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Object and action perception in cluttered dynamic natural scenes relies on efficient allocation of limited brain resources to
prioritize the attended targets over distractors. It has been suggested that during visual search for objects, distributed seman-
tic representation of hundreds of object categories is warped to expand the representation of targets. Yet, little is known
about whether and where in the brain visual search for action categories modulates semantic representations. To address this
fundamental question, we studied brain activity recorded from five subjects (one female) via functional magnetic resonance
imaging while they viewed natural movies and searched for either communication or locomotion actions. We find that atten-
tion directed to action categories elicits tuning shifts that warp semantic representations broadly across neocortex and that
these shifts interact with intrinsic selectivity of cortical voxels for target actions. These results suggest that attention serves to
facilitate task performance during social interactions by dynamically shifting semantic selectivity toward target actions and
that tuning shifts are a general feature of conceptual representations in the brain.
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Significance Statement

The ability to swiftly perceive the actions and intentions of others is a crucial skill for humans that relies on efficient allocation
of limited brain resources to prioritize the attended targets over distractors. However, little is known about the nature of
high-level semantic representations during natural visual search for action categories. Here, we provide the first evidence
showing that attention significantly warps semantic representations by inducing tuning shifts in single cortical voxels, broadly
spread across occipitotemporal, parietal, prefrontal, and cingulate cortices. This dynamic attentional mechanism can facilitate
action perception by efficiently allocating neural resources to accentuate the representation of task-relevant action categories.

Introduction
The ability to swiftly perceive the actions and intentions of others
is a crucial skill for all social animals. In the human brain this
ability has been attributed to a network of occipitotemporal,
parietal, and premotor areas collectively called the action observa-
tion network (AON; Oberman et al., 2007; Caspers et al., 2010;
Molinari et al., 2013; Rozzi and Fogassi, 2017). Other reports sug-
gest that the AON hierarchically represents diverse information

pertaining to actions, ranging from shape and kinematics to
action–effector interactions and action categories (Grafton and de
C Hamilton, 2007; Oosterhof et al., 2010, 2012, 2013; Handjaras et
al., 2015; Lingnau and Downing, 2015; Wurm et al., 2017; Cavina-
Pratesi et al., 2018; Urgen et al., 2019). Low-level shape and move-
ment kinematics are represented in occipitotemporal cortex and
in the posterior bank of inferior temporal cortex (Jastorff and
Orban, 2009). Effector type (e.g., foot, hand) is represented in
ventral premotor cortex (Jastorff et al., 2010; Corbo and
Orban, 2017), whereas parietal cortex represents higher level
action categories (Abdollahi et al., 2013; Ferri et al., 2015).

Evidence suggests that selective attention alters population
responses to actions across this representational hierarchy.
Prior electrophysiology (Muthukumaraswamy et al., 2004;
Muthukumaraswamy and Singh, 2008; Schuch et al., 2010;
Puglisi et al., 2017, 2018) and neuroimaging studies (Rowe et
al., 2002; de Lange et al., 2008; Safford et al., 2010; Herrington
et al., 2012; Nicholson et al., 2017) have examined attention
to low-level action features. Schuch et al. (2010) reported

Received July 1, 2021; revised June 29, 2022; accepted July 6, 2022.
Author contributions: T.C. designed research; M.S. and E.C. performed research; M.S., B.A.U., and T.C.

analyzed data; M.S., J.L.G., and T.C. wrote the paper.
This work was supported in part by a Marie Curie Actions Career Integration Grant (PCIG13- GA-2013-

618101), a European Molecular Biology Organization Installation Grant (IG 3028), a Turkish Academy of
Sciences Young Scientist Outstanding Achievement Award Program 2015 Fellowship, and a Science Academy
Young Scientists Program 2017 Fellowship.
The authors declare no competing financial interests.
Correspondence should be addressed to Tolga Çukur at cukur@ee.bilkent.edu.tr.
https://doi.org/10.1523/JNEUROSCI.1372-21.2022

Copyright © 2022 the authors

6782 • The Journal of Neuroscience, August 31, 2022 • 42(35):6782–6799

https://orcid.org/0000-0003-1935-3845
https://orcid.org/0000-0001-7273-1054
mailto:cukur@ee.bilkent.edu.tr


increased electroencephalography (EEG) responses in AON
with attention to action kinematics. Safford et al. (2010)
reported enhanced blood oxygen level-dependent (BOLD)
responses in superior temporal sulcus (STS) with attention
to animate actors (i.e., humans) presented via simplified point-
light displays (Johansson, 1973). Nicholson et al. (2017)
reported enhanced responses in inferior frontal gyrus (IFG),
occipitotemporal cortex, and middle frontal gyrus (MFG) with
attention to action goals and in parietal cortex and fusiform

gyrus with attention to manipulated objects. Few
reports have further investigated the effects of
attention to higher level action features (Nastase
et al., 2017, 2018). Presenting movie clips from
various animal taxonomies performing several
actions, Nastase et al. (2017) reported that attend-
ing to performed actions versus taxonomy alters
multivariate response patterns across anterior
intraparietal sulcus (IPS) and premotor cortex.

Current electrophysiology and neuroimag-
ing findings on visual actions suggest that
attention increases AON responses to target
features ranging from action kinematics and
goals to actors. That said, high-level semantic
representations during visual search for spe-
cific action categories remain understudied.
Furthermore, prior studies did not question
whether attending to action features causes
baseline and gain changes or rather elicits
dynamic tuning shifts that can alter cortical
representation. Evidence indicates that visual
search for object categories shifts single-voxel
category tuning toward target objects (Çukur
et al., 2013). Therefore, it is likely that atten-
tion to action categories also causes tuning
shifts to facilitate visual search. Here, we
hypothesized that natural visual search for
action categories induces semantic tuning
shifts in single cortical voxels toward targets.
Tuning shift toward target categories elevates
the local sampling density near the target
actions and expands target-action represen-
tations while compressing behaviorally irrel-
evant action representations by increasing
the discriminability in the semantic neigh-
borhood of the finely sampled action catego-
ries (Fig. 1).

To test the tuning-shift hypothesis, we
recorded whole-brain BOLD responses while
human subjects viewed 60min of natural mov-
ies and covertly searched for either 14 commu-
nication actions or 30 locomotion actions
among 109 action categories in the movies
(Fig. 2, Extended Data Fig. 2-1). Using spatially
informed voxelwise modeling (Çelik et al.,
2019), we measured category responses for
hundreds of objects and actions in the movies
separately for each individual subject and for
each search task. We estimated a semantic
space underlying action category responses,
and semantic tuning for action categories were
measured by projecting voxelwise model
weights onto this space. Finally, semantic tun-
ing profiles during the two search tasks were
compared to quantify the magnitude and direc-

tion of tuning shifts in single voxels.

Materials and Methods
Subjects
Five healthy adult volunteers with normal or corrected-to-normal vision
who participated in this study were subject (S)1 (male, age 31), S2 (male,
age 27), S3 (female, age 32), S4 (male, age 33), and S5 (male, age 27).
Data were collected at the University of California, Berkeley. The

Figure 1. Hypothesized changes in semantic representation of action categories. Recent evidence suggests that the
human brain organizes hundreds of object and action categories in a semantic space that is distributed systematically
across the cerebral cortex (Huth et al., 2012). a, Semantic representation for a single subject from Çukur et al. (2013)
is shown on flattened cortical surface and on inflated hemispheres. Colors indicate tuning for different object or action
categories (top right, color legend). Regions of interest identified using conventional functional localizers are denoted
by white borders. For abbreviations for regions of interest, see below, Materials and Methods. b, In the semantic
space, action categories that are semantically similar to each other are mapped to nearby points, and semantically dis-
similar actions are mapped to distant points. There is evidence that visual search for object categories warps semantic
representation in favor of the targets by shifting single-voxel tuning for object categories toward target objects (Çukur
et al., 2013). Thus, we hypothesized that visual search for a given action category should similarly expand the seman-
tic representation of the target and semantically similar categories.

Shahdloo et al. · Search for Visual Actions Warps Semantic Representations J. Neurosci., August 31, 2022 • 42(35):6782–6799 • 6783

https://doi.org/10.1523/JNEUROSCI.1372-21.2022.f2-1


experimental protocol was approved by the
Committee for the Protection of Human Subjects
at the University of California, Berkeley. All par-
ticipants gave written informed consent before
scanning.

