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A B S T R A C T

We propose bidirectional imparting or BiImp, a generalized method for aligning embedding
dimensions with concepts during the embedding learning phase. While preserving the semantic
structure of the embedding space, BiImp makes dimensions interpretable, which has a critical
role in deciphering the black-box behavior of word embeddings. BiImp separately utilizes both
directions of a vector space dimension: each direction can be assigned to a different concept.
This increases the number of concepts that can be represented in the embedding space. Our
experimental results demonstrate the interpretability of BiImp embeddings without making
compromises on the semantic task performance. We also use BiImp to reduce gender bias
in word embeddings by encoding gender-opposite concepts (e.g., male–female) in a single
embedding dimension. These results highlight the potential of BiImp in reducing biases and
stereotypes present in word embeddings. Furthermore, task or domain-specific interpretable
word embeddings can be obtained by adjusting the corresponding word groups in embedding
dimensions according to task or domain. As a result, BiImp offers wide liberty in studying word
embeddings without any further effort.

. Introduction

Developments in machine learning lead to interdisciplinary studies and merge different research areas. An example can be
bserved in the natural language processing (NLP) based information science studies. There are increasingly improving information
cience studies that utilize NLP methods, especially word embeddings, while focusing on processing textual information. The scope of
LP-based studies can range from event detection (Qian et al., 2019; Tuke et al., 2020) to document retrieval (Bagheri et al., 2018).
omputational studies on social media also frequently utilize NLP tools in various topics such as author profiling (López-Santillan
t al., 2020), content processing (Moudjari et al., 2021; Roy et al., 2021) and hate speech detection (Pamungkas et al., 2021; Pronoza
t al., 2021). What is common among these studies is that they all heavily depend on textual data. In representing and processing
ext, word embeddings play a key role and are used ubiquitously. Word embeddings are pre-trained semantic representations of
ords that hold numerous semantic features of natural languages. However, one disadvantage of word embeddings is that they learn

anguage features as black-box schemes, unlike methods directly extracting determined and desired features. Therefore, studies on
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their interpretability are of importance (Chen et al., 2016; Levy & Goldberg, 2014) for developing explainable NLP methods to be
used in higher level information science applications.

Word embeddings (Bojanowski et al., 2017; Mikolov, Corrado et al., 2013; Mikolov, Sutskever et al., 2013; Pennington et al., 2014)
continuous dense vector representations – capture semantic and syntactic features of words. These embeddings are shown to be
seful in a broad range of NLP applications involving topic modeling (Zhao et al., 2021), text classification (Elnagar et al., 2020),
ey-phrase extraction (Papagiannopoulou & Tsoumakas, 2018), document retrieval (Bagheri et al., 2018), named entity recognition
NER) (Nozza et al., 2021), query performance prediction (Roy et al., 2019), and extracting semantic features of words (Şahinuç &
oç, 2021). Although contextualized word embeddings and transformer-based architectures (Devlin et al., 2019; Radford et al., 2019;
aswani et al., 2017) are becoming more and more prevalent due to their impressive performance on many NLP tasks, these models
till use a static word embedding layer to represent input. Therefore, improvements to static word embeddings can potentially be
ransferred to contextual models as well (Schick & Schütze, 2020).

In addition to the traditional NLP tasks, word embeddings are frequently used in many other interdisciplinary domains. In
euroscience, they are employed to analyze the representation of semantics in brain activity (Huth et al., 2016; Ruan et al., 2016;
hang et al., 2020) and as part of a decoder that extracts linguistic meaning from measured brain activity (Pereira et al., 2018).
n psychiatry, they are used to detect incoherent speech for diagnosing schizophrenia (Iter et al., 2018; Voppel et al., 2021). In
egal domain, they are used to predict outcomes of courts (Mumcuoğlu et al., 2021), evidence extraction from court records (Ji,
ao et al., 2020) and coreference resolution in legal texts (Ji, Gao et al., 2020). In the social domain, based on word, sentence
nd document embeddings polarization in social media can be analyzed (Demszky et al., 2019) and users of social media can be
rofiled (López-Santillan et al., 2020). Evolutionary linguists track historical changes in word meaning with embeddings (Hamilton
t al., 2016; Kutuzov et al., 2018; Yüksel et al., 2021). Recent studies suggest that embeddings capture and quantify gender and
thnic biases in language (Bolukbasi et al., 2016; Caliskan et al., 2017; Garg et al., 2018) and their evolution over time (Agarwal
t al., 2019).

Despite a large body of work on improved word embeddings (Bollegala et al., 2016; Celikyilmaz et al., 2015; Liu et al., 2015;
rkšić et al., 2016; Yang & Mao, 2016; Yu & Dredze, 2014; Yu et al., 2017), a central limitation is their lack of interpretability:

imensions of the dense vector space do not individually represent semantic concepts (Chen et al., 2016; Levy & Goldberg, 2014)
r other directly interpretable distinctions. Yet interpretability of word embeddings is highly desirable for several reasons. (i) It will
nable researchers to make sense of embeddings of individual words, which are currently meaningful only in relation to other
mbeddings. (ii) Word embeddings serve as base representation in many deep learning models, so their interpretability is key
or interpretable deep learning models. (iii) In interpretable embedding models, it is easier to remove redundant or nonrelevant
imensions, resulting in reduced computation and memory requirements. (iv) Interpretability also facilitates removal of gender,
ace and other biases (Dufter & Schütze, 2019).

Previous studies have put forth several important approaches to address limitations on interpretability of word embeddings. A
roup of studies proposed to use sparsity constraints such as non-negative matrix factorization (Fyshe et al., 2014; Luo et al., 2015;
urphy et al., 2012), sparse coding (Arora et al., 2018; Faruqui et al., 2015) and sparse auto-encoders (Subramanian et al., 2018) that

ield sparse word representations. Since each word is represented by only a few dimensions, it is easier to understand what semantic
eatures the dimensions capture. However, larger vocabulary requires higher dimensionality to achieve a desired sparsity level which
ncreases memory and computation requirements. In addition, evaluations on common benchmark tests suggest that the resulting
parse embeddings often perform poorly compared to the dense embeddings that have distributed word representations. Another
roup of studies proposed to instead use orthogonal transformations over the high performing dense embeddings (Dufter & Schütze,
019; Park et al., 2017; Zobnin, 2017) in order to preserve task performance. Yet, the level of improvement in interpretability
hat orthogonal transformations can achieve is relatively limited. Recently, in Şenel et al. (2020), we proposed an offline imparting
pproach to obtain interpretable word embeddings by modifying the objective function of GloVe (Pennington et al., 2014) to align
ach dimension of the vector space with a single pre-defined concept. However, this unidirectional imparting method does not
tilize the full capacity of the embedding space (negative directions are ignored) and is limited to the training setting of the GloVe.

