value of
the category words for that dimension is above an empirical
threshold, and therefore took that average value as the repre-
sentational power of the dimension for the category. Although
this approach may be convenient for NNSE, directly using the
average values of category words is not suitable for well-known
dense word embeddings due to several reasons. First, in dense
embeddings it is possible to encode in both positive and negative
directions of the dimensions making a single threshold insuf-
ficient. In addition, different embedding dimensions may have
different statistical characteristics. For instance, average value
of the words from the jobs category of SEMCAT is around 0.38
and 0.44 in 221st and 57th dimensions of E respectively; and
the average values across all vocabulary are around 0.37 and
−0.05 respectively for the two dimensions. Therefore, the av-
erage value of 0.38 for the jobs category may not represent any
encoding in the 221st dimension since it is very close to the
average of any random set of words in that dimension. In con-
trast, an average of similar value 0.44 for the jobs category may
be highly significant for the 57th dimension. Note that focusing
solely on average values might be insufficient to measure the
encoding strength of a dimension for a semantic category. For
instance, words from the car category have an average of −0.08
that is close to the average across all vocabulary, −0.04, for the
133th embedding dimension. However, standard deviation of
the words within the car category is 0.15 which is significantly
lower than the standard deviation of all vocabulary, 0.35, for this
particular dimension. In other words, although average of words
from the car category is very close to the overall mean, category
words are more tightly grouped compared to other vocabulary
words in the 133th embedding dimension, potentially implying
significant encoding.

From a statistical perspective, the question of “How strong a
particular concept is encoded in an embedding dimension?” can
be interpreted as “How much information can be extracted from
a word embedding dimension regarding a particular concept?”.
If the words representing a concept (i.e. words in a SEMCAT
category) are sampled from the same distribution with all vocab-
ulary words, then the answer would be zero since the category
would be statistically equivalent to a random selection of words.
For dimension i and category j, if Pi,j denotes the distribution
from which words of that category are sampled and Qi,j de-
notes the distribution from which all other vocabulary words
are sampled, then the distance between distributions Pi,j and
Qi,j will be proportional to the information that can be extracted
from dimension i regarding category j. Based on this argument,
Bhattacharya distance [32] with normal distribution assump-
tion is a suitable metric, which is given in (1), to quantify the
level of encoding in the word embedding dimensions. Normal-
ity of the embedding dimensions are tested using one-sample
Kolmogorov-Smirnov test (KS test, Bonferroni corrected for

multiple comparisons).

WB (i, j) =
1
4

ln

(
1
4

(
σ2

pi , j

σ2
qi , j

+
σ2

qi , j

σ2
pi , j

+ 2

))

+
1
4

((
μpi , j

− μqi , j

)2

σ2
pi , j

+ σ2
qi , j

)
(1)

In (1), WB is a 300 × 110 Bhattacharya distance matrix,
which can also be considered as a category weight matrix, i is the
dimension index (i ∈ {1, 2, . . . , 300}), j is the category index
(j ∈ {1, 2, . . . , 110}). pi,j is the vector of the ith dimension
of each word in jth category and qi,j is the vector of the ith
dimension of all other vocabulary words (pi,j is of length nj

and qi,j is of length (50000 − nj ) where nj is the number of
words in the jth category). μ and σ are the mean and the standard
deviation operations, respectively. Values inWB can range from
0 (if pi,j and qi,j have the same means and variances) to ∞. In
general, a better separation of category words from remaining
vocabulary words in a dimension results in larger WB elements
for the corresponding dimension.

Based on SEMCAT categories, for the learned embedding
matrices E and E2 , the category weight matrices (WB and W2

B )
are calculated using Bhattacharya distance metric (1).