Stimuli and experimental design
Data for the main experiment were collected in six
10min 50 s runs in a single session. Continuous
natural movies were used as the stimulus in the
main experiment. Three distinct 10min movie seg-
ments were compiled from short movie clips (10–
20 s) without sound. Movie clips were selected
from a diverse set of natural movies (Nishimoto
et al., 2011). Movie clips were cropped into a
square frame and downsampled to 512 � 512 pix-
els. The movie stimulus was displayed at 15Hz on
an MRI-compatible projector screen that covered a
24� 24° visual angle. Subjects were instructed to
covertly search for target categories in the movies
while maintaining fixation. A set of instructions
regarding the experimental procedure and exem-
plars of the search targets were provided to the sub-
jects before the experiment. A color square of
0.16� 0.16° at the center with color changing at
1Hz was used as the fixation spot. A cue word was
displayed before each run to indicate the attention
target: communication or locomotion. The com-
munication target contained actions with the intent
of communication, including both verbal commu-
nication actions and nonverbal gestural communi-
cation actions (e.g., talking, shouting, smirking).
The locomotion target contained locomotion-
related actions with the intent of moving animate
entities, including humans and anthropomorph-
ized animals (e.g., moving, running, driving). The
same movie stimuli were used during each of the
two attention tasks. The order of attention condi-
tions was interleaved across runs to minimize
subject expectation bias. This resulted in the pre-
sentation of 1800 s of movies without repetition in
each attention condition. Data from the first 20 s
and last 30 s of each run were discarded to mini-
mize effects of transient confounds. Following
these procedures, 900 data samples for each atten-
tion condition were obtained.

A separate set of functional data were collected
while the same set of subjects passively viewed
120min of natural movies., passive-viewing data;
this dataset was also used in Huth et al., 2012 but
here it was reanalyzed with a focus on action cate-
gories). This dataset was used to construct the
semantic space and to select voxels subjected to
further analyses. Data for the passive-viewing
experiment were collected in 12 10min 50 s runs
in which 12 separate movie segments were dis-
played. Presentation procedures were the same
between the main experiment and passive-viewing
experiment, save for the number of runs. The pas-
sive-viewing dataset contained 3600 data samples.

fMRI data collection
Data were collected on a 3T Siemens Tim Trio
MRI scanner (Siemens Medical Solutions) via a
32-channel receiver coil. Functional data were col-
lected using a T2p-weighted gradient-echo echo-
planar imaging pulse sequence with the following
parameters: TR = 2 s, TE = 33 ms, water-excitation
pulse with flip angle = 70°, voxel size = 2.24 mm �

Figure 2. Model fitting and validation procedure. Undergoing fMRI, human subjects viewed 60 min of natural movies
and covertly searched for communication or locomotion action categories while fixating on a central dot. a, An indicator
matrix was constructed that identified the presence of each of the 922 object and action categories in each 1 s clip of
the movies (Extended Data Fig. 2-1). Nuisance regressors were included to account for head motion, physiological noise,
and eye movement confounds. An additional nuisance regressor was included to account for target detection confounds.
In a CV procedure, regularized linear regression was used to estimate separate category model weights (i.e., category
responses) for each search task that mapped each category feature to the recorded BOLD responses in single voxels. b,
Accuracy of the fit models was cross-validated by measuring prediction performance on the held-out data in each CV
fold after discarding the nuisance regressors and the target regressor. The prediction score of the fit models was taken
as the product-moment correlation coefficient between estimated and measured BOLD responses, averaged across the
two search tasks.
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2.24 mm � 4.13 mm, field of view = 224 mm � 224 mm, 32 axial slices.
To construct cortical surfaces, anatomic data were collected using a
three-dimensional T1-weighted magnetization-prepared rapid-acquisi-
tion gradient-echo sequence with the following parameters: TR = 2.3 s,
TE = 3.45 ms, flip angle = 10°, voxel size = 1 mm� 1 mm� 1 mm, field
of view = 256 mm � 212 mm � 256 mm. Surface flattening and visual-
ization were done via FreeSurfer and PyCortex software (Dale et al.,
1999; Reuter et al., 2012; Gao et al., 2015).

fMRI data preprocessing
Motion correction was performed using Statistical Parametric Mapping
(SPM12) toolbox (Friston et al., 1995). Functional volumes were aligned
to the first image from the first run in each subject. Brain tissue was
identified using the brain extraction tool (BET) from the Functional
MRI of the Brain Software Library software package (Smith, 2002). Low-
frequency response components were detected using a third-order
Savitzky–Golay low-pass filter with 240 s temporal window and were
removed from voxel responses. Voxel responses were then z scored to
attain zero mean and unit variance. Voxels within the 2 mm neighbor-
hood of the cortical sheet were identified as cortical voxels in each sub-
ject (S1, 37,791 voxels; S2, 32,671 voxels; S3, 36,942 voxels; S4, 42,090
voxels; S5, 39,254 voxels).

Definition of regions of interest
To define the anatomic regions of interest (ROIs) in each subject, the
cortical surface was segmented into 156 regions of the Destrieux atlas
(Destrieux et al., 2010) via FreeSurfer. Segmentation results were
projected from the anatomic space onto the functional space using
PyCortex, and each voxel was assigned an anatomic label based on the
projections. Functional ROIs were identified in each subject using visual
category and retinotopic localizers (Huth et al., 2012). Localizer experi-
ments for visual category-selective areas [fusiform face area (FFA), occi-
pital face area (OFA), parahippocampal place area (PPA), retrosplenial
cortex RSC)] were performed in six 4.5min runs of 16 blocks (Huth et
al., 2012). Subjects passively viewed 20 random static images from one of
the objects, scenes, body parts, faces, or spatially scrambled object groups
in each block. Each image was shown for 300ms following a 500ms
blank period. PPA and RSC were identified as voxels with positive scene
versus objects contrast (t test, p , 10�4, uncorrected). FFA and OFA
were defined using face-versus-object contrast (t test, p , 10�4, uncor-
rected). The boundaries of these areas were hand drawn on the cortical
surfaces along the contours at which the contrast level reached half of
the maximum. A localizer experiment for retinoptic early visual areas
(RET; V1, V2, V3) contained four 9min runs. Subjects viewed clockwise
and counterclockwise rotating polar wedges in two runs. In the remain-
ing two runs, subjects viewed expanding and contracting rings. Visual
angle and eccentricity maps were used to define visual areas V1–3.
Finally, ROIs were refined to voxels inside the drawn boundaries near a
2 mm neighborhood of the cortical sheet.

Abbreviations for regions of interest and important sulci
Several regions of interest and important sulci were labeled on the flat-
tened cortical surfaces to guide the reader.

Regions of interest. Abbreviations are pMTG (posterior middle tem-
poral gyrus), pSTS (posterior superior temporal sulcus), AG (angular
gyrus), SMG (supramarginal gyrus), IPS (intraparietal sulcus), aIP (ante-
rior intraparietal cortex), PrCu (precuneous), dPMC (dorsal premotor
cortex), BA44/45 (Brodmann area 44/45), MFG (middle frontal gyrus),
SFG (superior frontal gyrus), ACC (anterior cingulate cortex), RET (reti-
noptic early visual areas V1–3), FFA (fusiform face area), OFA (occipital
face area), PPA (parahippocampal place area), RSC (retrosplenial
cortex).

Sulci. Abbreviations are TOS (temporo-occipital sulcus), STS (supe-
rior temporal sulcus), SF (Sylvian fissure), IFS (inferior frontal sulcus),
MFS (middle frontal sulcus), SFS (superior frontal sulcus).

Head motion, eye movement, and physiological noise
To prevent head motion and physiological noise confounds, estimates of
these nuisance factors were regressed out of the BOLD responses. Six

affine motion time courses estimated during the motion correction stage
were taken as the head motion regressors. The cardiac and respiratory
activity during the main experiment was recorded using a pulse oximeter
and a pneumatic belt. These data were then used to estimate two regres-
sors to capture respiration and nine regressors to capture cardiac activity
(Verstynen and Deshpande, 2011).

To ensure that eye movements did not unduly bias the results, sev-
eral control analyses were performed. ViewPoint EyeTracker (Arrington
Research) was used to monitor subjects’ eye positions at 60Hz after get-
ting calibrated at the beginning of each experimental run. Kruskal–
Wallis tests were used to detect systematic differences in the distribution
of eye position and movement. The distribution of eye position during
search for communication and locomotion tasks were examined. We
find that the distribution of eye position is not affected by search task
(p = 0.17) or by target presence or absence (p = 0.74), and no significant
interactions are present between these two factors (p = 0.60). To test
whether eye movement is affected by target or distractor detection, the
distribution of eye position during a 1 s window around target onset and
target offset was studied. The eye position distribution is not affected by
target onset (p = 0.73) or offset (p = 0.17), and there is no significant
interaction between the aforementioned factors (p = 0.83). Furthermore,
the moving-average SD of eye position was studied in a 200ms window
to determine systematic differences in rapid moment-to-moment varia-
tions in eye position across the two search tasks. There are no significant
effects of search task (p = 0.11), target presence or absence (p = 0.32),
target onset (p = 0.49), or target offset (p = 0.36), and there are no signif-
icant interactions among these factors (p = 0.16). Finally, moving-aver-
age SD of eye position was included in the model as a nuisance regressor
and was regressed out of the BOLD responses.

To maintain subject vigilance, the subjects were instructed to depress
a button whenever they detected a member of the target category in the
stimulus (i.e., either a communication or a locomotion action depending
on the search task). The behavioral responses were initially analyzed to
ensure that subjects performed the tasks and that task difficulty was bal-
anced across search targets. The target detection rate was 89 6 9% for
the communication and 91 6 8% for the locomotion targets (mean 6
SD across subjects), with no significant difference between the two tasks
(bootstrap test, p. 0.05).