In this paper, we introduce BiImp (read as ‘‘bimp’’), a generalized imparting approach that is capable of bidirectional imparting
and online learning, hence more efficient and adaptable to new training data. BiImp utilizes both directions along each dimension
of the vector space separately to encode two different concepts. The two concepts can be chosen arbitrarily or chosen as opposites
(e.g., good – bad, male – female) as a special case (see Fig. 1), providing a more efficient use of the embedding space while increasing
encoding flexibility. We demonstrate BiImp by modifying the word2vec skip-gram model (Mikolov, Corrado et al., 2013; Mikolov,
Sutskever et al., 2013); concepts are selected from Roget’s Thesaurus and WordNet. A hyperparameter can be tuned to achieve a good
tradeoff between interpretability on the one hand and preservation of semantic structure on the other. We perform comprehensive
experiments and demonstrate that interpretability of word embeddings improves while performance stays about the same. Inspired
by Bolukbasi et al. (2016), we also demonstrate that BiImp can concentrate gender information in a single embedding dimension,
the gender dimension, as a continuum. This supports efficient capture of gender bias and debiasing through removal of the gender
dimension. In short, main outcomes of this study can be summarized as: (i) BiImp provides interpretable word embeddings by using
both positive and negative directions of word embeddings; (ii) BiImp is compatible to different word embedding learning types; (iii)
BiImp can be utilized to remove human biases from embeddings without compromising task performance.
2
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Fig. 1. Illustration of bidirectional imparting, the main idea underlying BiImp. The method increases interpretability of word embeddings by linking embedding
dimensions to concepts. The concepts are taken from a conceptual resource that provides concepts along with word sets that are associated with them. BiImp
‘‘imparts’’ two concepts to each embedding dimension, one for the positive, one for the negative direction. E.g., the concepts ‘‘male’’ and ‘‘female’’ are associated
with positive and negative directions of the polar dimension in the figure. Imparting is achieved by modifying the embedding training objective: during training,
words associated with a concept are constrained to have high (or low) values on the dimension linked to the concept. As a result, the embedding vector of a
word is directly interpretable: the value of each coordinate can be seen as a weight that the associated concept (positively or negatively associated concept)
has in the representation of the meaning of the word. We study both polar dimensions (positive/negative concepts are opposites) and nonpolar dimensions
(positive/negative concepts are unrelated). Solid arrow: word from resource. Dashed arrow: word not from the resource inferred to be related to the concept.
We show that BiImp increases interpretability without impacting task performance and that it supports more effective debiasing.

2. Related work

2.1. Interpretability of word embeddings

Benefits of interpretable word embeddings have motivated several previous efforts to improve interpretability. Most of these
studies introduce a sparsity constraint to learn sparse representations where each word is represented by only a few non-zero
dimensions. The motivation behind sparsity is that by investigating the words that correspond to non-zero values in a dimension, one
can infer which semantic features are encoded in that dimension. Based on this idea, Murphy et al. (2012) propose non-negative
sparse embeddings (NNSE) to perform non-negative matrix factorization (NMF) on word co-occurrence variant matrices. As an
extension to NNSE, Fyshe et al. (2014) proposed joint non-negative sparse embeddings (JNNSE) to incorporate additional knowledge
on word similarity as measured by the similarity of cortical activity patterns. To address the memory and scale issues of NNSE-based
methods, Luo et al. (2015) proposed an online learning method, where sparse embeddings were obtained using a modified skip-
gram model (Mikolov, Sutskever et al., 2013). Several other studies proposed to learn sparse transformations that map pretrained
state-of-the-art embeddings to sparse, more interpretable vector spaces instead of learning them from corpora (or co-occurrence
matrices) directly. Arora et al. (2018) and Faruqui et al. (2015) use sparse coding methods and Subramanian et al. (2018) train a
sparse auto-encoder. Inspired by research in topic modeling, Panigrahi et al. (2019) proposed a method named Word2Sense based on
the Latent Dirichlet Allocation (LDA) to extract distributions of difference word senses from a corpus, which are then used to learn
sparse interpretable word embeddings. While the above-mentioned approaches can increase interpretability to a certain degree, they
do not exercise control over the specific concepts or word senses that are captured in the embedding dimensions.

Sparse representations typically have higher dimensionality than dense embeddings since only a few words are encoded in
each dimension. Thus, they can suffer from memory and scaling issues especially for tasks that require a large vocabulary. To
strictly preserve the dimensionality and semantic structure of word embeddings, several researchers proposed orthogonal instead
of sparse transformations. Park et al. (2017) experimented with rotation algorithms based on exploratory factor analysis (EFA)
with orthogonality constraints. Zobnin (2017) used orthogonal transformations to improve clustering of words along individual
embedding dimensions. However, increases in clustering along a subset of embedding dimensions come at the expense of reduced
clustering (i.e., interpretability) along the remaining dimensions (Zobnin, 2017). Dufter and Schütze (2019) and Rothe and Schütze
(2016) use orthogonal transformations to align a linguistic signal (e.g., a collection of words) to an embedding dimension to obtain an
interpretable subspace. However, this method has only been demonstrated in a low-dimensional subspace to date, so its performance
in higher dimensional subspaces remains unclear. In a concurrent, independent study (Mathew et al., 2020), the transformation
method POLAR was proposed to map an existing embedding space to a polar space where each embedding dimension corresponds
to a pair of antonyms (i.e., polar opposites). In a recent study (Şenel et al., 2020), an imparting method was proposed in which
3
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individual dimensions of the model were aligned with concepts defined a priori based on an external resource. Şenel et al. (2020)
demonstrated the effectiveness of this method only for the offline GloVe method, and only the positive direction of each dimension
was matched up with a concept.

2.2. Gender bias

Ensuring the fairness of mathematical models is one of the most crucial issues in machine learning based information processing.
he roles of machine learning and artificial intelligence have an increasing momentum in many real-world applications such as job
iring, granting loans, college applications (Makhlouf et al., 2021). Therefore, algorithms, model parameters, or model features
ust not include gender, race, ethnic or any other unwanted bias. In Makhlouf et al. (2021), important notions of fairness related

o real-world scenarios are extracted, and necessary fairness notions are recommended for each specific setup that includes machine
earning.

Bolukbasi et al. (2016) is one of the pioneering studies that investigate gender bias in word embeddings. Authors realize that
ome occupations that are supposed to be gender-neutral are mapped in favor of one gender by word embeddings. For example,
ord man is closer to programmer than woman in semantic space. To eliminate this problem, the authors propose two different
ebiasing methods named soft debiasing and hard debiasing, respectively (Bolukbasi et al., 2016). Caliskan et al. (2017) show that
raining datasets can unintentionally involve not only gender bias but also morally neutral biases. They also propose the Word
mbedding Association Test (WEAT) and the Word Embedding Factual Association Test (WEFAT) to quantify the bias present in
exts. In the diachronic study of Garg et al. (2018), it is shown that word embeddings that are trained on different texts from
ifferent timelines can reflect social, demographic, and cultural features of the corresponding period. On the other hand, Gonen
nd Goldberg (2019) approach this issue in a critical way by claiming that the proposed debiasing methods in the literature are
ot sufficient to remove the bias completely, and that the debiasing methods provide superficial cleaning, and this problem should
e dealt with in-depth. The recent advances come with the requirement of detecting and removing biases in contextualized word
mbeddings and language models. To this end, Liang et al. (2020) propose SENT-DEBIAS method that reduces the social biases in
entence level representations. The proposed method is performed in BERT and ELMO models as an extension of hard debasing
n Bolukbasi et al. (2016).

Gender bias is not limited to exist only in word embeddings. Recommender systems and search engines also host gender bias
n various ways. Melchiorre et al. (2021) investigate the gender fairness in recommendation algorithms in the music domain. The
uthors demonstrate the gender inequality in the recommendation performance in favor of the male user group. In addition, they
lso show that applying debiasing algorithms are beneficial for the improvement of gender fairness. On the other hand, Fabris et al.
2020) propose a measure named ‘Gender Stereotype Reinforcement’ to evaluate the tendency of search engines to support gender
tereotypes. The effect of the embedding debiasing methods on search engines is also inspected.

Detecting gender discrimination is also as important as eliminating gender bias. There exist many kinds of hate speech in social
edia (Kocoń et al., 2021). Identifying such expressions that contain hatred and biased patterns is also a significant subject of

nformation processing. For instance, Pamungkas et al. (2020) present a review of the state-of-the-art misogyny detection. The
ost predictive language features for distinguishing hatred and biased content are also presented. Learning these features takes an

mportant part in both detecting and eliminating gender bias in machine learning-based information processing models.