C. Interpretable Word Vector Generation

If the weights in WB truly correspond to the categorical
decomposition of the semantic concepts in the dense embedding
space, then WB can also be considered as a transformation
matrix that can be used to map word embeddings to a semantic
space where each dimension is a semantic category. However,
it would be erroneous to directly multiply the word embeddings
with category weights. The following steps should be performed
in order to map word embeddings to a semantic space where
dimensions are interpretable:

1) To make word embeddings compatible in scale with the
category weights, word embedding dimensions are stan-
dardized (ES ) such that each dimension has zero mean and
unit variance since category weights have been calculated
based on the deviations from the general mean (second
term in (1)) and standard deviations (first term in (1)).

2) Category weights are normalized across dimensions such
that each category has a total weight of 1 (WN B ). This
is necessary since some columns of WB dominate others
in terms of representation strength (will be discussed in
Section IV in more detail). This inequality across semantic
categories can cause an undesired bias towards categories
with larger total weights in the new vector space. �1 nor-
malization of the category weights across dimensions is
performed to prevent bias.

3) Word embedding dimensions can encode semantic
categories in both positive and negative directions
(μpi , j

− μqi , j
can be positive or negative) that con-

tribute equally to the Bhattacharya distance. However,
since encoding directions are important for the map-
ping of the word embeddings, WN B is replaced with its
signed version WN SB (if μpi , j

− μqi , j
is negative, then
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WN SB (i, j) = −WN B (i, j), otherwise WN SB (i, j) =
WN B (i, j)) where negative weights correspond to encod-
ing in the negative direction.

Then, interpretable semantic vectors (I50000×110) are ob-
tained by multiplying ES with WN SB .

One can reasonably suggest to alternatively use the centers
of the vectors of the category words as the weights for the
corresponding category as given in (2).

WC (i, j) = μpi , j
(2)

A second interpretable embedding space, I∗, is then obtained
by simply projecting the word vectors in E to the category cen-
ters. (3) and (4) show the calculation of I and I∗ respectively.
Fig. 1 shows the procedure for generation of interpretable em-
bedding spaces I and I∗.

I = ESWN SB (3)

I∗ = EWC (4)

D. Validation

I and I∗ are further investigated via qualitative and quanti-
tative approaches in order to confirm that WB is a reasonable
semantic decomposition of the dense word embedding dimen-
sions, that I is indeed an interpretable semantic space and that
our proposed method produces better representations for the
categories than their center vectors.

If WB and WC represent the semantic distribution of the
word embedding dimensions, then columns of I and I∗ should
correspond to semantic categories. Therefore, each word vector
in I and I∗ should represent the semantic decomposition of the
respective word in terms of the SEMCAT categories. To test this
prediction, word vectors from the two semantic spaces (I and
I∗) are qualitatively investigated.

To compare I and I∗, we also define a quantitative test that
aims to measure how well the category weights represent the
corresponding categories. Since weights are calculated directly
using word vectors, it is natural to expect that words should
have high values in dimensions that correspond to the categories
they belong to. However, using words that are included in the
categories for investigating the performance of the calculated
weights is similar to using training accuracy to evaluate model
performance in machine learning. Using validation accuracy is
more adequate to see how well the model generalizes to new,
unseen data that, in our case, correspond to words that do not
belong to any category. During validation, we randomly select
60% of the words for training and use the remaining 40% for
testing for each category. From the training words we obtain the
weight matrix WB using Bhattacharya distance and the weight
matrix WC using the category centers. We select the largest k
weights (k ∈ {5, 7, 10, 15, 25, 50, 100, 200, 300}) for each cate-
gory (i.e. largest k elements for each column of WB and WC )
and replace the other weights with 0 that results in sparse cat-
egory weight matrices (Ws

B and Ws
C ). Then projecting dense

word vectors onto the sparse weights from Ws
B and Ws

C , we
obtain interpretable semantic spaces Ik and I∗

k . Afterwards, for
each category, we calculate the percentages of the unseen test
words that are among the top n, 3n and 5n words (excluding the

training words) in their corresponding dimensions in the new
spaces, where n is the number of test words that varies across
categories. We calculate the final accuracy as the weighted av-
erage of the accuracies across the dimensions in the new spaces,
where the weighting is proportional to the number of test words
within the categories. We repeat the same procedure for 10 in-
dependent random selections of the training words.