Category features
A category feature space was constructed to encode the information per-
taining to object and action categories in the movies. Each second of the
movie stimulus was manually labeled using the WordNet lexicon
(Miller, 1995) to find the time course for the presence of 922 different
object and action categories in the movie stimulus. This yielded an indi-
cator matrix where each row represents a 1 s clip of the movie stimulus,
and each column represents a category. Finally, category features were
obtained by downsampling the indicator matrix to 0.5Hz to match the
acquisition rate of fMRI.

Motion-energy features
To infer cortical selectivity for low-level scene features, local spatial fre-
quency and orientation information of each frame of the movie stimulus
were quantified using a motion-energy filter bank. The filter bank con-
tained 2139 Gabor filters that were computed at eight directions (0–350°
in 45° steps), three temporal frequencies (0, 2, and 4Hz), and six spatial
frequencies (0, 1.5, 3, 6, 12, and 24 cycles/image). Filters were placed on
a square grid spanning the 24 � 24° field of view. The luminance chan-
nel was extracted from the movie frames and passed through the filter
bank. The outputs were then passed through a compressive nonlinearity
to yield the motion-energy features (Nishimoto et al., 2011; Lescroart
and Gallant, 2019). Finally, the motion-energy features were temporally
downsampled to match the fMRI acquisition rate.

Space-time interest points features
Intermediate-level kinematic information of the movies were quantified
by constructing the Space-Time Interest Point (STIP) features using
STIP toolbox (Laptev, 2005; Laptev et al., 2008). STIP features have been
successfully leveraged in many computer vision applications to recognize
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human actions. As detailed in Laptev (2005) and Laptev et al. (2008),
Harris operators were used to identify spatiotemporal interest points in
the movie stimulus at multiple scales (s 2

i ; t
2
j Þ = (211i, 2j), i [ {1, ..., 6},

j 2 f1; 2g; where s and t are the standard deviations of the Gaussian
kernels in spatial and temporal domains, respectively. Histograms of ori-
ented gradients (Dalal and Triggs, 2005), and histograms of optical flow
(Holte et al., 2010) were calculated in the (Dx;i;Dy;i;Dt;j) spatiotemporal
neighborhood of each interest point, where Dx;i ¼ Dy;i ¼ 2ks i and
Dt;j ¼ 2kt j, and k is the scale factor. The scale factor was set to 9 accord-
ing to the default configuration of the toolbox. Finally, normalized histo-
grams were concatenated to construct the collection of 162 STIP features
and were downsampled to match the acquisition rate of fMRI.

Model estimation and testing
Separate linearized models were fit in each voxel to estimate model
weights that map each set of features (i.e., category, motion-energy, or
STIP features) to the measured BOLD responses in each search task in
individual subjects. Banded-ridge regression (Nunez-Elizalde et al.,
2019) was used to fit the models. To capture the hemodynamic response,
delayed feature time courses were concatenated. Delays of two, three,
and four samples, corresponding to 4, 6, and 8 s were used. To account
for potential correlations between target detection and BOLD responses,
a nuisance target-presence regressor was included in the model. The
target-presence regressor contained the category regressor for communi-
cation during search for the communication task and the category
regressor for locomotion during search for the locomotion task. Model
fitting for the two search tasks was performed concurrently by concate-
nating the features and BOLD responses across search tasks (Fig. 2).
This procedure ensured consistency between the assigned regularization
parameters across search tasks and enabled use of the target regressor
(Shahdloo et al., 2020).

A nested cross-validation (CV) procedure was used to choose the
regularization parameters and estimate model weights. Data from the
main experiment were segmented into 60 30 s blocks. In each of the 10
outer folds, four randomly chosen blocks were held out as validation
data. Then, in each of the 10 inner folds, 54 randomly chosen blocks
were used as training data, and the 2 remaining blocks were used as test
data. To fit models for the passive-viewing data, data were segmented
into 144 50 s blocks. In each fold, eight randomly chosen blocks were
held out as validation data, 132 randomly chosen blocks were used as
training data, and the four remaining blocks were used as test data. For
each feature set, regularization parameters were selected with a random
search; a thousand normalized regularization parameter candidates were
sampled from a Dirichlet distribution and were scaled by 30 log-spaced
values ranging from 10�5 to 1020. Training data were used to fit models
for each set of regularization parameters independently. Model weights
were then used to predict responses in the test data, and prediction
scores of the fit models were assessed. Prediction scores were taken as
the product-moment correlation coefficient between measured and pre-
dicted voxel responses. The set of regularization parameters maximizing
the average prediction score across inner CV folds was chosen in each
voxel. Finally, the optimal set of parameters was used to fit models on
the union of training and test data in each outer fold, and model weights
were averaged across the outer folds.

Finally, prediction performance of the fit models were evaluated. In
each outer fold, after discarding the nuisance regressors, responses were
predicted for the validation data using the fit models, and prediction
scores were averaged across the search tasks. Prediction scores were then
averaged across the outer folds.

For each voxel, separate linearized models were estimated to relate
each feature representation to the BOLD responses. Specifically, category
models were fit to estimate category responses that represented the con-
tribution of each category to single-voxel BOLD responses separately for
the data in the main experiment and the passive-viewing data in individ-
ual subjects. Furthermore, a motion-energy model and a STIP model
were fit in each voxel to represent the contribution of the low- and inter-
mediate-level stimulus features to the responses. These alternative mod-
els were further used to select analysis voxels (i.e., semantic voxels).

Variance partitioning
Object-action categories can be correlated with low-level visual features
of natural movies (Lescroart and Gallant, 2019), and there is evidence
for representation of intermediate-level action features (e.g., action kine-
matics) across cortex (Jastorff et al., 2010). Therefore, there is a possibil-
ity that the estimated category responses are confounded by selectivity
for low- and intermediate-level scene features. To control for potential
confounds, we performed a variance partitioning analysis. This analysis
estimates the response variance that is uniquely explained by the cate-
gory model after accounting for variance that can be attributed to low-
and intermediate-level features captured by the motion-energy and STIP
models. To do this, we separately measured the variance explained when
all three models (category, motion energy, and STIP) are fit simultane-
ously (i.e., combined model), and variance explained when only motion-
energy and STIP models are fit simultaneously (i.e., control model).
Banded ridge regression was used to fit the combined and control mod-
els to prevent bias in assigning regularization parameters across different
feature sets. The explained variance (R2) was calculated as squared pre-
diction scores, separately for the combined and control models. Note
that from a model-fitting perspective, negative prediction scores that
correspond to zero explained variance. Finally, unique variance
explained by the category model was calculated as follows:

R̂2
cat ¼ R2

comb � R2
cont: (1)

Here, R̂2
cat is the variance uniquely explained by the category model

after accounting for low- and intermediate-level features, R2comb is the
variance explained by the combined model, and R2cont is the variance
explained by the union of motion-energy and STIP models in each
voxel.

Action category responses
The fit category responses reflect voxel tuning for each of the 922 object
and action categories in the movie stimulus. To infer tuning for action
categories, 922-dimensional category responses were masked to select
only the 109 action categories. This yielded the voxelwise 109-dimen-
sional action category responses.

Semantic representation of actions
Passive-viewing data were used to construct a continuous semantic space
for action category representation. In this space, semantically similar
action categories would project to nearby points, whereas semantically
dissimilar categories would project to distant points (Huth et al., 2012).
Category models were fit, and action category responses during passive
viewing were estimated. A group semantic space was then obtained
using principal component analysis (PCA) on the action category
responses of cortical voxels pooled across all subjects. To maximize the
quality of the semantic space, voxels in which the category model pre-
dicted unique response variance after accounting for the variance attrib-
uted to low- and intermediate-level stimulus features were selected.
These voxels were further refined to include only the top 3000 best pre-
dicted voxels within each subject. The top 12 principal components
(PCs) that explained .95% of the variance in responses were selected.
Subsequent analyses were also repeated using the top eight PCs that
explained.90% of the response variance, but the results remained con-
sistent. The semantic tuning profile for each voxel under each search
task was then obtained by projecting the respective action category
responses onto the PCs. To illustrate the semantic content of the PCs,
characteristic actions of the movie stimulus were clustered in the seman-
tic space, and cluster centers were projected onto the PCs after getting la-
beled (see Fig. 6).

Consistency of the semantic space across subjects
To test whether the estimated semantic space is consistent across sub-
jects, we used a leave-one-out cross-validation procedure. In each cross-
validation fold, voxels from four subjects were used to derive 12 PCs to
construct a semantic space. In the left-out subject, the semantic tuning
profile for each voxel was obtained by projecting action category
responses during passive viewing onto the derived PCs. Next, the
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product-moment correlation coefficient was calculated between the tun-
ing profiles in the derived space and the tuning profiles in the original
semantic space. Results were averaged across semantic voxels in the left-
out subject. The cross-validated semantic spaces consistently correlate
with the original semantic space (see Fig. 7).