. Research objectives

Our main contributions and research objectives are as follows:

• We propose BiImp, a bidirectional imparting algorithm to improve interpretability of word embeddings that utilizes both
directions of each embedding dimension separately to encode different concepts.

• We demonstrate that the bidirectional imparting of arbitrary concepts offers superior performance compared to encoding of
polar opposites to each embedding dimension, in terms of interpretability, intrinsic and downstream evaluation tasks.

• We perform comprehensive evaluations and provide comparison with previous work, showing that BiImp achieves greater
interpretability without sacrificing performance.

• We propose for the first time an imparting method to concentrate gender information to a designated embedding dimension,
along with an hybrid method that achieves concurrent gender and interpretability imparting. We show that this dimension
effectively captures gender information and improves the performance of gender debiasing methods, in terms of gender bias
metrics and high-level evaluation tasks.

. Methods

.1. Imparting

Unidirectional imparting (UniImp) is a method that enhances interpretability in GloVe word embeddings by forcing words related
4
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𝑉
∑

𝑖,𝑗=1
𝑓 (𝑋𝑖𝑗 )

[

(

𝑤⃗𝑇
𝑖
⃗̃𝑤𝑗 + 𝑏𝑖 + 𝑏̃𝑗 − log𝑋𝑖𝑗

)2

+ 𝑘𝑔
( 𝐶
∑

𝑐=1
1𝑖∈𝐹𝑐 𝑔(𝑤𝑖,𝑐 ) +

𝐶
∑

𝑐=1
1𝑗∈𝐹𝑐 𝑔(𝑤̃𝑗,𝑐 )

) ]
(1)

where 𝑤⃗𝑖 and ⃗̃𝑗𝑤 denote word and context vectors, 𝑤𝑖,𝑐 and 𝑤̃𝑗,𝑐 denote the 𝑐th components of word and context vectors, 𝑏𝑖 and 𝑏̃𝑗
denote word and context biases, 𝑋𝑖𝑗 denotes co-occurrence of the 𝑖th and 𝑗th words in the vocabulary, 𝑉 denotes vocabulary size,
and 𝑓 (⋅) is a weighting function to prevent bias from rare words. The first term in the cost is GloVe’s original cost function. It aims
to capture semantic structure in the embedding model based on word co-occurrences. The second term aims to align embedding
dimensions with word-groups. In this latter term, 𝐶 denotes the number of word-groups (𝐶 ≤ 𝑑𝑖𝑚(𝑤⃗)), 1𝑥∈𝑆 is the indicator variable
for the inclusion 𝑥 ∈ 𝑆, 𝐹𝑐 denotes the indices of words that belong to the 𝑐th group, 𝑘𝑔 controls the relative weighting of the second
term, and 𝑔(⋅) is a monotone decreasing function that adjusts the size of the updates during training. 𝑔(⋅) is defined as:

𝑔(𝑥) =

{

1∕2 ⋅ 𝑒𝑥𝑝(−2𝑥), if 𝑥 < 0.5
1∕(4𝑒𝑥), otherwise.

4.2. Generalized bidirectional imparting

In this paper, we propose BiImp, a generalized imparting framework that is capable of online learning and bidirectional imparting.
To alleviate computation and memory limitations, we focus on the skip-gram model of word2vec with negative sampling. The
objective that the skip-gram model aims to maximize for a word pair (𝑖, 𝑗) is given as:

log 𝜎( ⃗̃𝑤𝑗
𝑇
𝑤⃗𝑖) +

𝑚
∑

𝑡=1
E𝑧𝑡∼𝑃𝑛(𝑤)

[

𝑙𝑜𝑔 𝜎( ⃗−𝑤̃𝑧𝑡
𝑇
𝑤⃗𝑖)

]

. (2)

Although the learning mechanisms of GloVe and word2vec are different, unidirectional imparting can still be implemented by
maximizing the following modified objective:

log 𝜎( ⃗̃𝑤𝑗
𝑇
𝑤⃗𝑖) +

𝑚
∑

𝑡=1
E𝑧𝑡∼𝑃𝑛(𝑤)

[

log 𝜎( ⃗−𝑤̃𝑧𝑡
𝑇
𝑤⃗𝑖)

]

− 𝑘𝑤
(

𝐶
∑

𝑐=1
1𝑖∈𝐹𝑐 𝑔(𝑤𝑖,𝑐 ) +

𝐶
∑

𝑐=1
1𝑗∈𝐹𝑐 𝑔(𝑤̃𝑗,𝑐 )

)

.

(3)

In objectives (2) and (3), 𝜎 is the sigmoid function, 𝑚 is number of negative samples and 𝑃𝑛(𝑤) is the unigram distribution (𝑈 (𝑤))
raised to the power 3/4, and 𝑧𝑡 is the index of the word from the 𝑡th draw from the unigram word distribution. Although the
additional terms in (1) and (3) look identical, throughout the training process, their relative influence over the original embedding
loss can be significantly different. To account for these differences, different weighting factors 𝑘𝑔 and 𝑘𝑤 are defined.

Imparting was previously only performed for the positive direction of embedding dimensions. But negative directions are equally
suitable to encode semantic, interpretable concepts. Based on this argument, we extend the imparting method to both directions of
the embedding dimensions. Given a fixed number for embedding dimensions, BiImp doubles the concept capacity compared to the
unidirectional case. Moreover, by aligning opposite concepts such as good and bad or male and female with opposing directions of
the same dimension, these concepts can be represented in a continuum.

The proposed objective for BiImp, the bidirectionally imparted word2vec model is as follows:

log 𝜎( ⃗̃𝑤𝑗
𝑇
𝑤⃗𝑖) +

𝑚
∑

𝑡=1
E𝑧𝑡∼𝑃𝑛(𝑤)

[

log 𝜎( ⃗−𝑤̃𝑧𝑡
𝑇
𝑤⃗𝑖)

]

− 𝑘𝑤
(

𝐶+
∑

𝑐=1
1𝑖∈𝐹+

𝑐
𝑔(𝑤𝑖,𝑐 ) +

𝐶+
∑

𝑐=1
1𝑗∈𝐹+

𝑐
𝑔(𝑤̃𝑗,𝑐 )

−
𝐶−
∑

𝑐=1
1𝑖∈𝐹−

𝑐
𝑔(𝑤𝑖,𝑐 ) −

𝐶−
∑

𝑐=1
1𝑗∈𝐹−

𝑐
𝑔(𝑤̃𝑗,𝑐 )

)

(4)

where 𝐶+ and 𝐶− are the number of word-groups associated with positive and negative directions respectively (𝐶+ ≤ 𝑑𝑖𝑚(𝑤⃗),
− ≤ 𝑑𝑖𝑚(𝑤⃗)). 𝐹+

𝑐 and 𝐹−
𝑐 denote the indices of words that belong to the 𝑐th group in the positive and negative directions,

espectively.
Here word-groups encoded in opposing directions of a given dimension are referred to as word–group pairs. Ideally, the word–

roup pairs should not contain overlapping words (𝐹+
𝑐 ∩𝐹−

𝑐 = ∅ ∀𝑐) to prevent weak word representations. In practice, this problem
an be alleviated by rearrangement of word–group pairs. In this study, we apply the following simple rearrangement procedure to
revent overlap. For a given embedding dimension, we first select two random word-groups. When overlap is present, the second
5
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word–group is reselected from the set of remaining unpaired word-groups. This procedure is iterated until all word-groups are
paired.1

.3. Lexical resources

The imparting method requires an external lexical resource that constitutes a basis for interpretability. A trivial interpretation
f an embedding model is possible if each embedding dimension is aligned with a distinct concept, (i.e., a word-group). Since
ractical embedding models can have variable dimensionality, a broad lexical resource that can be used to flexibly extract an
rbitrary number of concepts is desirable. To this end, we utilized two lexical resources which are the Roget’s Thesaurus (Roget,
008) and the WordNet (Miller, 1995).