E. Measuring Interpretability

In addition to investigating the semantic distribution in the
embedding space, a word category dataset can be also used to
quantify the interpretability of the word embeddings. In several
studies, [21]–[23], interpretability is evaluated using the word
intrusion test. In the word intrusion test, for each embedding
dimension, a word set is generated including the top 5 words in
the top ranks and a noisy word (intruder) in the bottom ranks of
that dimension. The intruder is selected such that it is in the top
ranks of a separate dimension. Then, human editors are asked
to determine the intruder word within the generated set. The
editors’ performances are used to quantify the interpretability
of the embedding. Although evaluating interpretability based
on human judgements is an effective approach, word intrusion
is an expensive method since it requires human effort for each
evaluation. Furthermore, the word intrusion test does not quan-
tify the interpretability levels of the embedding dimensions,
instead it yields a binary decision as to whether a dimension is
interpretable or not. However, using continuous values is more
adequate than making binary evaluations since interpretability
levels may vary gradually across dimensions.

We propose a framework that addresses both of these is-
sues by providing automated, continuous valued evaluations of
interpretability while keeping the basis of the evaluations as
human judgements. The basic idea behind our framework is
that humans interpret dimensions by trying to group the most
distinctive words in the dimensions (i.e. top or bottom rank
words), an idea also leveraged by the word intrusion test. Based
on this key idea, it can be noted that if a dataset represents
all the possible groups humans can form, instead of relying on
human evaluations, one can simply check whether the distinc-
tive words of the embedding dimensions are present together
in any of these groups. As discussed earlier, the number of
groups humans can form is theoretically unbounded, therefore
it is not possible to compile an all-comprehensive dataset for
all potential groups. However, we claim that a dataset with a
sufficiently large number of categories can still provide a good
approximation to human judgements. Based on this argument,
we propose a simple method to quantify the interpretability of
the embedding dimensions.

We define two interpretability scores for an embedding
dimension-category pair as:

IS+
i,j =

|Sj ∩ V +
i (λ × nj )|
nj

× 100

IS−
i,j =

|Sj ∩ V −
i (λ × nj )|
nj

× 100

(5)
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Fig. 1. Flow chart for the generation of the interpretable embedding spaces I and I∗. First, word vectors are obtained using the GloVe algorithm on Wikipedia
corpus. To obtain I∗, weight matrix WC is generated by calculating the means of the words from each category for each embedding dimension and then WC is
multiplied by the embedding matrix (see Section III-C). To obtain I, weight matrix WB is generated by calculating the Bhattacharya distance between category
words and remaining vocabulary for each category and dimension. Then, WB is normalized (see Section III-C item 2), sign corrected (see Section III-C item 3),
and finally multiplied with standardized word embedding (Es , see Section III-C item 1).

where IS+
i,j is the interpretability score for the positive direction

and IS−
i,j is the interpretability score for the negative direction

for the ith dimension (i ∈ {1, 2, . . . ,D} where D is the dimen-
sionality of the embedding) and jth category (j ∈ {1, 2, . . . ,K}
where K is the number of categories in the dataset). Sj is the set
representing the words in the jth category, nj is the number of
the words in the jth category and V +

i (λ × nj ), V −
i (λ × nj ) re-

fer to the distinctive words located at the top and bottom ranks of
the ith embedding dimension, respectively. λ × nj is the num-
ber of words taken from the upper and bottom ranks where λ

is the parameter determining how strict the interpretability def-
inition is. The smallest value for λ is 1 that corresponds to the
most strict definition and larger λ values relax the definition by
increasing the range for selected category words. ∩ is the in-
tersection operator between category words and top and bottom
ranks words, |.| is the cardinality operator (number of elements)
for the intersecting set.