Characterizing tuning shifts
Attentional tuning shifts toward or away from targets would be reflected
in modulation of semantic selectivity for communication or locomotion
action categories. Thus, the magnitude and direction of tuning shifts can
be assessed by comparing the semantic selectivity for these categories
between the two search tasks. Semantic selectivity for the two target cate-
gories was quantified as the similarity between semantic tuning profiles
and idealized templates tuned solely for communication or locomotion
action categories. First, idealized category responses were constructed
as 109-dimensional vectors that contained ones for target categories (ei-
ther communication or locomotion categories) and zeros previously.
Idealized templates were then obtained by projecting these idealized cat-
egory responses onto the semantic space. Semantic selectivity for each
target category was quantified as the product-moment correlation coeffi-
cient between the voxel semantic tuning profile and the corresponding
template as follows:

Ti;C ¼ corrðsi; s9CÞ (2)

Ti;L ¼ corrðsi; s9LÞ; (3)

where Ti,C and Ti,L are the tuning strength for communication (C) and
locomotion (L) during condition i [ {C, L} denoting attend to communi-
cation or attend to locomotion; si is the semantic tuning profile during
condition i, and s’C and s’L denote the idealized semantic tuning tem-
plates for communication and locomotion, respectively. Finally, voxel-
wise tuning shift index (TSIall) was quantified as follows:

TSIall ¼ TC;C � TC;Lð Þ1 ðTL;L � TL;CÞ
2� signðTC;C � TC;LÞTC;L � signðTL;L � TL;CÞTL;C

: (4)

The numerator of TSI captures the difference in semantic selectivity
for the attended versus unattended category, summed over the two
attention tasks (i.e., search for communication and search for locomo-
tion). Observing that the maximum possible selectivity for the attended
category is 1, obtained when voxel tuning is equivalent to the idealized
template, the denominator is cast to normalize the potential range of the
TSI metric between 1 and�1 without affecting its sign. Tuning shifts to-
ward the attended category would yield positive values where a TSIall of
1 indicates a complete match between voxel semantic tuning and ideal-
ized templates, whereas negative values would indicate shifts away from
the attended category where a TSIall of �1 indicates a complete mis-
match between voxel tuning and idealized templates. A TSIall of 0 would
indicate that the voxel tuning did not shift between the two search tasks.

The TSI metric in Equation 4 can also be adopted to calculate tuning
changes for any given set of action categories. To do this, the 922-dimen-
sional category responses measured during attention tasks were masked
to keep only the responses for the given set of actions. The masked tun-
ing vectors and the idealized template for the given set were then pro-
jected onto the 12-dimensional semantic space. Semantic selectivity of a
voxel to the given set was taken as the correlation coefficient between the
projections of voxel tuning and the idealized template in the semantic
space. Attentional modulation of semantic tuning for nontarget catego-
ries was examined by calculating a separate tuning shift index (TSInt).
Note that this index can be calculated based on Equation 3 but by zero-
ing out the category responses for communication and locomotion
actions before projection onto the semantic space. To study the tuning
shifts in an ROI, TSIs were averaged across semantic voxels within the
ROI.

The change in voxelwise tuning during attending to the first target
(e.g., communication) versus the second target (e.g., locomotion) was

defined as the l1-norm of the tuning difference between the two condi-
tions. This calculated tuning change can be linearly decomposed into a
component explained by the target features (i.e., the union of communi-
cation and locomotion features) and a component explained by the
nontarget features (i.e., all features excluding the target features). The
fraction of tuning change for target/nontarget features was computed by
taking the ratio of the respective component to the overall tuning
change.

Characterizing target preference during visual search
To investigate the interaction between tuning shifts and intrinsic se-
lectivity for individual target action categories, we quantified a target
preference index (PI; PI[ [�1,1]) separately during the search for com-
munication actions (PIcom) and during the search for locomotion actions
(PIloc). PI during the search for each target action was taken as the differ-
ence in selectivity for the attended versus the unattended target as
follows:

PIcom ¼ TC;C � TC;L

1� signðTC;C � TC;LÞTC;L
(5)

PIloc ¼ TL;L � TL;C

1� signðTL;L � TL;CÞTL;C
; (6)

where PIcom denotes the relative tuning preference for communication
actions during the search for communication, and PIloc denotes the rela-
tive tuning preference for locomotion actions during search for locomo-
tion. In this scheme, a PI of 1 indicates a complete match between voxel
semantic tuning and the idealized template for the target, whereas a PI
of �1 indicates a complete mismatch between voxel tuning and the
idealized template for the target. Finally, a PI of zero indicates that the
voxel semantic tuning does not shift toward any of the target actions.

Characterizing action category preference during passive viewing
To investigate the interaction between the calculated preference index
for individual targets and intrinsic selectivity for action categories, we
quantified a selectivity index (SI; SI [ [�1,1]), separately for communica-
tion actions (SIcom) and for locomotion actions (SIloc). SI for each target
in each voxel was calculated as the product-moment correlation coeffi-
cient between the voxel category response and idealized template cate-
gory tuning for the given target.

Action clustering
To facilitate interpretation of stimulus information captured by individ-
ual PCs, the characteristic action content of the movies was clustered
and labeled. Action content (�C) for each short clip was calculated as the
number of frames where each of the 109 actions were present (Na ) and
was normalized by the total number of clip frames (N) as follows:

�C ¼ Na

N
: (7)

This yielded a 109-dimensional action content vector for each clip.
The action content vectors were then projected onto the semantic space
and were grouped into 10 clusters using kmeans. The number of clusters
was optimized using the elbow method (Thorndike, 1953). Average
action content of each clip (A) was calculated as the mean of the clip’s
action content vector as follows:

A ¼
X

c

109
; (8)

where �C ¼ ½c1; c2; c3; : :: ; c109�: To label the clusters, five clips with the
highest average action contents within each cluster were selected. Four
candidate labels for each cluster were manually assigned, and 15 evalua-
tors were asked to score (from 1 to 5) the correspondence of the selected
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clips to each of the four candidate labels. Finally, the label with the high-
est score was selected to represent each cluster.

Statistical analyses
Bootstrap tests were used to assess statistical significance. To assess sig-
nificance of the prediction scores, single-voxel predicted responses were
resampled 5000 times with replacement. For each bootstrap sample, the
prediction score was computed. The significance level (p value) of the
prediction scores was taken as the fraction of bootstrap samples in which
the prediction scores were .0. The significance level of the unique
response variance (Eq. 1) was taken as the fraction of bootstrap samples
in which the unique variance explained by the category model was .0.
All single-voxel significance levels were corrected to account for multiple
comparisons using the false discovery rate correction (FDR; Benjamini
and Hochberg, 1995).

Significance of TSIall, TSInt, PIcom, and PIloc was assessed for each
ROI across subjects. To do this, ROI-wise metrics were resampled across
subjects with replacement 10,000 times. Significance level was taken as
the fraction of bootstrap samples where the test metric averaged across
resampled subjects is ,0 (for right-sided tests) or .0 (for left-sided
tests). This procedure was performed in a total of 21 functional ROIs
separately. All ROI significance levels were corrected to account for mul-
tiple comparisons using FDR.

In ROIs with a significant metric across subjects, the metric was fur-
ther tested within individual subjects. To do this, semantic voxels within
a given ROI were resampled with replacement 10,000 times. For each
bootstrap sample, mean value of a given metric was computed across
resampled voxels. The significance level was taken as the fraction of
bootstrap samples in which the tested metric was ,0 (for right-sided
tests) or.0 (for left-sided tests).

Data availability
Data supporting the findings of this study are available from the corre-
sponding authors on request. Results can be explored online via an
interactive brain viewer at http://www.icon.bilkent.edu.tr/brainviewer/
shahdloo_etal/. The codes used to estimate spatially informed voxelwise
model weights are freely available on GitHub at https://github.com/
icon-lab/SPIN-VM.

Results
Visual search modulates category responses
Little is known on whether and where in the brain natural visual
search for action categories warps semantic representations. To an-
swer this question, we investigated voxelwise tuning for hundreds
of object and action categories across cortex. Human subjects
viewed natural movies and covertly searched for communication
or locomotion actions. Category regressors were constructed to
label the presence of 922 distinct object and action categories in the
movies. Separate category models were then fit in each voxel for
each search task. These models enabled us to measure single-voxel
category responses during each search task (Fig. 2a; see above,
Materials andMethods).

As natural stimuli contain correlations among various levels
of features, there is a possibility that estimated category responses
are confounded by voxel tuning for low- and intermediate-level
scene features. To rule out this potential confound, we measured
the response variance explained by low-level motion-energy fea-
tures, and intermediate-level STIP features. Motion-energy fea-
tures were constructed using a pyramid of spatiotemporal Gabor
filters (Nishimoto et al., 2011). STIP features, providing an inter-
mediate representational basis for human actions, were con-
structed by measuring optical flow over interest points with
significant spatiotemporal variation (Laptev et al., 2008). We iden-
tified voxels in which the category model explained unique
response variance after accounting for these alternative features
via variance partitioning, and subsequent analyses were conducted

on this set of uniquely explained voxels. To prevent bias in voxel
selection because of attention, variance partitioning was per-
formed on a separate dataset collected for this purpose (i.e., pas-
sive-viewing dataset; see above, Materials and Methods). We find
that the category model explains unique response variance after
accounting for low- and intermediate-level features in 25.7 6
1.6% of cortical voxels [mean 6 SEM across five subjects; boot-
strap test, q(FDR) , 0.05; see Figs. 4, 5], yielding 8613–13,435
voxels in individual subjects (henceforth referred to as the seman-
tic voxels).