In Şenel et al. (2020), Roget’s Thesaurus is utilized as an external resource. Roget’s Thesaurus follows a tree structure, where
he actual words and phrases are grouped under 1,000 categories making the leaves of the tree structure. We extract word-groups
rom the thesaurus by partitioning the tree structure starting at the root node from which all other nodes descend. A threshold
𝑟
𝑚𝑎𝑥 is set for the maximum size of a node. Size of a given node is defined as the number of unique descendant words. During
artitioning, each node with size less than the threshold is selected to define a word–group, which consists of descendant words for
hat node. For an above-threshold node without any children nodes, the word–group was defined as the 𝜆𝑟𝑚𝑎𝑥 descendant words with

the highest-frequency ranks. Among the resulting word-groups, the ones that contain less than 𝜆𝑟𝑚𝑖𝑛 words are discarded. Finally,
word-groups are constructed after discarding the groups with the largest median frequency ranks (i.e., groups that contain more
rare words on average).

In addition to the Roget’s Thesaurus, we investigate another important lexical resource that can be used to extract semantic
word-groups, the WordNet (Miller, 1995). WordNet is a popular lexical database for English in which nouns, verbs, adjectives and
adverbs are grouped together into synsets. Each synset expresses a distinct concept. Synsets are interlinked based on their semantic
and lexical relations creating a network of related words and concepts. WordNet is similar to a thesaurus since it can be used to
group words together based on meaning. However, there are two important differences between WordNet and a thesaurus. First,
the network in WordNet is not based on word forms (i.e., sequence of letters) but on specific senses of words. As such, different
senses of a word are represented by different synsets providing semantic disambiguation. Second, semantic relations between words
are labeled in WordNet to describe the relation types, unlike a thesaurus where words are grouped merely based on similarity
in meaning. WordNet is a comprehensive lexical resource containing 117,000 synsets each of which is linked to other synsets. The
most frequently encoded relation between synsets is the super-subordinate relation (also known as hyper-hyponymy) that links more
general synsets like furniture to increasingly specific synsets like bed and bunkbed. In other words, the category furniture includes
bed, the category bed includes bunkbed and so on. In the hierarchical structure of WordNet, all noun synsets ultimately go up the
root node entity.

4.4. Interpretability evaluation

Following Şenel et al. (2020), we evaluate the interpretability of the word embeddings based on SEMCAT categories (Şenel,
Utlu et al., 2018) and subcategories (Şenel, Yücesoy et al., 2018). SEMCAT (sub)categories are taken as an approximation for the
semantic concepts that humans can use to interpret embedding dimensions. Based on SEMCAT, we calculate the Interpretability Score
IS, which is a measure of how strongly these (sub)categories are represented in embedding dimensions. This metric is low-cost, fast,
reproducible and was shown to correlate well with human judgement (Şenel et al., 2020). However, it cannot capture the difference
between interpretability changes in the positive and negative directions of an embedding dimension because it performs maximum
pooling over the opposite directions of each dimension. To capture this information, we propose a new directional interpretability
score:

𝐼𝑆+
𝑙,𝑘 = max

𝑛𝑚𝑖𝑛≤𝑛≤𝑛𝑘

|𝑆𝑘 ∩ 𝑉 +
𝑙 (𝜆 × 𝑛)|
𝑛

× 100

𝐼𝑆−
𝑙,𝑘 = max

𝑛𝑚𝑖𝑛≤𝑛≤𝑛𝑘

|𝑆𝑘 ∩ 𝑉 −
𝑙 (𝜆 × 𝑛)|
𝑛

× 100

𝐼𝑆+
𝑙 = max

𝑘
𝐼𝑆+

𝑙,𝑘, 𝐼𝑆−
𝑙 = max

𝑘
𝐼𝑆−

𝑙,𝑘,

𝐼𝑆+ = 1
𝐷

𝐷
∑

𝑙=1
𝐼𝑆+

𝑙 , 𝐼𝑆− = 1
𝐷

𝐷
∑

𝑙=1
𝐼𝑆−

𝑙

(5)

In Eq. (5), 𝐼𝑆+
𝑙,𝑘 and 𝐼𝑆−

𝑙,𝑘 represent the interpretability scores in the positive and negative directions of the 𝑙th dimension
(𝑙 ∈ {1, 2,… , 𝐷}, 𝐷 = 𝑑𝑖𝑚(𝑤⃗)) for the 𝑘th category (𝑘 ∈ {1, 2,… , 𝐾}, 𝐾 = 110) in SEMCAT, respectively. 𝑆𝑘 is the set of words
in the 𝑘th category in SEMCAT and 𝑛𝑘 is the number of words in 𝑆𝑘. 𝑛𝑚𝑖𝑛 is the minimum number of words required to construct
a semantic category (i.e., to represent a concept). 𝑉𝑖(𝜆 × 𝑛) represents the set of 𝜆 × 𝑛 words that have the highest (𝑉 +

𝑙 ) and lowest
(𝑉 −

𝑙 ) values in the 𝑙th dimension of the embedding space. For all evaluations we use 𝜆 = 5.

1 For cases when word-groups have a substantial proportion of overlapping words, more sophisticated matching algorithms might be necessary. However,
6

ere, we were able to find a non-overlapping pairing after a few trials (less than 5).
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4.5. Gender bias

4.5.1. Intrinsic bias evaluation
BiImp matches each dimension with concepts and thereby makes it interpretable: it now clearly represents specific concepts.

s Dufter and Schütze (2019) argue, this important property can facilitate removal of unwanted information from the model. A
ommon example of such undesirable information is the inherent gender bias in corpora that is reflected in learned embedding
odels. Bolukbasi et al. (2016) report that embedding models often contain gender bias, particularly for occupation related words.

As discussed in Section 4.2, an important advantage of BiImp over unidirectional imparting is that two concepts with opposite
eanings can be represented in a single dimension as a continuum. Since the concepts male and female are opposites, they can

be encoded in the opposite directions of the same dimension, creating a continuous gender dimension. The gender components of
words can then be inferred directly from their projections onto the gender dimension. To create a gender dimension, we construct
two word-groups corresponding to male and female concepts using (Bolukbasi et al., 2016)’s gender-specific word set 𝑆 of 291
rofessions.

Bolukbasi et al. (2016) proposed two different measures to assess level of gender bias in word embeddings, namely direct bias
nd indirect bias. Here, we use the direct bias measure:

𝑏𝑑𝑖𝑟𝑒𝑐𝑡𝜅 = 1
|𝑁|

∑

𝑤∈𝑁
| cos(𝑤⃗, 𝑔)|𝜅 (6)

where 𝑁 is the set of gender neutral words, 𝑔 = 𝑤⃗𝑠ℎ𝑒 − 𝑤⃗ℎ𝑒 is the gender vector and 𝜅 is a parameter that controls the relative
weighting of high vs. low bias levels; we set 𝜅 = 1. Gender neutral words were obtained by taking the complement of Bolukbasi
et al. (2016)’s gender-specific word set 𝑆 such that 𝑁 = 𝑊 \𝑆 where 𝑊 is the set of all words.

