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Abstract— Learning-based translation between MRI con-
trasts involves supervised deep models trained using
high-quality source- and target-contrast images derived
from fully-sampled acquisitions, which might be diffi-
cult to collect under limitations on scan costs or time.
To facilitate curation of training sets, here we intro-
duce the first semi-supervised model for MRI contrast
translation (ssGAN) that can be trained directly using
undersampled k-space data. To enable semi-supervised
learning on undersampled data, ssGAN introduces novel
multi-coil losses in image, k-space, and adversarial
domains. The multi-coil losses are selectively enforced
on acquired k-space samples unlike traditional losses
in single-coil synthesis models. Comprehensive exper-
iments on retrospectively undersampled multi-contrast
brain MRI datasets are provided. Our results demonstrate
that ssGAN yields on par performance to a supervised
model, while outperforming single-coil models trained on
coil-combined magnitude images. It also outperforms cas-
caded reconstruction-synthesismodels where a supervised
synthesis model is trained following self-supervised recon-
struction of undersampled data. Thus, ssGAN holds great
promise to improve the feasibility of learning-based multi-
contrast MRI synthesis.

Index Terms— Magnetic resonance imaging, image syn-
thesis, semi-supervised, adversarial, undersampled.

I. INTRODUCTION

MRI is a clinical powerhouse in neuroimaging due to
its noninvasiveness and excellent soft-tissue discrimi-
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nation. Its unique ability to image the same anatomy under a
diverse set of tissue contrasts empowers it to accumulate com-
plementary diagnostic information on a single scanner [1], [2].
However, economic and time costs often limit the number of
distinct contrasts that can be captured within an MRI exam [3],
[4]. A promising solution is to synthesize missing images (i.e.,
target-contrast images) within the protocol via translation from
available images (i.e., source-contrast images) [5]. Through
imputation of target images, multi-contrast MRI synthesis can
enhance radiological assessments as well as image analysis
tasks such as registration, segmentation, or detection [6], [7],
[8]. From a scan-time perspective, synthesis of an unac-
quired target image from an acquired source image, and
reconstruction from mutually undersampled acquisitions of
source-target contrasts could yield similar outcomes [9]. Yet,
synthesis offers several key benefits. While reconstruction may
not be able to suppress artifacts that corrupt target-contrast
acquisitions (e.g., motion artifacts), successful synthesis can
be performed given a high-quality source image [4]. Recon-
structions might be unreliable for target-contrast acquisitions
with intrinsically low signal-to-noise ratio (SNR), yet suc-
cessful synthesis can be performed given a high-SNR source
image [10]. Finally, the reconstruction framework requires
prolonged scan times as the number of distinct contrasts grows,
albeit synthesis of multiple target contrasts can be performed
efficiently based on a single source contrast [5].

In recent years, there has been emerging interest in
learning-based MRI synthesis based on deep neural networks,
given their state-of-the-art performance in other computer
vision [11], [12] and medical imaging tasks [13], [14], [15],
[16], [17]. An earlier group of studies proposed convolu-
tional neural networks (CNNs) to learn nonlinear latent rep-
resentations that mediate conversion from source to target
images [18], [19], [20], [21], [22]. These studies typically
involved encoder-decoder architectures, where the encoder
embeds hierarchical image features onto a latent space that
is later used by the decoder to recover the target image.
For improved capture of structural details, a second group
has proposed deep architectures based on conditional gen-
erative adversarial networks (GAN) [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34], where the gen-
erator that performs the source-to-target mapping benefits
from the game-theoretic interplay with the discriminator [12].
Pioneering studies have exploited pixel- or feature-wise cor-
respondence between source-target images in an adversarial
setup [23], [31], [32], [35]. Later studies have proposed unified
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models capable of multiple types of contrast translation [24],
[27], [28], [36], or multi-tasking frameworks [24], [27], [33]
to reduce computational complexity. These previous stud-
ies have collectively highlighted the immense potential of
learning-based synthesis in multi-contrast MRI.

That said, existing MRI synthesis models are trained to
translate between coil-combined images pertaining to source
and target contrasts [18], [23]. These training data are canoni-
cally collected in a matching set of subjects, and derived from
Nyquist-sampled acquisitions [18], [23]. Resultant models
leverage supervision regarding pairing of source-target images
across subjects, and regarding the use of ground-truth images
obtained from fully-sampled k-space data [23], [24], [35].
However, compilation of training datasets with paired and
fully-sampled acquisitions might prove impractical due to
limitations on scan time or cost [3], [4]. As such, there is
a dire need to lower reliance on these supervision factors in
training of synthesis models to improve practicality.