We take the maximum of scores in the positive and negative
directions as the overall interpretability score for a category
(ISi,j ). The interpretability score of a dimension is then taken
as the maximum of individual category interpretability scores
across that dimension (ISi). Finally, we calculate the overall
interpretability score of the embedding (IS) as the average of
the dimension interpretability scores:

ISi,j = max(IS+
i,j , IS−

i,j )

ISi = max
j

ISi,j

IS =
1
D

D∑
i=1

ISi (6)

We test our method on the GloVe embedding space, on the
semantic spaces I and I∗, and on a random space where word
vectors are generated by randomly sampling from a zero mean,
unit variance normal distribution. Interpretability scores for the
random space are taken as our baseline. We measure the in-
terpretability scores as λ values are varied from 1 (strict inter-
pretability) to 10 (relaxed interpretability).

Our interpretability measurements are based on our proposed
dataset SEMCAT, which was designed to be a comprehensive
dataset that contains a diverse set of word categories. Yet, it
is possible that the precise interpretability scores that are mea-
sured here are biased by the dataset used. In general, two main
properties of the dataset can affect the results: category se-
lection and within-category word selection. To examine the
effects of these properties on interpretability evaluations, we
create alternative datasets by varying both category selection
and word selection for SEMCAT. Since SEMCAT is compre-
hensive in terms of the words it contains for the categories,
these datasets are created by subsampling the categories and
words included in SEMCAT. Since random sampling of words
within a category may perturb the capacity of the dataset in
reflecting human judgement, we subsample r% of the words
that are closest to category centers within each category, where
r ∈ {40, 60, 80, 100}. To examine the importance of number
of categories in the dataset we randomly select m categories
from SEMCAT where m ∈ {30, 50, 70, 90, 110}. We repeat the
selection 10 times independently for each m.

IV. RESULTS

A. Semantic Decomposition

The KS test for normality reveals that 255 dimensions of E
are normally distributed (p > 0.05). The average test statistic
for these 255 dimensions is 0.0064 ± 0.0016 (mean ± stan-
dard deviation). While the normality hypothesis was rejected
for the remaining 45 dimensions, a relatively small test statistic
of 0.0156 ± 0.0168 is measured, indicating that the distribution
of these dimensions is approximately normal.

The semantic category weights calculated using the method
introduced in Section III-B is displayed in Fig. 2. A close ex-
amination of the distribution of category weights indicates that
the representation of semantic concepts are broadly distributed
across many dimensions of the GloVe embedding space. This
suggests that the raw space output by the GloVe algorithm has
poor interpretability.
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Fig. 2. Semantic category weights (WB 300×110) for 110 categories and 300
embedding dimensions obtained using Bhattacharya distance. Weights vary
between 0 (represented by black) and 0.63 (represented by white). It can be
noticed that some dimensions represent larger number of categories than oth-
ers do and also some categories are represented strongly by more dimensions
than others.

In addition, it can be observed that the total representation
strength summed across dimensions varies significantly across
categories, some columns in the category weight matrix con-
tain much higher values than others. In fact, total representation
strength of a category greatly depends on its word distribution. If
a particular category reflects a highly specific semantic concept
with relatively few words such as the metals category, category
words tend to be well clustered in the embedding space. This
tight grouping of category words results in large Bhattacharya
distances in most dimensions indicating stronger representation
of the category. On the other hand, if words from a semantic
category are weakly related, it is more difficult for the word
embedding to encode their relations. In this case, word vectors
are relatively more widespread in the embedding space, and
this leads to smaller Bhattacharya distances indicating that the
semantic category does not have a strong representation across
embedding dimensions. The total representation strengths of
the 110 semantic categories in SEMCAT are shown in Fig. 3,
along with the baseline strength level obtained for a category
composed of 91 randomly selected words where 91 is the av-
erage word count across categories in SEMCAT. The metals
category has the strongest total representation among SEMCAT

Fig. 3. Total representation strengths of 110 semantic categories from SEM-
CAT. Bhattacharya distance scores are summed across dimensions and then
sorted. Red horizontal line represents the baseline strength level obtained for a
category composed of 91 randomly selected words from the vocabulary (where
91 is the average word count across categories in SEMCAT). The metals cate-
gory has the strongest total representation among SEMCAT categories due to
relatively few and well clustered words it contains, while the pirate category has
the lowest total representation due to widespread words it contains.

categories due to relatively few and well clustered words it
contains, whereas the pirate category has the lowest total repre-
sentation due to widespread words it contains.