To evaluate BiImp on gender bias, we use the stereotypical gender bias levels 𝑏𝑠 provided by Bolukbasi et al. (2016) for 𝑆 (the
set of 291 profession words), which were obtained by human assessment.2 We calculate the correlation 𝐵𝑔 between stereotypical
biases 𝑏𝑠 and the biases 𝑏𝑑𝑖𝑟𝑒𝑐𝑡 based on Eq. (6):

𝐵𝑔 = corr(𝑏𝑠, 𝑏𝑑𝑖𝑟𝑒𝑐𝑡) (7)

as well as the correlation 𝐵𝑔𝑑 between the stereotypical biases 𝑏𝑠 and the biases 𝑏𝑔𝑑 from the gender dimension:

𝐵𝑔𝑑 = corr(𝑏𝑠, 𝑏𝑔𝑑 ) (8)

where 𝑏𝑔𝑑 is calculated as:

𝑏𝑔𝑑𝑝 =

⎧

⎪

⎨

⎪

⎩

min
(

1, 𝑤𝑝
𝜇𝑚

)

if 𝑤𝑝 ≥ 0,

−min
(

1, 𝑤𝑝
𝜇𝑓

)

if 𝑤𝑝 < 0,
(9)

𝜇𝑚 and 𝜇𝑓 are the average values of the words in the male and female word-groups in the gender dimension (𝑔𝑑), respectively. 𝑤𝑝
stands for the value of the 𝑝th profession in the gender dimension. The intuition behind Eq. (9) is that we want a value between −1
nd 1 (the range of 𝑏𝑠) to indicate level of bias. We could map the entire range of values on the dimension to the interval [−1, 1],
ut that would give too much weight to outliers. We therefore use 𝜇𝑚/𝜇𝑓 as upper/lower bounds for 𝑤𝑝. 𝐵𝑔𝑑 (resp. 𝐵𝑔) indicate
ow well the BiImp gender dimension (resp. the gender vector 𝑔) captures stereotypical gender bias.

.5.2. Reducing gender bias
Bolukbasi et al. (2016) proposed two methods for gender debiasing: namely hard debiasing (neutralize and equalize), and soft bias

correction. Here, we consider the hard debiasing method, where the gender subspace is first identified via the principal component
analysis (PCA). To do this, difference between word vectors of 10 pairs of gender words (i.e., female–male, she–he, girl–boy, etc.)
were computed, and PCA was then performed on these 10 difference vectors. The principal component with the largest eigenvalue
predominantly captures variance among the difference vectors (around 60% of total variance), suggesting that gender bias primarily
lies along a single direction in the embedding space. In the neutralize stage, vectors for the gender-neutral words are updated to
nsure that their projections onto the first principal component (i.e., gender subspace) is zero. Equality sets are then defined where
ach set contains a gender pair such as {men, women}. In the equalize stage, vectors of the words in the equality sets are updated
uch that the gender pair in each set becomes equidistant to the gender subspace. Therefore, following the equalization stage, each
ender-neutral word becomes equidistant to both men and women vectors.

In this work, we investigate the effect of concentrating gender information in a single dimension of the embedding model via
idirectional imparting. We employ a two-stage approach for reducing gender bias in imparted embedding models. First, we remove
he gender dimension from the embedding model to cancel out gender bias as suggested in Dufter and Schütze (2019). Since creation
f a gender dimension concentrates gender information in a single dimension, removal of this dimension is expected to remove
ender bias from the entire model. Next, we perform hard debiasing as described in Bolukbasi et al. (2016) on the reduced embedding
odel. Quantitative comparisons of bias level are performed on imparted and reduced embedding models both prior to and after
ebiasing procedures.

2 https://github.com/tolga-b/debiaswe/blob/master/data/professions.json Professions that were not in our vocabulary were filtered out.
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Table 1
Summary statistics of the word–group datasets.
Word counts Roget’s Thesarus WordNet

(300 grp.) (600 grp.) (300 grp.) (600 grp.)

Total 20 978 40 350 26 964 18 965
Unique 12 289 19 870 18 123 13 853
Average 69.9 ± 53.7 67.3 ± 54.6 89.9 ± 74.2 31.6 ± 15.9

4.5.3. Bias in classification
Prost et al. (2019) argue that lower gender bias levels as measured by Eq. (6) do not always translate to reduced gender bias

n classification. We therefore also evaluate on BiosBias (De-Arteaga et al., 2019), a classification dataset of 397,907 biographies
xtracted from CommonCrawl. Each biography is annotated as male or female and as being one of 28 different occupations. The
ask is to classify each subject’s occupation given their biography. The train/dev/test split is 258,640/39,790/99,477.

For occupation classification based on an embedding model, single words in a given biography are first projected to the
mbedding space. Each biography is thereby represented as the average vector of words within the biography. A linear classifier
ith softmax output is used, and hyperparameters are tuned based on validation set performance. Classification accuracy is used
s the performance measure. As a latent measure of gender bias in embedding models, fairness of the classifier to the two genders
re examined as described in Hardt et al. (2016) as equality of opportunity. Specifically, we measure the True Positive Rate Gender
ap (TPRgap) and True Negative Rate Gender Gap (TNRgap) for the classifier. TPRgap for a given occupation is measured as:

TPR𝑜,gap = |𝑃𝑟{𝐵𝑜 = 1|𝐵𝑜 = 1, 𝐵𝑔 = 𝑓}−

𝑃𝑟{𝐵𝑜 = 1|𝐵𝑜 = 1, 𝐵𝑔 = 𝑚}|,
(10)

where 𝑜 is an occupation, 𝐵𝑜 (𝐵𝑜) is the (estimated) occupation of a biography and 𝐵𝑔 its gender (𝑚/𝑓 = male/female). TPRgap
(resp. TNRgap) is the difference in accuracy between the two genders of detecting the presence (resp. absence) of an occupation. We
interpret this as a measure of the gender fairness of the word embeddings for 𝑜. We compute TPRgap/TNRgap as the average over
all TPR𝑜,gap/TNR𝑜,gap.

5. Experiments and results3

In this section, we describe our experiments and present our findings. Section 5.1 describes how we extract word groups from
lexical resources. Section 5.2 describes our main experiments for improving interpretability and presents our findings. Section 5.3
presents our gender debiasing experiments. Section 5.4 evaluates the performance of gender de-biased embeddings, and Section 5.5
presents a hybrid gender and interpretability imparted model.

5.1. Word–group extraction

We investigate two lexical resources to extract word groups for imparting: Roget’s Thesaurus (Roget, 2008) and WordNet (Miller,
1995). To extract word groups from Roget’s Thesaurus, we follow the extraction procedure in Şenel et al. (2020) and extract 300
and 600 word groups by taking 𝜆𝑤𝑚𝑖𝑛 = 20 and 𝜆𝑤𝑚𝑖𝑛 = 15, respectively. To extract word-groups from WordNet, we follow a similar
procedure and partition the hierarchical structure starting from the root node. We follow an iterative approach, where the largest
node is divided to its hyponyms in each iteration. Node size is taken as the number of unique words descending from a node after
filtering based on the vocabulary extracted from Wikipedia. We discard the nodes with size less than 𝜆𝑤𝑚𝑖𝑛. Iterations are stopped
when the number of nodes exceeds the desired word–group count. Note that the desired word-group count may not be achieved
if 𝜆𝑤𝑚𝑖𝑛 is selected too large. The groups with the smallest number of member words are discarded to achieve desired word-group.
We take 𝜆𝑤𝑚𝑖𝑛 = 25 and 𝜆𝑤𝑚𝑖𝑛 = 15 for 300 and 600 WordNet word groups, respectively. Table 1 summarizes the statistics for the
constructed word-groups.