Recent efforts to lower supervision requirements in MRI
synthesis have primarily focused on model training with
unpaired images across subjects. A successful approach has
been to replace pixel-wise losses in GAN models with
cycle-consistency, shape-consistency or mutual information
losses [23], [27], [37], [38], [39], [40]. Similar to supervised
models, unpaired models that unify multiple contrast transla-
tion tasks have also been introduced to reduce computational
complexity [38], [41]. As an alternative, [42], [43] have pro-
posed a hybrid method where the model is trained on a com-
posite dataset with both paired and unpaired samples. These
previous methods have allowed synthesis models to learn from
unpaired data, but they still leverage explicit supervision on
ground-truth images derived from fully-sampled acquisitions.
While unsupervised training of MRI reconstruction models
on undersampled data has received recent interest [44], [45],
[46], [47], [48], to the best of our knowledge, no prior
study has considered training of MRI synthesis models using
undersampled k-space data.

To avoid reliance on ground-truth images from fully-
sampled acquisitions, here we propose a novel semi-supervised
generative model for source-to-target contrast translation
(Fig. 1). The proposed model, ssGAN, is learned using a train-
ing dataset of undersampled source- and target-contrast acqui-
sitions from accelerated MRI scans. Unlike prior methods that
use single-coil loss terms on coil-combined images, ssGAN
enables learning of MRI synthesis based on undersampled data
by introducing novel multi-coil losses in image, k-space, and
adversarial domains. These losses are selectively enforced on
acquired k-space samples in target-contrast acquisitions, and
the sampling masks are randomized across training subjects
to promote homogeneous learning across k-space.

Comprehensive experiments on retrospectively undersam-
pled brain MRI datasets clearly demonstrate that ssGAN
achieves on par performance to a benchmark supervised model
trained with ground truth derived from fully-sampled acqui-
sitions. Meanwhile, ssGAN outperforms single-coil synthesis
models trained on inverse Fourier transform of undersam-
pled data, and cascaded reconstruction-synthesis models that
involve a reconstruct step to recover images from undersam-
pled acquisitions and a synthesis step trained on the recon-

Fig. 1. Illustration of the proposed ssGAN model. 1) Fully-supervised
synthesis models demand a training dataset of high-quality images
derived from Nyquist-sampled acquisitions of the source and target
contrasts. 2) Instead, ssGAN uses a training dataset containing only
undersampled acquisitions of the source and target contrasts. To enable
training on undersampled data, ssGAN synthesizes a coil-combined
target image that is backprojected onto individual coils via an operator
P. These multi-coil images are subjected to the sampling mask (Ω) of
the reference target-contrast acquisition via operator M. 3) Afterwards,
selective multi-coil losses are defined between undersampled synthetic
and reference target images in image, k-space and adversarial domains.

structed images. Our results suggest that ssGAN can facilitate
curation of training datasets for learning-based synthesis by
enabling the use of undersampled MRI acquisitions. Code
for ssGAN is publicly available at https://github.com/icon-lab/
ssGAN.

Contributions:

• To our knowledge, ssGAN is the first semi-supervised
method for MRI contrast translation that learns from
a training dataset of undersampled source- and target-
contrast acquisitions.

• For training, ssGAN introduces novel multi-coil losses
expressed only on acquired k-space samples of under-
sampled target acquisitions.

• During inference, ssGAN synthesizes target images
directly from undersampled multi-coil source acquisitions
without the need for intermediate reconstruction.

II. METHODS

In this section, we first overview basics of generative
adversarial networks, and the foundation of the proposed
architecture for semi-supervised multi-contrast MRI synthe-
sis. We then describe in detail the datasets and experiments
conducted to evaluate the proposed methodology.

A. Generative Adversarial Networks
Generative adversarial networks (GANs) [12] are deep

generative models comprising a pair of competing
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 05,2023 at 20:29:19 UTC from IEEE Xplore.  Restrictions apply. 