Comparison of estimated category responses across search
tasks would be justified only if the fit models can accurately pre-
dict BOLD responses that were held out during model fitting. To
assess prediction performance of the fit category models, we
measured average prediction scores across the two search tasks,
taken as the product-moment correlation coefficient between the
predicted and measured held-out responses (Fig. 2b). Category
models have high prediction scores (.1 SD above the mean) in
46.9 6 0.6% of the semantic voxels. These include many voxels
spread across the AON comprising occipitotemporal, parietal,
and premotor cortices, as well as voxels in prefrontal and cingu-
late cortices (Fig. 3).

A previous study provided the first evidence that attention
can alter single-voxel category tuning profiles during search for
object categories (Çukur et al., 2013). We thus hypothesized that
visual search for action categories can also cause changes in vox-
elwise category tuning. If attentional tuning changes are signifi-
cant, the category models fit to individual search tasks should
yield higher prediction scores than a null model fit by pooling
data across the two search tasks. To test this prediction, we com-
pared the prediction scores obtained from the category and null
models. We find that the category model significantly outper-
forms the null model in 46.1 6 1.8% of semantic voxels [boot-
strap test, q(FDR) , 0.05]. Additional control analyses further
ensured that these attentional changes cannot be attributed to
residual eye movements, head motion, physiological noise, or
target-detection biases (see above, Materials and Methods).
Together, these results suggest that many cortical voxels in occi-
pitotemporal, parietal, and prefrontal cortices encode high-level
category information and that action-based visual search signifi-
cantly modulates category responses in single voxels.

Visual search warps semantic representation of actions
Previous studies suggest that the human brain represents visual
categories by embedding them in a continuous semantic space
(Huth et al., 2012). Here, we used linear encoding models to map
category features of natural movies onto the recorded BOLD
responses in single voxels. The model features, namely actions,
are fundamental semantic concepts in both language and vision.
The models successfully predict brain activity in cortical voxels,
after controlling for lower levels of features (i.e., motion energy
and STIP features). Thus, from a quantitative perspective, it
could be argued that there is an explicit representation of the
semantic categories of actions in the voxel responses (Naselaris
et al., 2011). Note that a theoretical characterization of relation-
ships among semantic concepts is difficult. In computational
semantics, an empirical approach is adopted instead that is
rooted in the distributional hypothesis. This hypothesis states
that concepts with similar statistical distributions have similar
meanings. Accordingly, co-occurrence statistics of concepts in
corpora are used as a proxy metric for similarity of meaning in
many methods for learning semantic relationships (Jurafsky and
Martin, 2021). Here, to derive a semantic space underlying
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action category representations, we performed PCA on the
model weights for action categories. Visual search for actions
alters category model weights as reported here, so performing
PCA on data from search tasks can bias estimates of the semantic
space. Instead, we derived the semantic space using the passive-
viewing dataset. Action categories that are semantically close to
each other should project to nearby points in this space, whereas
semantically dissimilar categories should project to distant
points. The top 12 PCs that explained .95% of the variance in
responses were selected, which showed a high degree of intersub-
ject consistency (r = 0.52 6 0.02 mean 6 SEM across subjects;
see Fig. 7). To visually examine the semantic information cap-
tured by this space, we projected action categories onto the PCs

(Fig. 6a, see Fig. 9, projections onto the first three dimensions
that accounted for 72.8% of the response variance; see Fig. 10,
loadings for all PCs). All further quantitative analyses regarding
tuning shifts were instead conducted in the full semantic space of
12 dimensions, including all the identified PCs.

Previous evidence suggests that visual search shifts single-
voxel tuning profiles to expand the representation of the targets
(Çukur et al., 2013). Thus, it is possible that action-based visual
search also shifts semantic tuning in single voxels toward the tar-
get category. To investigate this possibility, we projected action
category responses onto the semantic space. The first and third
PCs maximally differentiated between actions belonging to the
target categories (i.e., communication vs locomotion categories;

Figure 3. Prediction performance of the category model. To test the performance of fit category models, the prediction score was calculated on held-out data as the product-moment corre-
lation coefficient between the predicted category responses and measured BOLD responses, and it was averaged across the two search tasks. a, Prediction scores of the category model are plot-
ted on flattened cortical surfaces of individual subjects. A variance partitioning analysis was used to quantify the response variance that was uniquely predicted by the category model after
accounting for low- and intermediate-level stimulus features (see above, Materials and Methods; Fig. 4). Voxels where the category model did not explain unique response variance after
accounting for these features were masked [bootstrap test, q(FDR), 0.05; Fig. 11]. b, To visualize single-subject results in a common space, prediction score values are shown following pro-
jection onto the standard brain template from FreeSurfer and averaging across subjects, after getting thresholded in single subjects. Only voxels that were identified as semantic in all individual
subjects were averaged and displayed in the template. Regions of interest are illustrated by white borders. Several important sulci are illustrated by dashed gray lines. (For abbreviations for
regions of interest and sulci, see above, Materials and Methods.) The category model predicts responses across ventral-temporal, parietal, and frontal cortices well, suggesting that visual cate-
gories are broadly represented across visual and nonvisual cortex. Results can be explored via an interactive brain viewer at http://www.icon.bilkent.edu.tr/brainviewer/shahdloo_etal/.
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see Fig. 8). Therefore, we visually compared the projections onto
these PCs across the two search tasks. We observe that attention
causes semantic tuning modulations broadly across cortex (Fig.
6b, Extended Data Figs. 6-1, 6-2, 6-3, 6-4, 6-5, results in individ-
ual brain spaces). Specifically, voxels in inferior posterior parietal
cortex (PPC), cingulate cortex, and anterior inferior prefrontal
cortex shift their tuning toward communication during search
for communication actions. Meanwhile, voxels in superior PPC
and medial parietal cortex shift their tuning toward locomotion
during search for locomotion actions. Several reports suggest
involvement of superior PPC in representing locomotion actions
(Corbo and Orban, 2017) and inferior PPC in representing com-
munication actions (Rizzolatti and Matelli, 2003; Abdollahi et al.,
2013). Therefore, our findings suggest that during search for a
given action category, tuning shifts toward the target category
are most prominent in voxels that are primarily selective for the
target.

Visual search for action categories shifts single-voxel
semantic tuning profiles
Our inspection of semantic representations during visual search
reveals that attention broadly modulates high-level action repre-
sentations by shifting semantic tuning profiles in single voxels.
To quantify the magnitude and direction of these tuning
changes, we separately measured semantic selectivity for com-
munication and locomotion action categories in each search
task. The 922-dimensional category responses for individual vox-
els measured during attention tasks and the idealized template
vectors for the targets were projected onto the semantic space.
The template vector for a target is constructed as a 109-dimen-
sional indicator vector containing ones for
the target category and all its subordinate
categories and zeros for the remaining cat-
egories. For instance, the locomotion tem-
plate has ones for locomotion and for
walk, run, crawl, move, ride, and so on. As
such, the target template vector indexes
the target action as well as actions that are
semantically related to the target according
to the WordNet hierarchy (see above,
Materials and Methods). For each atten-
tion task, semantic selectivity of a given
voxel for a target category was then quan-
tified as the correlation coefficient between
projected 12-dimensional vectors charac-
terizing the voxelwise tuning profile and
the idealized template in the semantic
space. For each voxel, a tuning shift index
(TSIall [ [�1,1]) was taken as the differ-
ence in semantic selectivity for targets
when they were attended versus unat-
tended. A positive TSIall indicates shifts to-
ward the target, a negative TSIall indicates
shifts away from the target, and a TSIall of 0 suggests no change
in between tasks (see above, Materials and Methods).

We find that voxels across many cortical regions shift their tun-
ing toward the attended category (see Fig. 11a, 11-1a, 11-2a, 11-
3a, 11-4a, 11-5a, results in individual brain spaces). The respective
tuning shifts are shown in relevant ROIs (see Figure 15a). Tuning
shifts are significantly greater than zero in many areas across AON
including occipitotemporal cortex (pSTS, pMTG), posterior parietal
cortex (IPS; AG, SMG), and premotor cortex [Brodmann’s areas 44,
45, BA44/45; bootstrap test q(FDR), 0.05; see Fig. 15a]. This result

suggests that focused attention to specific action categories shifts
semantic tuning toward targets in single voxels and that these atten-
tional modulations are present at all levels of the AON hierarchy
including occipitotemporal cortex.