To closely inspect the semantic structure of dimensions and
categories, let us investigate the decompositions of three sample
dimensions and three specific semantic categories (math, ani-
mal and tools). The left column of Fig. 4 displays the categorical
decomposition of the 2nd, 6th and 45th dimensions of the word
embedding. While the 2nd dimension selectively represents a
particular category (sciences), the 45th dimension focuses on 3
different categories (housing, rooms and sciences) and the 6th
dimension has a distributed and relatively uniform representa-
tion of many different categories. These distinct distributional
properties can also be observed in terms of categories as shown
in the right column of Fig. 4. While only few dimensions are
dominant for representing the math category, semantic encod-
ings of the tools and animals categories are distributed across
many embedding dimensions.

Note that these results are valid regardless of the random
initialization of the GloVe algorithm while learning the embed-
ding space. For the weights calculated for our second GloVe
embedding space E2 , where the only difference between E and
E2 is the independent random initializations of the word vec-
tors before training, we observe nearly identical decompositions
for the categories ignoring the order of the dimensions (similar
number of peaks and similar total representation strength; not
shown).

B. Validation

A representative investigation of the semantic space I is pre-
sented in Fig. 5, where semantic decompositions of 4 different
words, window, bus, soldier and article, are displayed using 20
dimensions of I with largest values for each word. These words
are expected to have high values in the dimensions that encode
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Fig. 4. Categorical decompositions of the 2nd, 6th, and 45th word embedding dimensions are given in the left column. A dense word embedding dimension
may focus on a single category (top row), may represent a few different categories (bottom row) or may represent many different categories with low strength
(middle row). Dimensional decompositions of the math, animal, and tools categories are shown in the right column. Semantic information about a category may
be encoded in a few word embedding dimensions (top row) or it can be distributed across many of the dimensions (bottom row).

Fig. 5. Semantic decompositions of the words window, bus, soldier, and article
for 20 highest scoring SEMCAT categories obtained from vectors in I. Red bars
indicate the categories that contain the word, blue bars indicate the categories
that do not contain the word.

Fig. 6. Categorical decompositions of the words window, bus, soldier, and
article for 20 highest scoring categories obtained from vectors in I∗. Red bars
indicate the categories that contain the word, blue bars indicate the categories
that do not contain the word.
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Fig. 7. Category word retrieval performances for top n, 3n, and 5n words where n is the number of test words varying across categories. Category weights
obtained using Bhattacharya distance represent categories better than the center of the category words. Using only 25 largest weights from WB for each category
(k = 25) gives better performance than using category centers with any k (shown with dashed line).

the categories to which they belong. However, we can clearly
see from Fig. 5 that additional categories such as jobs, people,
pirate and weapons that are semantically related to soldier but
that do not contain the word also have high values. Similar ob-
servations can be made for window, bus, and article supporting
the conclusion that the category weight spread broadly to many
non-category words.

Fig. 6 presents the semantic decompositions of the words win-
dow, bus, soldier and article obtained form I∗ that is calculated
using the category centers. Similar to the distributions obtained
in I, words have high values for semantically-related categories
even when these categories do not contain the words. In con-
trast to I, however, scores for words are much more uniformly
distributed across categories, implying that this alternative ap-
proach is less discriminative for categories than the proposed
method.

To quantitatively compare I and I∗, category word retrieval
test is applied and the results are presented in Fig. 7. As de-
picted in Fig. 7, the weights calculated using our method (WB )
significantly outperform the weights from the category centers
(WC ). It can be noticed that, using only 25 largest weights from
WB for each category (k = 25) yields higher accuracy in word
retrieval compared to the alternative WC with any k. This result
confirms the prediction that the vectors that we obtain for each
category (i.e. columns of WB ) distinguish categories better than
their average vectors (i.e. columns of WC ).