YURT et al.: SEMI-SUPERVISED LEARNING OF MRI SYNTHESIS WITHOUT FULLY-SAMPLED GROUND TRUTHS 3897

subnetworks: a generator (G) and a discriminator (D).
G aims to map a random noise vector z to a sample
resembling a target-domain distribution, whereas D aims to
distinguish between real and fake samples from the target
domain. These two subnetworks are alternately trained via an
adversarial loss function, formulated as follows:

LG AN = Ey[log D(y)] + Ez[log(1 − D(G(z)))] (1)

where E denotes expectation, and y is an arbitrary real sample
in the target domain. A squared loss can be adopted in place
of log-likelihood loss to stabilize the training process [49]:

LG AN = −Ey[(D(y) − 1)2] − Ez[D(G(z))2] (2)

Upon convergence, G is expected to generate realistic
target-domain samples that D cannot tell apart from the actual
ones. While the initial GAN models generated target samples
from a random noise vector, later studies have demonstrated
success in image-to-image translation with conditional GAN
(cGAN) models. These models receive as input a separate
source-domain image x to capture conditional dependencies
between the source and target domains [12]. The adversarial
loss function is then modified by conditioning G on x :

LcG AN = −Ex,y[(D(y) − 1)2] − Ex [D(G(x))2] (3)

As the contribution of latent variables is relatively limited in
cGANs [12], z is typically removed from the formulation.
When spatially aligned source-target images are available,
a pixel-wise loss can be further included [12]:

LcG AN = −Ex,y[(D(y) − 1)2] − Ex [D(G(x))2]
+Ex,y[||y − G(x)||1]

(4)

Several studies have demonstrated cGANs on multi-contrast
MRI that synthesize target-contrast images from source-
contrast images of the same underlying anatomy [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32], [33], [34]. These
models typically learn the source-to-target mapping in a fully-
supervised setup. A comprehensive training set is needed
containing high-quality source and target images derived from
fully-sampled k-space acquisitions (x1, y1), where x1 is an
arbitrary source, y1 is an arbitrary target image in the training
set, and 1 denotes the sampling mask for Nyquist-sampled
acquisitions. Such supervised models have demonstrated state-
of-the-art performance for synthetic multi-contrast MRI. How-
ever, they rely on the availability of a training dataset of images
obtained from fully-sampled acquisitions that might prove
impractical to collect. Therefore, methods that can directly
learn from undersampled k-space data are direly needed.

B. Semi-Supervised Generative Adversarial Networks

The proposed semi-supervised model (ssGAN) mitigates
reliance on training datasets composed of fully-sampled MRI
acquisitions (Fig. 1). Instead, ssGAN is trained using under-
sampled acquisitions of source and target contrasts (Fig. 2).
To do this, ssGAN introduces multi-coil loss functions
enforced selectively on the acquired k-space samples of the
target-contrast acquisitions. During inference, ssGAN synthe-
sizes target-contrast images given as input only multi-coil data

Fig. 2. a) The proposed ssGAN model is trained using undersampled
multi-coil acquisitions, so no high-quality ground truth is available. The
source and target contrasts are acquired with different sampling masks Λ
and Ω, respectively. b) During inference in a test subject, ssGAN receives
as input the undersampled acquisition of the source contrast, and it
generates the coil-combined target-contrast image that is missing from
the subject’s MRI exam.

from undersampled source-contrast acquisitions (Fig. 2). The
optimization objectives are detailed in this section.

Receiving as input multi-coil images computed as the
inverse Fourier transform of the undersampled source-contrast
acquisition, ssGAN learns to estimate the corresponding
coil-combined image of the target contrast. To do this, the
generator G in ssGAN implements a forward mapping:

G(Xn
�) = ŷ, with Xn

� = {x1
�, . . . , xn

�} (5)

where Xn
� denotes multi-coil source-contrast images acquired

with a k-space sampling mask �, n denotes the number
of receive coils with sensitivity maps Ĉ

n
X computed via

ESPIRiT [50], and ŷ denotes the coil-combined target-contrast
image. Since supervision based on fully-sampled data is
excluded, no ground truth for the target-contrast image is
available. As reference for the network output, ssGAN instead
leverages multi-coil images computed as the inverse Fourier
transform of the undersampled target-contrast acquisition:
Ym

� = {y1
�, . . . , ym

�} collected with a sampling mask � and m
receive coils of coil sensitivities Cm

Y . These reference images
are corrupted with aliasing artifacts, so canonical single-coil
loss terms on coil-combined images cannot be employed.
Instead, ssGAN uses multi-coil loss functions expressed selec-
tively on the acquired subset of k-space samples. To do this,
the synthesized coil-combined image is first projected onto
individual coils:

Ŷ
m = P(ŷ, Ĉ

m
Y) = ŷ · Ĉ

m
Y (6)

where Ŷ
m

denotes the synthesized multi-coil target images,
Ĉ

m
Y denotes coil sensitivity maps estimated via ESPIRiT [50],

and P performs the coil projection in the image domain as
element-wise multiplication between the input image and coil
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sensitivity maps. The multi-coil target image projections are
then subjected to the binary sampling mask in Fourier domain:

k̂m
� = M(F(Ŷ

m
),�) = F(Ŷ

m
) · �

Ŷ
m
� = F−1(k̂m

�)
(7)

where F denotes the forward and F−1 denotes the inverse
Fourier transform, M is the operator that performs binary
masking in k-space with a given sampling mask. In Eq. (7),
k̂m
� and Ŷ m

� denote undersampled multi-coil data respectively
in k-space and image domain for the synthesized target-
contrast image. Based on undersampled multi-coil data for the
synthesized versus reference target-contrast images, the overall
loss function containing three components is calculated: multi-
coil image, k-space and adversarial losses.

1) Multi-Coil Image Loss: The first component is an
image-domain loss between synthesized versus reference
multi-coil images of the target contrast. The image loss is
based on the L1-norm to reduce sensitivity to outliers:

Li = EXn
�,Ym

�
[||Ŷm

� − Ym
�||1] (8)

where Ym
� are reference images, and Ŷ

m
� are synthesized

images, both subjected to the same undersampling mask, �.
2) Multi-Coil k-Space Loss: Because the training images for

ssGAN are corrupted with aliasing artifacts, a Fourier-domain
loss is used between synthesized and reference multi-coil
k-space data for the target contrast for improved performance.

Lk = EXn
�,Ym

�
[||h(F(Ŷ

m
�)/β) − h(F(Ym

�)/β)||1] (9)

where F(Ym
�) and F(Ŷ

m
�) denote undersampled k-space data

for the reference and synthesized images, respectively. To pro-
vide comparable signal intensities across different spatial
frequencies in k-space, both reference and synthesized k-space
data are processed with h, a tanh function with a shape
parameter β controlling its slope [51]. The k-space loss is
based on the L1-norm to reduce sensitivity to outliers [44].

3) Multi-Coil Adversarial Loss: To improve the realism of
synthesis, the third component is an adversarial loss based on
synthesized and reference multi-coil target images:

La = −EYm
�
[(D(Ym

�) − 1)2] − EXn
�
[D(Ŷ

m
�)2] (10)

where D denotes the discriminator that distinguishes between
undersampled images of the actual and synthetic target con-
trast. To compute Eq. 10, images for individual coils can be
sequentially provided to the discriminator.

The overall loss for ssGAN is constructed as a weighted
combination of the three components as LssG AN = λk Lk +
λi Li +λa La , where λk , λi , and λa denote the relative weight-
ing of the k-space, image, and adversarial terms. All loss terms
are expressed selectively on the subset of acquired k-space
samples in the undersampled target-contrast acquisition. Using
the same sampling mask across all training subjects would
focus exclusively on a specific k-space subregion, thereby
yield suboptimal learning. Instead, a different random sam-
pling mask is prescribed for each subject in the training set.
Note that within a given subject, the sampling mask is fixed
across all cross-sections, following the common procedure for
implementing accelerated MRI acquisitions [52].

C. Datasets
The IXI dataset (https://brain-development.org/ixi-dataset/)

with single-coil magnitude brain images and an in-house
dataset with multi-coil complex brain images were used.

1) The IXI Dataset: T1- and T2-weighted images from
94 subjects were used, with 64 reserved for training, 10 for
validation, 20 for testing. Images were collected at axial orien-
tation with matrix size = 256×256×130, spatial resolution =
0.94×0.94×1.2 mm3. For T1-weighted scans, a 3D MPRAGE
sequence was used with TR =9.81 ms, TE = 4.603 ms,
flip angle = 8◦, scan time = 5:26. For T2-weighted scans,
a 2D fast spin-echo (FSE) sequence was used with TR =
8178.34 ms, TE = 100 ms, flip angle = 90◦, turbo factor
of 16, scan time = 6:33. T2-weighted images were spatially
registered onto T1-weighted images via FSL [53], using an
affine transformation based on mutual information.

2) In Vivo Brain Dataset: T2- and PD-weighted images of
10 healthy volunteers were used, with 7 reserved for training,
1 for validation, 2 for testing. Images were collected using
a 3D FSE sequence at coronal orientation with the following
parameters: matrix size = 256×192×88, spatial resolution =
1 × 1×2 mm3, flip angle = 90◦, a turbo factor of 16. For
T2-weighted scans, TR = 1000 ms, TE = 118 ms, scan time =
17:39 were used. For PD-weighted scans, TR = 750 ms, TE =
12 ms, scan time = 13:14 were used.