5.2. Interpretability enhancement

Our training corpus is the English Wikipedia. To pre-process the Wikipedia dump, all document numbers, URLs, HTML syntax
and non-alphanumeric characters are cleared. Remaining words are lower-cased. Resulting corpus consists of 2,127,511,369 tokens.
Words with less than 100 occurrences are discarded from the corpus. The final vocabulary contains 229,922 unique words (types).
To test generalizability of imparting approach, using the 300 Roget word groups and the objectives Eq. (1) and (3), we train two
sets of 300-dimensional unidirectionally imparted embeddings (one for GloVe one for word2vec) for different 𝑘𝑔 and 𝑘𝑤 values.
We measure their interpretability using IS+ (Eq. (5)). Fig. 2 shows interpretability scores for unidirectionally imparted GloVe and
word2vec in the positive direction for 𝑛𝑚𝑖𝑛 = 5 and 𝑛𝑚𝑖𝑛 = 10. These results suggest that regularization term for imparting is viable
for word2vec algorithm as well. However, original word2vec embeddings have lower interpretability values than original GloVe
embeddings and word2vec requires stronger regularization than GloVe (𝑘𝑤 > 𝑘𝑔) to achieve similar interpretability.

3 Data and codes are provided at: https://github.com/lksenel/biimp.
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Fig. 2. Interpretability scores in the positive direction (𝐼𝑆+) using 𝑛𝑚𝑖𝑛 = 5 (top row) and 𝑛𝑚𝑖𝑛 = 10 (bottom row) for unidirectionally imparted GloVe (left
column) and word2vec (right column) algorithms for 𝑘𝑔 ∈ [0.0005, 0.05] and 𝑘𝑤 ∈ [0.025, 1.00], respectively. Interpretability scores for original embeddings and a
random baseline are displayed for comparison as orange and green dashed lines, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Then, using the 600 word-groups from Roget’s Thesaurus and WordNet, we investigate the viability of bidirectional imparting for
Word2Vec. Using the objective Eq. (4), we train two sets of 300-dimensional BiImp vectors (one for Roget’s and WordNet each) for
different 𝑘𝑤 values. We additionally train word2vec vectors without bidirectional imparting. For the training all imparted models
and the original word2vec model, we use VOCAB_MIN_COUNT = 100, MAX_ITER = 15, WINDOW_SIZE = 8, NEGATIVE = 15,
SAMPLE = 10−4.

We evaluate the resulting embeddings on two measures: interpretability scores IS+ and IS− (Eq. (5)) and intrinsic performance,
based on word similarity4 (Faruqui & Dyer, 2014) and word analogy5 (Mikolov, Corrado et al., 2013) tests. Fig. 3 shows
interpretability values of the unidirectionally and bidirectionally imparted word2vec embeddings using Roget and WordNet word-
groups for 𝑛𝑚𝑖𝑛 = 5 and 𝑛𝑚𝑖𝑛 = 10 in both of the positive and negative directions. Bidirectional imparting achieves considerably
improved interpretability compared to unidirectional imparting in the negative direction with minimal compromise in the positive
direction.

Fig. 4 presents the performances of the embeddings on word similarity and word analogy tests. Performance decreases with
increasing 𝑘𝑤. However, for bidirectional imparting of WordNet word-groups, performance is on par with original embeddings for
𝑘𝑤 ≤ 0.2. While WordNet word-groups somewhat reduce interpretability compared to Roget word-groups in bidirectional setting,
they are much better at preserving the semantic structure of the embedding space as suggested by similarity and analogy tests.
Taken together, results in Figs. 3 and 4 suggest that bidirectional imparting of WordNet word-groups at relatively low 𝑘𝑤 is the
optimal setting for word2vec. Therefore, we use WordNet-based BiImp in the rest of the paper.

5.2.1. Interpretability comparison
We compare BiImp with six state-of-the-art methods for interpretability enhancement: OIWE-IPG (Luo et al., 2015), SOV (Faruqui

et al., 2015), Parsimax (Park et al., 2017), Word2Sense (Panigrahi et al., 2019) POLAR (Mathew et al., 2020) and UniImp (Şenel
et al., 2020). We do not consider SPINE (Subramanian et al., 2018) because it scaled poorly for large vocabularies in our experiments.

OIWE-IPG was trained on the same corpus as the word2vec embeddings using the default parameters reported in Luo et al. (2015),
yielding 300 dimensional vectors. SOV and Parsimax that work on pretrained embeddings were performed on the original word2vec
embeddings, again using suggested parameters in Faruqui et al. (2015) and Park et al. (2017), resulting in 1000 and 300 dimensional
vectors, respectively. For Word2Sense, we used the publicly available 2250 dimensional pretrained vectors6 due to computational

4 Word similarity results were averaged across 13 datasets: WS-353-ALL, SIMLEX-999, VERB-143, SimVerb-3500, WS-353-REL, RW-STANFORD, YP-130,
EN-TR-3k, RG-65, MTurk-771, WS-353-SIM, MC-30, MTurk-287.
5 http://download.tensorflow.org/data/questions-words.txt.
6 https://github.com/abhishekpanigrahi1996/Word2Sense.
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Fig. 3. Positive (top) and negative (bottom) direction interpretability scores for unidirectionally imparted word2vec embeddings using Roget’s Thesaurus (Roget-
ni) and WordNet (WordNet-Uni) and their bidirectionally imparted versions (BiImp (Roget), BiImp (WordNet)) for 𝑘𝑤 ∈ [0.025, 1.00] along with the original
ord2vec embedding and a random baseline for 𝑛𝑚𝑖𝑛 = 5 (left) and 𝑛𝑚𝑖𝑛 = 10 (right).

Fig. 4. Performance of unidirectionally imparted word2vec embeddings using Roget’s Thesaurus (Roget-Uni) and WordNet (WordNet-Uni) and their bidirectionally
imparted versions (Roget-Bi, WordNet-Bi) for 𝑘𝑤 ∈ [0.025, 0.500] along with the original word2vec embedding on word similarity (left) and word analogy (right)
ests. Word similarity results are presented as the average correlations from 13 different word similarity test sets.

estrictions. For POLAR, we trained two different versions. First, we obtained 1465 dimensional POLAR-large embeddings that were
eported in Mathew et al. (2020), by applying polar transformation on Google’s pretrained word2vec embeddings7 using all 1465
ntonym pairs. Note that these embeddings were originally trained on a much larger corpus (Google News) with a substantially larger
ocabulary (3 million) than our word2vec embeddings. Therefore, POLAR-large embeddings are considerably more expensive than
ur imparted embeddings in terms of computational and linguistic resources. Second, we obtained 500 dimensional POLAR-small
mbeddings that are more comparable to imparted embeddings in terms of model dimensionality and resource usage, by performing
he polar transformation on our original word2vec embeddings using the default parameters.8 UniImp embeddings are trained on
nglish Wikipedia (same as BiImp) using Eq. (1) (𝑘𝑔 = 0.1 as suggested in Şenel et al. (2020)) and 300 word-groups extracted from
oget’s Thesaurus.

Table 2 presents interpretability scores of BiImp for 𝑘𝑤 ∈ {0.1, 0.2, 1}, OIWE-IPG, SOV, Parsimax, Word2Sense, POLAR𝑠𝑚𝑎𝑙𝑙,
POLAR𝑙𝑎𝑟𝑔𝑒 and UniImp along with the original word2vec embeddings in positive and negative directions separately for 𝑛𝑚𝑖𝑛 = 5.

7 https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM.
8 https://github.com/Sandipan99/POLAR.
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Table 2
Interpretability scores (cf. Eq. (5), 𝑛𝑚𝑖𝑛 = 5) of BiImp are higher than all baselines.
Embedding Size Interpretability

pos. neg.

word2vec 300 12.80 12.88
OIWE-IPG 300 35.50 –
SOV 1000 14.28 13.98
Parsimax 300 18.55 17.66
Word2Sense 2250 34.11 –
POLAR𝑠𝑚𝑎𝑙𝑙 500 23.89 20.8
POLAR𝑙𝑎𝑟𝑔𝑒 1465 28.60 25.91
UniImp 300 57.49 11.38
BiImp𝑘𝑤=0.1 300 36.24 39.10
BiImp𝑘𝑤=0.2 300 42.04 46.77
BiImp𝑘𝑤=1 300 52.90 57.80

Table 3
Results on the performance evaluation tests. For BiImp, results are averaged across 𝑘𝑤 ∈ {0.025, 0.050,… , 0.200}.