Prior evidence suggests that during category-based visual
search, semantic tuning shifts grow stronger toward later stages
of semantic processing (Çukur et al., 2013). Here, we find that
semantic tuning shifts in AG and SMG are significantly stronger
than those in occipitotemporal (pSTS, pMTG) and premotor
cortices (i.e., averaged over AG and SMG, compared with the av-
erage over pSTS and pMTG, and with the average over dPMC

Figure 4. Comparison of category and control models. The prediction scores (raw product-
moment correlation coefficient) of the category and control (the collection of motion energy
and STIP regressors) models were measured for all cortical voxels. Voxels across all subjects
are displayed. Each voxel is represented with a dot. Red versus blue dots indicate whether
the category model or the control model yields higher prediction scores. Black dots indicate
voxels where none of the models has high prediction scores. The category model outperforms
the control model in 53.75 6 3.29% of cortical voxels (mean 6 SEM; average over 5
subjects).

Figure 5. Fraction of uniquely predicted voxels in ROIs. We identified voxels in which the category model explained
unique response variance after accounting for low-level motion energy and intermediate-level STIP stimulus features by per-
forming a variance partitioning analysis (see above, Materials and Methods). Fraction of these semantic voxels is shown
across ROIs in individual subjects. Asterisk indicates across-subject significance [bootstrap test, q(FDR), 0.05].
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and BA44/45; Cohen’s d = 1.36, p, 0.05). Therefore, the tuning
shifts reported here could indicate that AG and SMG are higher
nodes in the hierarchy of semantic representation of action cate-
gories. In a previous study, we reported that in medial prefrontal
cortex, visual search for object categories causes tuning shifts to-
ward targets, whereas it causes tuning shifts away from targets in
voxels in PrCu and temporoparietal junction (TPJ; Çukur et al.,
2013). Similarly, by qualitative inspection of the flatmaps, here
we observe that visual search for action categories causes nega-
tive tuning shifts in many voxels across PrCu and TPJ. These
results suggest that these areas might be involved in distractor
detection and in error monitoring during visual search for
actions (Corbetta and Shulman, 2002).

Visual search shifts semantic tuning for nontarget action
categories
Natural visual search for object categories was previously suggested
to cause changes in representations of not only targets but also
nontarget categories (Seidl et al., 2012; Çukur et al., 2013). Thus, it

is likely that action-based visual search shifts semantic tuning for
nontarget categories. To address this important question, we first
examined the separate contributions of tuning changes for target
versus nontarget categories to the overall tuning shifts. Specifically,
we measured the fraction of overall tuning shifts that can be attrib-
uted to the target categories versus nontarget categories (i.e., all cat-
egories excluding communication and locomotion actions). We
find that both target and nontarget categories significantly contrib-
ute to the overall tuning shifts [bootstrap test, q(FDR), 0.05].

However, as would be expected, target categories account for
a relatively larger fraction of the overall tuning shifts compared
with nontarget categories in all studied ROIs, except in early vis-
ual cortex [q(FDR) , 0.05; see Fig. 13]. Next, to explicitly quan-
tify tuning shifts for nontarget categories, we calculated a
separate tuning shift index exclusively on nontarget categories
(TSInt). To calculate TSInt, the 109-dimensional action category
response vectors were masked to select nontarget categories
before projection onto the semantic space (see above Materials
and Methods). We observe that tuning shift for nontarget

Figure 6. Attention warps semantic representation of action categories. To assess attentional changes, we projected voxelwise tuning profiles onto a continuous semantic space. a, The
semantic space was derived from PCA of tuning vectors measured during a separate passive-viewing task and was tested to be consistent across subjects (Fig. 7). To illustrate the semantic in-
formation embedded within this space, action categories were projected onto PC1 and PC3 that best delineate the target actions (Fig. 8; words in regular font show projections of individual
categories; Fig. 9). To illustrate the semantic content of the PCs, characteristic actions of the movie stimulus were clustered in the semantic space, and cluster centers were projected onto the
PCs after getting labeled (bold italic words; see above, Materials and Methods; Fig. 10). Average location of the communication and locomotion actions are indicated with red and green dots.
b, Action category responses during passive viewing and during the two search tasks were projected onto the semantic space, and a two-dimensional color map was used to color each voxel
based on the projection values along PC1 and PC3 (left, legend). Projections in individual subjects were mapped onto the standard brain template from FreeSurfer, and average projections
across subjects are displayed (Extended Data Figs. 6-1–6-5 for data in individual subjects). Figure formatting is identical to that in Figure 3. Many voxels across occipitotemporal, parietal, and
prefrontal cortices shift their tuning toward targets, suggesting that attention warps semantic representations of actions. Specifically, voxels in inferior posterior parietal cortex, cingulate cortex,
and anterior inferior prefrontal cortex shift their tuning toward communication during search for communication actions. Meanwhile, voxels in superior posterior and medial parietal cortex shift
their tuning toward locomotion during search for locomotion actions. Results can be explored via an interactive brain viewer at http://www.icon.bilkent.edu.tr/brainviewer/shahdloo_etal/.
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categories is generally smaller than the overall tuning
shift (Fig. 11b vs Extended Data Fig. 11a, Fig. 12,
Extended Data Figs. 11-1b, 11-2b, 11-3b, 11-4b, 11-5b,
results in individual brain spaces). Yet, TSInt is nonsigni-
ficant in all ROIs except AG, SMG, and BA45 [q(FDR)
, 0.05; see Fig. 15b]. Note that an insignificant TSInt does
not necessarily suggest that attention has not altered tuning
for nontarget categories, but rather the direction of tuning
changes could be merely not aligned toward or away from
the target categories in the semantic space. Thus, these
results suggest that compared with occipitotemporal areas,
attention more diversely warps semantic representations in
parietal and premotor AON nodes by shifting tuning for
both target and nontarget categories.

Tuning shifts interact with intrinsic selectivity of
cortical voxels for action categories
A study on visual attention has reported that in strongly
object-selective regions, voxel tuning for a preferred
object might be robust against attention directed to a
nonpreferred object (e.g., houses for FFA and faces for
PPA; Çukur et al., 2013). This previous result suggests
that the degree of response modulations in a brain
region might depend on the alignment between the
search target and the intrinsically preferred object. It is
thus likely that tuning shifts during search for an action
category also interact with the intrinsic selectivity of
cortical voxels for the target category. Tuning shifts as
measured by TSI signal an overall increase in relative
selectivity for target versus nontarget categories,
aggregated across search tasks. Yet, interaction of
tuning shifts with intrinsic selectivity for action cate-
gories is task specific by definition. Therefore, to
examine potential interactions, we calculated a target pre-
ference index (PI [ [�1,1]) separately during search for
communication actions (PIcom) and during search for loco-
motion actions (PIloc). PIcom was taken as the difference in
selectivity for communication versus locomotion during
search for communication actions. Analogously, PIloc was
taken as the difference in selectivity for locomotion versus
communication during search for locomotion actions.

Voxelwise PIcom and PIloc values were projected onto cortical
flatmaps for visual inspection (see Fig. 14; Figs. 11-1c, 11-2c, 11-
3c, 11-4c, 11-5c, results in individual brain spaces) and quantita-
tively examined in ROIs (see Fig. 15c,d). We observe that seman-
tic tuning in areas with indiscriminate selectivity for behaviorally
relevant action categories (e.g., selective for low-level visual fea-
tures or static object categories) show insignificant shifts regard-
less of the search task. Meanwhile, many voxels across
anterior parietal, occipital, and cingulate cortices—with
intrinsic action category preferences—show differential
preference for one of the two target action categories as
indicated by a high PI index during either search for com-
munication or search for locomotion actions. Finally,
semantic tuning in voxels across posterior parietal and an-
terior prefrontal cortices with broad selectivity for actions
shift toward the attended category regardless of the search
target. These specific cases are discussed in detail below.

Areas where both PIcom and PIloc are nonsignificant
We find that PIcom and PIloc are nonsignificant in RET [boot-
strap test, q(FDR) . 0.05] that represent low-level stimulus
features, low-level motion-selective area [hMT (human

middle temporal); q(FDR) . 0.05], and object-selective areas
[FFA, OFA, PPA, RSC, and EBA (extrastriate body area);
q(FDR). 0.05]. Furthermore, PIcom and PIloc are nonsignificant
in aIP [q(FDR) . 0.05], which is not involved in representing
communication or locomotion actions [nonsignificant
SIcom and SIloc, q(FDR) . 0.05; Rizzolatti et al., 1997;

Figure 7. Consistency of the semantic space across subjects. To test whether the estimated semantic
space is consistent across subjects, leave-one-out cross-validation was performed. In each cross-validation
fold, best-predicted voxels from four subjects were used to derive 12 PCs to construct a semantic space.
In the left-out subject, semantic tuning profile for each voxel was obtained by projecting action category
responses during passive viewing onto the derived PCs. Next, the product-moment correlation coefficient
was calculated between the tuning profiles in the derived space and the tuning profiles in the original
semantic space. Results were averaged across semantic voxels in the left-out subject. Correlation coeffi-
cients are shown for each PC and each subject. The cross-validated semantic spaces consistently correlate
with the original semantic space.