C. Measuring Interpretability

Fig. 8 displays the interpretability scores of the GloVe em-
bedding, I, I∗ and the random embedding for varying λ values.
λ can be considered as a design parameter adjusted accord-
ing to the interpretability definition. Increasing λ relaxes the
interpretability definition by allowing category words to be dis-
tributed on a wider range around the top ranks of a dimension.
We propose that λ = 5 is an adequate choice that yields a sim-
ilar evaluation to measuring the top-5 error in category word
retrieval tests. As clearly depicted, semantic space I is signifi-
cantly more interpretable than the GloVe embedding as justified
in Section IV-B. We can also see that interpretability score of

Fig. 8. Interpretability scores for GloVe, I, I∗ and random embeddings for
varying λ values where λ is the parameter determining how strict the inter-
pretability definition is (λ = 1 is the most strict definition, λ = 10 is a relaxed
definition). Semantic spaces I and I∗ are significantly more interpretable than
GloVe as expected. I outperforms I∗ suggesting that weights calculated with
our proposed method more distinctively represent categories as opposed weights
calculated as the category centers. Interpretability scores of Glove are close
to the baseline (Random) implying that the dense word embedding has poor
interpretability.

the GloVe embedding is close to the random embedding repre-
senting the baseline interpretability level.

Interpretability scores for datasets constructed by sub-
sampling SEMCAT are given in Table III for the GloVe, I, I∗

and random embedding spaces for λ = 5. Interpretability scores
for all embeddings increase as the number of categories in the
dataset increase (30, 50, 70, 90, 110) for each category cover-
age (40%, 60%, 80%, 100%). This is expected since increasing
the number of categories corresponds to taking into account hu-
man interpretations more substantially during evaluation. One
can further argue that true interpretability scores of the embed-
dings (i.e. scores from an all-comprehensive dataset) should be
even larger than those presented in Table III. However, it can
also be noticed that the increase in the interpretability scores
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TABLE III
AVERAGE INTERPRETABILITY SCORES (%) FOR λ = 5

Results are averaged across 10 independent selections of categories for each
category coverage.

of the GloVe and random embedding spaces gets smaller for
larger number of categories. Thus, there is diminishing returns
to increasing number of categories in terms of interpretabil-
ity. Another important observation is that the interpretability
scores of I and I∗ are more sensitive to number of categories in
the dataset than the GloVe or random embeddings. This can be
attributed to the fact that I and I∗ comprise dimensions that cor-
respond to SEMCAT categories, and that inclusion or exclusion
of these categories more directly affects interpretability.

In contrast to the category coverage, the effects of within-
category word coverage on interpretability scores can be more
complex. Starting with few words within each category, in-
creasing the number of words is expected to more uniformly
sample from the word distribution, more accurately reflect the
semantic relations within each category and thereby enhance in-
terpretability scores. However, having categories over-abundant
in words might inevitably weaken semantic correlations among
them, reducing the discriminability of the categories and inter-
pretability of the embedding. Table III shows that, interestingly,
changing the category coverage has different effects on the inter-
pretability scores of different types of embeddings. As category
word coverage increases, interpretability scores for random em-
bedding gradually decrease while they monotonically increase
for the GloVe embedding. For semantic spaces I and I∗, inter-
pretability scores increase as the category coverage increases up
to 80% of that of SEMCAT, then the scores decrease. This may
be a result of having too comprehensive categories as argued
earlier, implying that categories with coverage of around 80%
of SEMCAT are better suited for measuring interpretability.
However, it should be noted that the change in the interpretabil-
ity scores for different word coverages might be effected by
non-ideal subsampling of category words. Although our word
sampling method, based on words’ distances to category cen-
ters, is expected to generate categories that are represented better
compared to random sampling of category words, category rep-
resentations might be suboptimal compared to human designed
categories.