Task w2v IPG SOV Parsimax W2S POLAR𝑠 POLAR𝑙 UniImp BiImp

Sem. Anlg. 79.9 32.6 52.6 79.6 12.9 70.5 60.0 80.2 79.7
Syn. Anlg. 67.6 25.6 41.6 67.5 19.4 56.1 70.8 63.4 66.3

Word Sim. 60.7 48.6 56.1 60.7 57.0 54.9 60.0 56.9 60.3

Sent. Anly. 80.3 74.5 81.8 80.3 81.2 79.1 81.8 79.0 80.00

Quest. Clf. 85.8 79.0 87.8 85.8 77.2 84.6 82.4 81.0 84.9

Sports News 95.9 95.5 96.9 96.0 86.6 94.7 91.8 96.0 95.7
Relig. News 87.0 85.8 88.6 86.9 85.1 84.1 84.9 84.9 87.4
Comp. News 81.6 78.5 86.3 81.7 73.4 77.6 72.9 80.3 80.3

Note that non-negative embeddings inherently do not have any interpretability in the negative direction. BiImp embeddings are
clearly the most interpretable in the negative direction, even for small 𝑘𝑤 (𝑘𝑤 = 0.1). For the positive direction, interpretability of
BiImp is comparable with OIWE-IPG and Word2Sense and is higher than all baselines except UniImp for small 𝑘𝑤. For larger 𝑘𝑤,
interpretability of BiImp is only slightly lower than that of UniImp.

5.2.2. Preservation of semantic structure
In addition to the intrinsic evaluation, we also evaluate the embeddings on three classification tasks:

• Sentiment Analysis: A sentence-level binary classification task using the Stanford Sentiment Treebank consisting of thousands
of movie reviews (Socher et al., 2013) and their sentiment scores. The development and training sets in the original dataset
were aggregated, and reviews with neutral scores were removed (i.e., scores between 0.4 and 0.6). The resulting dataset
contained 7407 training and 1751 test samples.

• Question Classification (TREC): A question-level multinomial classification task using the TREC dataset (Li & Roth, 2006)
consisting of six different types of questions (person, location, entity, number, description, abbreviation). This dataset consisted
of 5452 training and 500 test questions.

• News Classification: Following Faruqui et al. (2015), three news-level binary classification tasks were considered using the
20 Newsgroup dataset.9 The following news topics were considered (training/test sample counts): (1) Religion: atheism vs.
christian (1079/716); (2) Sports: baseball vs. hockey (1192/796); (3) Computers: IBM vs. Mac (1162/775).

For these high-level NLP tasks, we took the average of the word vectors in input text (can be a sentence, question or news) as input
features and trained an SVM classifier that was tuned using 5 fold cross-validation on the training sets.

Table 3 shows results. For BiImp, results are averaged across 𝑘𝑤 ∈ {0.025, 0.050,… , 0.200}. For analogy and similarity tasks,
BiImp, UniImp, Parsimax and word2vec have similar scores, suggesting that BiImp does not reduce the quality of word embeddings
while improving interpretability. Both POLAR models perform slightly worse than the original embeddings (except for syntactic
analogy and sentiment analysis for POLAR-large). OIWE-IPG, SOV and Word2Sense suffer from considerable performance loss in
most cases, implying a reduction in the semantic information captured.

For text classification (last five lines), differences between methods are minor, except for Word2Sense embeddings, which perform
poorly on question and news classification. SOV (Faruqui et al., 2015) has the best performance on classification, but recall that
it has low interpretability (Table 2). BiImp performs comparably to UniImp, Parsimax and word2vec in all tasks. These results
demonstrate that BiImp meets both requirements: interpretability and good task performance.

9 http://qwone.com/~jason/20Newsgroups.
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Fig. 5. Correlation of human judgments with the gender dimension in BiImp (blue, 𝐵𝑔𝑑 , Eq. (8)), with the gender vector in BiImp (orange, 𝐵𝑔 , Eq. (7)), and
with the gender vector in the original embedding space (dashed green line, 𝐵𝑔

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙). The BiImp gender dimension clearly has the highest correlation with human
judgments. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Direct bias (𝑏𝑑𝑖𝑟𝑒𝑐𝑡1 , see Eq. (6)) of the BiImp (dashed lines) and reduced (dotted lines) embeddings as a function of 𝑘𝑤. Solid lines: 𝑏𝑑𝑖𝑟𝑒𝑐𝑡1 of the original
embeddings. Blue/red: Results before/after hard debiasing. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

5.3. Gender debiasing

5.3.1. Intrinsic bias
We calculate 𝐵𝑔 (Eq. (7)) and 𝐵𝑔𝑑 (Eq. (8)) for BiImp. Additionally, we calculate 𝐵𝑔 for the original word2vec embeddings

(𝐵𝑔
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙). Fig. 5 shows that Pearson’s correlation coefficients of human judgments with the BiImp gender dimension (blue, 𝐵𝑔𝑑 ,

Eq. (8)) is higher than their correlation with the gender vector 𝑤⃗𝑠ℎ𝑒 − 𝑤⃗ℎ𝑒 of BiImp (orange, 𝐵𝑔 , Eq. (7)) and also higher than the
correlation with the original word2vec gender vector (dashed green line). This result suggests that BiImp’s gender dimension densely
captures gender information. Interestingly, 𝐵𝑔 is much higher for BiImp than for the original embeddings (𝐵𝑔

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙), indicating that
BiImp improves the quality of the gender vector as well.

We investigate the effect of (i) gender imparting, (ii) removing the gender dimension from the embeddings (iii) hard debias-
ing (Bolukbasi et al., 2016) on the gender bias level of the embedding spaces. Specifically, we measure the bias level of the original,
imparted and reduced embeddings before and after hard debiasing using Eq. (6). Fig. 6 shows the bias levels. Naturally, imparting
a single dimension with gender information does not alter the overall bias in the word embeddings, but rather concentrates most of
the bias on a single dimension as implied by Fig. 5. Removing this dimension from the embedding space then considerably reduces
the bias, especially for larger 𝑘𝑤. After hard debiasing, 𝑏𝑑𝑖𝑟𝑒𝑐𝑡1 of the full and reduced imparted models (red dashed and dotted lines)
are closer, and substantially lower than that of word2vec. These results show that learning an embedding space with an explicit
gender dimension enhances the performance of hard debiasing.

5.3.2. Bias in classification
Prost et al. (2019) give evidence that hard debiasing introduces elevated gender bias in high-level classification tasks when

compared with the original embedding model. We therefore also use strong debiasing (Prost et al., 2019), a method that alleviates
this issue by taking 𝑁 (Eq. (6)) as the entire vocabulary as opposed to just gender neutral words.

Table 4 compares original embeddings, hard debiasing, strong debiasing and the combination of BiImp and strong debiasing
(B+S) on accuracy (to measure task performance) and TPR/TNR (Eq. (10), to measure classification fairness). The dataset is BiosBias.
Hard debiasing has relatively high TPR/TNR, suggesting it reduces classification fairness. Strong debiasing on original word2vec
12
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Table 4
Accuracy and True Positive/Negative Rate (TPR/TNR) on the occupation classification task. B + S
= BiImp + strong debiasing.
Embedding Acc. TPRgap TNRgap

word2vec .717 .094 .0034
Hard debiasing .700 .105 .0037
Strong debiasing .699 .087 .0033
B + S𝑘𝑤=.1 .697 .066 .0022
B + S𝑘𝑤=.5 .699 .067 .0024

Table 5
Results of embeddings from gender bias experiments on the performance evaluation tests.