Figure 8. The distance between target actions in subspaces spanned by different pairs of
PCs. To visualize attentional modulation of semantic representation in Figure 6, we compared
projections of action category responses onto a pair of PCs across the search tasks. To maxi-
mize our sensitivity in visualizing the attentional modulations, we chose the pair of dimen-
sions that maximally separates the actions belonging to the two target categories (i.e.,
communication and locomotion categories). The Mahalanobis distance between communica-
tion actions and locomotion actions (mean 6 SEM across communication and locomotion
actions) in the subspace spanned by each pair of PCs is shown. Target actions are maximally
separated across the subspace spanned by the first and third PCs.
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Noppeney, 2008; Urgen and Orban, 2021]. These results
suggest that during an action-based search, semantic tuning
does not change substantially in cortical areas that are
selective for lower level visual features or for neutral high-
level action categories irrelevant to the task.

Areas where either PIcom or PIloc are significant
Several previous studies suggest that lateral and medial prefrontal
cortices are causally involved in representing communication
actions (Van Overwalle, 2009; Wilson-Mendenhall et al., 2013).
Here, we find that PIloc is nonsignificant, whereas PIcom is

Figure 9. Distribution of action categories across PCs. To illustrate the distribution of action categories embedded within the semantic space, action categories were projected onto the PCs.
Projections onto the first three PCs are shown (words in regular font show projections of individual categories). To facilitate illustration, categories were collapsed into 10 clusters, and cluster
centers were also projected onto the PCs (bold italic words; see above, Materials and Methods). Average location of the communication and locomotion actions are indicated with red and green
dots. The estimated semantic space captures reasonable semantic variance across action categories in natural movies.

Figure 10. Projections of action category clusters onto PCs. Each of the 109 action categories were projected onto the 12 semantic PCs. The projections were then clustered into 10 groups
using k means and labeled for interpretation (see above, Materials and Methods). The projections of the cluster centers onto 12 PCs are shown. The first three dimensions were used to visualize
the semantic space. The first dimension distinguishes between self-movements (e.g., swirl, consume) and actions that are targeted toward other humans or objects (e.g., reach, talk). The sec-
ond dimension distinguishes between dynamic (e.g., drive, chase) versus static actions (e.g., consume, struggle). The third dimension distinguishes between actions that involve humans (e.g.,
talk, reach) and dynamic actions (e.g., fly, swirl).
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significantly greater than zero in anterior inferior frontal gyrus
[BA44/45; d = 1.94, q(FDR) , 0.05; SIcom = 0.12, q(FDR) ,
0.05], in SFG [d = 1.94, q(FDR) , 0.05; SIcom = 0.18, q(FDR) ,
0.05)], and in ACC [d = 0.34, q(FDR) , 0.05; SIcom = 0.18, q
(FDR) , 0.05]. On the other hand, previous reports provide evi-
dence for representation of animate locomotion actions in PPC,
including IPS [SIloc = 0.15, q(FDR), 0.05; Bremmer et al., 2001;
Battelli et al., 2003; Ilg et al., 2004; Abdollahi et al., 2013]. In
accord, we find that PIcom is nonsignificant, whereas PIloc is sig-
nificantly greater than zero in IPS [d = 3.95, q(FDR) , 0.05].
Together, our findings suggest that in areas that are strongly

selective for specific action categories, visual search for the pre-
ferred action shifts tuning more vigorously toward the preferred
target category. It is also worth noting that these attentional
effects are not limited to the AON but rather extend to higher
order cortical areas involved in social cognition. Finally, we find
that PIloc is significantly less than zero, whereas PIcom is non-
significant [d = 0.73, q(FDR) . 0.05; SIloc = �0.23, q(FDR) ,
0.05] in dPMC. This result supports the view that dPMC enhan-
ces the representation of distractors during search for locomo-
tion actions (Anticevic et al., 2010; Toepper et al., 2010; Zhou et
al., 2012).

Figure 11. Cortical distribution of tuning shifts. a, To quantify the tuning shifts for the attended versus unattended categories, a tuning shift index (TSIall [ [�1,1]) was calculated
for each voxel. Tuning shifts toward the attended category would yield positive TSI (red color), whereas negative TSI would indicate shifts away from the attended category (blue
color). TSIall values from individual subjects were projected onto the standard brain template and averaged across subjects (Extended Data Figs. 11-1a, 11-2a, 11-3a, 11-4a, 11-5a for
data in individual subjects). Figure formatting is identical to that in Figure 3. AON is outlined by green dashed lines. Voxels across many cortical regions shifted their tuning toward
the attended category. These include regions across AON (occipitotemporal cortex, posterior parietal cortex, and premotor cortex), lateral prefrontal cortex, and anterior cingulate cor-
tex. b, To examine how representation of nontarget action categories changes during visual search, we measured a separate tuning shift index specifically for these categories (TSInt).
TSInt values from individual subjects were projected onto the standard brain template and averaged across subjects (Extended Data Figs. 11-1b, 11-2b, 11-3b, 11-4b, 11-5b for data
in individual subjects). TSInt shows a similar distribution to TSIall shown in a, albeit with lower magnitude (Fig. 12). Tuning shift for nontarget categories is positive across many vox-
els within posterior parietal cortex and anterior prefrontal cortex, suggesting a more flexible semantic representation of actions in these cortices, compared with occipitotemporal
AON nodes. Results can be explored via an interactive brain viewer at http://www.icon.bilkent.edu.tr/brainviewer/shahdloo_etal/.
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Areas where both PIcom and PIloc are significant
The pSTS, pMTG, and SMG are considered as AON nodes that
maintain representation of actions regardless of their semantic cate-
gory (Lui et al., 2008; Caspers et al., 2010; Jastorff et al., 2016). We
find that both PIcom and PIloc are significantly greater than zero in
pSTS, pMTG, and SMG, consistent with their generic action selec-
tivity. In addition, several previous studies suggest that MFG, as a
node in dorsal attention network, facilitates visual search by
maintaining the representation of targets (Corbetta and
Shulman, 2002; Mars and Grol, 2007; Paneri and Gregoriou,
2017; Ptak et al., 2017). Accordingly, here we find that PIcom
and PIloc are significantly greater than zero in MFG [q(FDR)
, 0.05]. Overall, these results indicate that in areas with
generic action selectivity and in high-level cortical areas,
attention facilitates an action-based search by shifting repre-
sentations toward targets regardless of their semantic
category.

The results presented here can be explored online via an inter-
active brain viewer at http://www.icon.bilkent.edu.tr/brainviewer/
shahdloo_etal/.

Discussion
Several previous studies have reported response modulations
during action-based attention in parietal and prefrontal cortices

but not in occipitotemporal areas (Nastase
et al., 2017, 2018; Nicholson et al., 2017).
Yet we observe significant attentional
tuning shifts in occipitotemporal cortex.
Unlike previous studies, our analysis
approach enables us to measure single-
voxel tuning. Our movie stimulus con-
tains a large set of action categories in
natural context in contrast to controlled
stimuli with a handful of actions on a
homogeneous background. Last, we
investigate actions that are performed by
animate actors, known to elicit robust
responses across the occipitotemporal cortex
(Thompson and Parasuraman, 2012; Isik et
al., 2017; Walbrin et al., 2018; Walbrin and
Koldewyn, 2019). These design factors might
have enabled us to detect tuning shifts in
early stages of AON comprising occipito-
temporal areas.

Previous studies emphasize the role of
AG and SMG in multimodal semantic rep-
resentation while observing actions, hearing

action sounds, or reading action words (Pizzamiglio et al., 2005;
Liljeström et al., 2008; van Dam et al., 2010; Bedny and Caramazza,
2011). Evidence also suggests that during semantic processing these
areas act as central connectivity hubs, passing information from
low-level perceptual areas onto higher level areas in prefrontal cor-
tex (Hoeren et al., 2013; Farahibozorg et al., 2019). We find signifi-
cant tuning shifts toward targets in AG and SMG, higher than that
in occipitotemporal and premotor AON nodes, regardless of the
search target. Our results can be taken to suggest a higher place for
AG and SMG in the hierarchy of semantic representations com-
pared with the remaining AON nodes. Another potential account
could be that areas with stronger action selectivity might undergo
stronger tuning shifts, and future studies are warranted to investi-
gate this issue more directly.

Cortical areas selective for an object category are suggested to
retain their preferred tuning even when a nonpreferred category
is the search target (Reddy and Kanwisher, 2007; Çukur et al.,
2013; Shahdloo et al., 2020). We find that semantic tuning of
voxels in locomotion-action-selective superior parietal cortex are
shifted toward locomotion actions only during search for this
target. Likewise, semantic tuning of voxels in communication-
selective anterior prefrontal cortex are shifted toward communi-
cation actions only during search for communication. These
results suggest that semantic tuning shifts interact with the
intrinsic selectivity for target categories.