V. DISCUSSION AND CONCLUSION

In this paper, we propose a statistical method to uncover the
latent semantic structure in dense word embeddings. Based on
a new dataset (SEMCAT) we introduce that contains more than
6,500 words semantically grouped under 110 categories, we pro-
vide a semantic decomposition of the word embedding dimen-
sions and verify our findings using qualitative and quantitative
tests. We also introduce a method to quantify the interpretabil-
ity of word embeddings based on SEMCAT that can replace
the word intrusion test that relies heavily on human effort while
keeping the basis of the interpretations as human judgements.

Our proposed method to investigate the hidden semantic
structure in the embedding space is based on calculation of
category weights using a Bhattacharya distance metric. This
metric implicitly assumes that the distribution of words within
each embedding dimension is normal. Our statistical assess-
ments indicate that the GloVe embedding space considered here
closely follows this assumption. In applications where the em-
bedding method yields distributions that significantly deviate
from a normal distribution, nonparametric distribution metrics
such as Spearman’s correlation could be leveraged as an alter-
native. The resulting category weights can seamlessly be input
to the remaining components of our framework.

Since our proposed framework for measuring interpretability
depends solely on the selection of the category words dataset,
it can be used to directly compare different word embedding
methods (e.g., GloVe, word2vec, fasttext) in terms of the inter-
pretability of the resulting embedding spaces. A straightforward
way to do this is to compare the category weights calculated for
embedding dimensions across various embedding spaces. Note,
however, that the Bhattacharya distance metric for measuring
the category weights does not follow a linear scale and is un-
bounded. For instance, consider a pair of embeddings with cate-
gory weights 10 and 30 versus another pair with weights 30 and
50. For both pairs, the latter embedding can be deemed more
interpretable than the former. Yet, due to the gross nonlinearity
of the distance metric, it is challenging to infer whether a 20-unit
improvement in the category weights corresponds to similar lev-
els of improvement in interpretability across the two pairs. To
alleviate these issues, here we propose an improved method that
assigns normalized interpretability scores with an upper bound
of 100%. This method facilitates interpretability assessments
and comparisons among separate embedding spaces.

The results reported in this study for semantic analysis and in-
terpretability assessment of embeddings are based on SEMCAT.
SEMCAT contains 110 different semantic categories where av-
erage number of words per category is 91 rendering SEMCAT
categories quite comprehensive. Although the HyperLex dataset
contains a relatively larger number of categories (1399), the av-
erage number of words per category is only 2, insufficient to
accurately represent semantic categories. Furthermore, while
HyperLex categories are constructed based on a single type of
relation among words (hyperonym-hyponym), SEMCAT is sig-
nificantly more comprehensive since many categories include
words that are grouped based on diverse types of relationships
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that go beyond hypernym-hyponym relations. Meanwhile, the
relatively smaller number of categories in SEMCAT is not con-
sidered a strong limitation, as our analyses indicate that the
interpretability levels exhibit diminishing returns when the num-
ber of categories in the dataset are increased and SEMCAT is
readily yielding near optimal performance. That said, extended
datasets with improved coverage and expert labeling by multiple
observers would further improve the reliability of the proposed
approach. To do this, a synergistic merge with existing lexical
databases such as WordNet might prove useful.

Methods for learning dense word embeddings remain an ac-
tive area of NLP research. The framework proposed in this
study enables quantitative assessments on the intrinsic seman-
tic structure and interpretability of word embeddings. Provid-
ing performance improvements in other common NLP tasks
might be a future study. Therefore, the proposed framework
can be a valuable tool in guiding future research on obtain-
ing interpretable yet effective embedding spaces for many
NLP tasks that critically rely on semantic information. For
instance, performance evaluation of more interpretable word
embeddings on higher level NLP tasks (i.e. sentiment analy-
sis, named entity recognition, question answering) and the re-
lation between interpretability and NLP performance can be
worthwhile.
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