Task Before debias After debias

word2vec Imparted Reduced word2vec Imparted Reduced

Sem. Anlg. 79.87 79.00 ± 0.50 79.16 ± 0.50 78.65 78.92 ± 0.57 78.99 ± 0.61
Syn. Anlg. 67.63 66.39 ± 0.99 66.48 ± 1.01 67.46 66.42 ± 0.96 66.43 ± 1.00

Word Sim. 60.68 60.08 ± 0.66 60.21 ± 0.52 60.64 60.12 ± 0.67 60.28 ± 0.53

Sent. Anly. 80.30 79.95 ± 0.36 79.94 ± 0.33 79.84 79.99 ± 0.37 79.98 ± 0.41

Quest. Clf. 85.80 84.63 ± 0.59 86.00 ± 0.92 86.20 86.27 ± 0.74 86.03 ± 0.80

Sports News 95.85 95.33 ± 0.27 95.34 ± 0.25 95.10 95.33 ± 0.27 95.33 ± 0.29
Relig. News 87.01 86.19 ± 0.61 86.10 ± 0.57 86.03 86.24 ± 0.59 86.18 ± 0.59
Comp. News 81.55 78.74 ± 0.84 78.73 ± 0.99 78.84 78.68 ± 0.83 78.63 ± 0.81

Table 6
Results of evaluation tests for the hybrid gender and interpretability imparted embeddings.
Task 𝑘𝑤 = 0.1 𝑘𝑤 = 0.2 𝑘𝑤 = 1

Semantic Anlg. 79.07 78.13 73.25
Syntactic Anlg. 66.61 65.17 45.58

Word Sim. 60.62 59.11 48.94

Sentiment Anly. 80.41 79.55 79.84

Question Clf. 84.60 85.00 84.20

Sports News 96.11 95.73 95.73
Religion News 85.89 87.43 88.55
Comput. News 81.42 81.03 79.74

Interp.+𝑛𝑚𝑖𝑛=5 36.88 41.22 54.28
Interp.−𝑛𝑚𝑖𝑛=5 38.47 44.79 58.50
Interp+

𝑛𝑚𝑖𝑛=10
22.41 24.17 34.07

Interp.−𝑛𝑚𝑖𝑛=10 22.49 23.89 35.43

Gender B.𝑟𝑒𝑑𝑢𝑐𝑒𝑑 0.0470 0.0403 0.0441
Gender B.𝑑𝑒𝑏𝑖𝑎𝑠𝑒𝑑 0.0168 0.0122 0.0148

results in a relatively limited change in classification fairness. Yet when BiImp and strong debiasing are combined (B+S), TPRgap and
NRgap are substantially lowered without a major compromise in accuracy. These results provide further evidence that concentration
f gender information on an embedding dimension improves performance of debiasing methods.

.4. Performance of gender biased embeddings

A potential risk of debiasing on gender-imparted models is undesirable loss of semantic structure in the embedding space that
ight compromise task performance. To rule out this risk, we evaluate the embeddings in the gender-bias experiments on intrinsic

ests and downstream classification tasks. For the imparted and reduced embeddings, we averaged the results across 𝑘𝑤. Table 5
shows that all the evaluated embeddings perform nearly as good as the original embeddings on all tasks, except a slightly reduced
performance on computer news classification task. These results indicate that debiasing of gender-imparted embeddings successfully
preserves semantic structure of the embedding space.

5.5. Hybrid gender and interpretability imparted embeddings

We demonstrate the feasibility of BiImp for concurrent gender and interpretability imparting. To do this, we obtain a hybrid
model where the first dimension was encoded with gender word-groups and the remaining 299 dimensions were bidirectionally
imparted with word-groups extracted from WordNet. Evaluation on gender bias, interpretability and task performance were repeated
on this hybrid model. Table 6 shows the evaluation results. Hybrid model performs similarly to only WordNet imparted BiImp
13
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(Sections 4.4 and 5.2.2) in interpretability and task performance evaluations, and performs similarly to only gender imparted
BiImp (Section 5.3.1) in gender bias evaluations. These results indicate that BiImp enables gender debiasing and interpretability
enhancement simultaneously in embedding models without compromising task performance.

6. Discussion of results and implications

The implications of the presented results can be organized under three main folds as follows.

• BiImp generates interpretable word embeddings by disclosing the hidden encoded structure of word embedding models without
performance degradations on semantic tasks: Producing interpretable word embeddings has a critical role in deciphering the
black-box behavior of language models extensively used in NLP-based information processing. Studies generating interpretable
embeddings mostly give up some of the semantic properties captured by word vectors. Our experimental results show that
BiImp brings interpretable word embeddings without making compromises on the semantic task performances.

• BiImp has a flexibility to be adapted to distinctive learning scenarios and semantic tasks: Aside from the main objective, BiImp
is also compatible for different training schemes for word embeddings. BiImp can be easily adapted to both online learning-
based and co-occurrence matrix-based training procedures. In addition, different lexical sources can be utilized without any
additional cost. One can infer that BiImp presents a large spectrum of interpretable embeddings with a performance at the
state-of-the-art level in various tasks ranging from word analogy to text classification.

• BiImp can also be deployed to capture and mitigate any kind of human biases that exist in word embeddings: On the other
hand, imparting interpretability to word embeddings enables us to enhance word embeddings in various ways. As shown in
the experimental results, capturing human biases in a dimension and removing that dimension lead to better debiasing results.
This feature of BiImp embeddings can be extended to other bias types without any difficulty. Furthermore, task or domain-
specific interpretable word embeddings can be obtained by adjusting the corresponding word groups assigned to embedding
dimensions according to the task or domain. As a result, BiImp offers wide liberty in studying word embeddings without any
further computational efforts.

7. Conclusion

We introduced BiImp, a new method for enhancing interpretability of word embeddings by bidirectional imparting of concepts
xtracted from lexical resources. BiImp was implemented for the scalable word2vec algorithm, and semantic concepts were extracted
rom Roget’s Thesaurus and WordNet. In contrast to prior work, BiImp uses both directions along each dimension of the vector space
eparately, enabling encoding of two different concepts; the two concepts can be chosen arbitrarily or chosen as opposite concepts
s a special case. As a result, BiImp makes more efficient use of the embedding space while increasing encoding flexibility.

We showed that BiImp achieves higher interpretability of word embeddings compared to state-of-the-art methods, particularly
n the negative direction. At the same time, evaluation on word similarity/analogy tests as well as sentiment, news and question
lassification showed that BiImp does not sacrifice task performance. Thus, BiImp offers a favorable trade-off between the goals of
nhancing interpretability and maintaining task performance.

BiImp represents opposite concepts in a single dimension on a continuum. As an important demonstration, we used BiImp
o concentrate gender information in a single gender dimension. We showed that this gender dimension has a high correlation
ith stereotypical gender bias as measured by human judgments. Furthermore, we showed that this gender dimension is useful for

educing gender bias when coupled with debiasing. The combination of BiImp and debiasing achieved lower levels of gender bias
nd improved classification fairness. These results highlight the potential of BiImp in reducing biases and stereotypes present in
ord embeddings.

Here, the imparting method was demonstrated to improve interpretability and reduce gender bias in word2vec embedding
odels, using concepts from two common lexical sources. That said, imparting through modification of the learning objective is

asily adaptable to different embedding algorithms, and to different lexical resources. The imparting framework can also be adopted
or goals beyond interpretability enhancement, such as improvement of task performance. If imparting is used to encode task-relevant
oncepts, similar task performance can be achieved using simpler models with fewer dimensions. In turn, this can offer benefits in
erms of memory requirements and computational load.

Lastly, we studied BiImp in the scope of static word embeddings. Extending BiImp to the contextualized word embeddings can
e further investigated as a future work.
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