We used WordNet to label action categories in the stimulus
and create a one-hot-encoded stimulus feature matrix. Thus, it is
possible to conduct part of the reported analyses by directly
examining modulations of category responses. However, assess-
ments in the 922-dimensional category space would treat each
category independently ignoring semantic similarities, and they
would be inherently noisier, reducing our sensitivity for detect-
ing tuning shifts. To assess TSI for nontarget categories, category
responses were masked to zero out responses for communica-
tion and locomotion actions. If selectivity measurements had
been performed based on one-hot category features, this
masking would eliminate all information related to target cat-
egories. It would then be impossible to quantify whether
tuning for nontarget categories shifts toward/away from the
attended category. Therefore, we performed our analyses in a

Figure 12. Difference in tuning shift for target, versus nontarget categories. The difference between absolute values of
TSIall and TSInt were calculated in individual ROIs. TSIall is significantly larger than TSInt in all areas with significant tuning
shift.

Figure 13. Fraction of the overall tuning shifts. Fraction of the overall tuning shifts
explained by shifts in tuning for target categories (mean6 SEM across subjects) and nontar-
get categories (i.e., excluding the union of communication and locomotion categories) is
shown. Target categories explain a greater portion of the overall tuning shifts broadly across
ROIs, except for early retinotopic areas. At the same time, nontarget categories significantly
contribute to the overall tuning shifts.
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Figure 14. Interaction of tuning shifts with intrinsic selectivity for individual targets. To examine the interaction between tuning shifts and the intrinsic selectivity for individual targets, sepa-
rate target PIs were calculated during search for communication (PIcom), and locomotion (PIloc) categories. PI during search for a specific target action was taken as the difference in selectivity
for the target versus distractor during the search for that target. PIcom and PIloc values are shown following projection onto the standard brain template (Extended Data Figs. 11-1c, 11-2c, 11-
3c, 11-4c, 11-5c for data in individual subjects). A two-dimensional color map was used to annotate each voxel based on PIcom and PIloc values (middle, legend). Figure format is identical to
that of Figure 3. AON is outlined by green dashed lines. Semantic tuning in voxels across posterior parietal and anterior prefrontal cortices shift toward the attended category regardless of the
search target. However, tuning in many voxels in anterior parietal, occipital, and cingulate cortices shift toward the attended category only during the search for communication or only during
the search for locomotion actions.

Figure 15. Attentional tuning changes in regions of interest. a–d, Average (a) TSIall, (b) TSInt, (c) PIcom, and (d) PIloc values were examined in cortical areas (mean 6 SEM
across 5 subjects). Significant values are denoted by green bars, and gray bars denote nonsignificant values [bootstrap test, q(FDR) . 0.05]. Values for individual subjects
are indicated by dots. Gray dots show values in areas with nonsignificant mean, green dots show nonsignificant values in areas with significant mean, and green crosses
show significant values in areas with significant mean. Tuning shift is significantly greater than zero in many regions across all levels of the AON including occipitotemporal
cortex (pSTS, pMTG), posterior parietal cortex (IPS, AG, SMG), and premotor cortex (BA44, BA45), and in regions across prefrontal and cingulate cortices (SFG, ACC).
Compared with occipitotemporal areas, attention more diversely modulates semantic representations in parietal and premotor AON nodes, manifested as significantly posi-
tive tuning shift for nontarget categories in posterior parietal cortex (AG, SMG) and anterior inferior frontal cortex (BA45). PIcom is significantly greater than zero in BA44/45,
SFG, and ACC. In contrast, PIloc is significantly greater than zero in IPS and AG and is significantly less than zero in dPMC. Both PIcom and PIloc are significantly greater than
zero in pSTS, pMTG, SMG, and MFG. Tuning shifts interact with the attention task and with intrinsic selectivity of cortical areas for target action categories.
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dense-encoded semantic space obtained via PCA. An alterna-
tive is voxelwise modeling with a dense-encoded stimulus fea-
ture matrix derived using embedding models (Mikolov et al.,
2013; Devlin et al., 2019). During preliminary experiments in
the current study and in prior studies from our lab (Huth et
al., 2012; Kiremitçi et al., 2021), we compared the category
model against dense embedding models, and estimates of
attentional modulations did not vary significantly by choice of
model. As such, we do not expect a profound difference
between results from these various models, although there
could be practical differences in terms of interpretation and
feature similarity assessments.

We used communication and locomotion as target categories
to maximize our chances for detecting semantic tuning shifts as
previous studies suggest that these action categories have broadly
distributed and distinctive representations (Urgen and Orban,
2021). Attentional modulations in multivoxel response patterns
were reported during search for several other categories related
to animal taxonomy or actions (Nastase et al., 2017). We have
observed in preliminary experiments that search for many salient
categories in natural movies elicits tuning shifts (data not
shown). Thus, it is likely that tuning shifts are a ubiquitous
mechanism for response modulation during natural visual search
for action categories. However, there may be differences in the
strength and cortical distribution of tuning shifts depending on
the target action, and future studies are warranted to systemati-
cally examine whether and how tuning shifts generalize across
action categories. Evidence suggests that attending to an object
can modulate responses to features correlated with the target
(O’Craven et al., 1999). We have previously reported that attend-
ing to a target object (e.g., vehicles) enhances the representation
of semantically similar actions (e.g., driving; Çukur et al., 2013).
It is thus possible that attending to a target action could induce
tuning shifts for correlated features such as the object categories
pertaining to the actor. Because we restricted the target actions
to be performed by the same animate actors, we did not examine
tuning changes for objects in this study.

The tuning profile of a voxel refers to its response levels to the
examined range of features. Attention can induce different mod-
ulations on this profile including baseline changes, gain changes,
and tuning shifts. Baseline changes imply an additive offset, gain
changes imply a multiplicative offset to responses uniformly
across features, with neither changing the shape of the profile.
Instead, tuning shifts alter shape by shifting selectivity toward
the target, changing responses to both attended and unattended
features. Here, we find that the overall tuning shift is attributed
to significant tuning changes for both target and nontarget cate-
gories. Such broadly distributed changes imply alteration in the
shape of the tuning profile. As our measurements are naturally
limited by the spatiotemporal resolution of BOLD responses, we
cannot make definitive inferences about the neural mechanisms
underlying voxel tuning shifts, which could be attributed to base-
line, gain, or selectivity changes in single neurons (Connor et al.,
1997; Reynolds et al., 2000; David et al., 2008). Further electro-
physiological work would be needed to characterize neural tun-
ing shifts during an action-based search.

A common practice in fMRI is to collect a relatively limited
dataset from a greater number of subjects to increase reliability
of across-subject assessments at the expense of individual subject
results. Diverting from this practice, here we collect a larger
amount of data per subject to give greater focus to reliability
in single subjects. This procedure substantially increased the
amount and diversity of fMRI data collected per subject, which

enhanced the quality of resulting models and thereby the reliabil-
ity of individual subject results. However, we acknowledge that
future studies are warranted to assess to what degree the results
reported in the current study generalize to a broader population
of subjects.

The natural movie stimuli used here have greater ecological
validity compared with simplified or controlled movie clips used
in many action-perception studies. That said, action categories in
natural movies might be correlated with low-level features such
as global motion-energy (Weiss et al., 2006; Nishimoto et al.,
2011) and intermediate-level features such as scene dynamics
(Grossman and Blake, 2002). Substantial correlations can con-
found the estimated category responses and tuning shifts. We
used several procedures to control for potential biases. First,
to minimize correlations between category responses and global
motion-energy, we used a nuisance motion-energy regressor
(Nishimoto et al., 2011). Second, we restricted analyses to voxels
uniquely predicted by the category model after accounting for
motion-energy and STIP features. Voxels in areas such as LOC
(lateral occipital complex) might encode multiple levels of fea-
tures ranging from motion-energy and kinematics to semantics.
Thus, controlling for motion-energy and STIP features might
reduce sensitivity for attentional modulation of perceptual se-
lectivity in these areas. Our analyses do not consider atten-
tional tuning shifts that might be evident for motion-energy
and STIP features or other features such as expected action
goals (Hudson et al., 2016a,b), and actors’ perceived attitude
(Bach and Schenke, 2017). Some level of ambiguity will be nat-
urally evident about what specific aspect of the correlated
stimulus features is most relevant for measured cortical repre-
sentations. Addressing this ambiguity requires complete
decorrelation of all possible feature sets, yet conclusions
derived using decorrelated stimuli deprived from their natural
context might no longer be ecologically relevant. It remains
important work to assess the effects of a category-based search
on multiple levels of feature representations.

In conclusion, we showed that natural visual search for a spe-
cific action category modulates semantic representations, causing
tuning shifts toward the target in single voxels within and
beyond the AON. Attentional modulations further interact with
intrinsic selectivity of neural populations for search targets. This
dynamic attentional mechanism can facilitate action perception
by efficiently allocating neural resources to accentuate the repre-
sentation of task-relevant action categories. Overall, these find-
ings offer new insights into the effects of category-based visual
search on brain responses (Peelen et al., 2009; Çukur et al., 2013;
Harel et al., 2014; Erez and Duncan, 2015) as our results help
explain humans’ astounding ability to perceive others’ actions in
dynamic, cluttered daily life experiences.
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