Data were collected on a 3T Siemens Magnetom scanner
using a 32-channel receive-only head coil at Bilkent Univer-
sity, Ankara, Turkey. Imaging protocols were approved by the
local ethics committee at Bilkent University, and all partici-
pants provided written informed consent. No spatial registra-
tion was performed as analyses in FSL suggested negligible
interscan motion for multi-contrast images within subjects
(less than 1 mm in translation and 0.6◦ in rotation correspond-
ing to the voxel size in the minimum dimension). To lower
computational complexity, geometric coil compression was
performed to reduce the number of coils from 32 to 5 [54].

3) Retrospective Undersampling: To obtain training datasets
with undersampled source and target acquisitions, data from
the IXI and in vivo datasets were retrospectively under-
sampled. Undersampling was performed across the two
phase-encoding dimensions in three-dimensional k-space.
Undersampling factors and sampling masks were indepen-
dently selected for the source and target contrasts. For fair
comparison, all competing methods were implemented based
on the same sampling masks. For IXI, k-space data were
obtained as Fourier transform of coil-combined magnitude
images. Data in axial cross-sections were then randomly
undersampled to achieve undersampling factors R = [2 − 10].
Uniform-density sampling was performed with a 10×10 fully-
sampled calibration region. For the in vivo dataset, k-space
data for coronal cross-sections were randomly undersampled
to achieve R = [2 − 4]. Uniform-density sampling was used
with a 16 × 16 calibration region to permit coil-sensitivity
estimation [50]. A different random sampling mask was gener-
ated for each contrast within each subject. The mask was kept
identical across separate cross-sections of a given contrast,
and was kept fixed for a given subject across the modeling
procedures. These sampling procedures accurately emulate
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the way undersampled acquisitions would be performed in
practice, as pervasively utilized in MRI studies [10], [52]. Note
that the fully-sampled acquisitions in IXI or in vivo datasets
were not used for training ssGAN, instead fully-sampled data
were only utilized to measure model performance on test
subjects.

D. Implementation Details for ssGAN

The generator and discriminator in ssGAN were adopted
from a previous study on multi-contrast MRI synthesis [23].
The generator contained an encoder of 3 convolutional layers,
a residual network of 9 ResNet blocks, and a decoder of 3 con-
volutional layers. The discriminator contained 5 convolutional
layers. An unlearned coil-combination block was placed at
the input of the generator [55], which recovered real and
imaginary parts of the coil-combined target image given real
and imaginary parts of the coil-combined source image. The
coil-combined target image was backprojected onto individual
coils, and the complex target images from each coil were
sequentially fed to a patch discriminator.

Cross-validation was used to select the relative weighting
of the selective loss components in image, k-space and adver-
sarial domains, as well as the slope of the tanh function in the
k-space loss (λi , λk , λa , β). This selection aimed to minimize
the network loss LssG AN on the validation set. A common
set of parameters (λi = 100, λ=3000, λa = 1, β = 5000)
observed to yield near-optimal performance consistently across
datasets were used in all experiments, including ssGAN mod-
els trained for varying undersampling factors for the source
and target contrasts (RS and RT respectively).

Ablation studies were conducted to demonstrate the influ-
ence of the main building blocks in ssGAN to synthesis perfor-
mance. For this purpose, variant ssGAN models were trained
by removing particular loss terms from LssG AN , by replac-
ing multi-coil loss terms with single-coil versions following
compression of multi-coil data onto a single coil [54], and
by prescribing a fixed sampling mask across training subjects.
All variant models were trained with the same loss function
and hyperparameters as in ssGAN, except for variants with
ablated losses that omitted specific loss components.

E. Competing Methods

We compared ssGAN against a benchmark fully-supervised
model, state-of-the-art single-coil synthesis models, and cas-
caded reconstruction-synthesis models.

1) Benchmark Supervised Model: A supervised model was
trained using fully-sampled multi-coil acquisitions of the
source and target contrasts. This supervised model serves as
an upper performance limit for ssGAN.

a) fsGAN: A GAN model was implemented with matching
architecture, loss terms and hyperparameters to ssGAN, albeit
each loss term was non-selectively expressed on the entire
k-space to leverage information on fully-sampled acquisitions.

2) Single-Coil Synthesis Models: We considered two state-
of-the-art single-coil synthesis models designed to operate on
coil-combined magnitude images. To learn these models using
the same training set as ssGAN, training images were formed

via inverse Fourier transform of undersampled acquisitions
followed by coil combination [50]. Models were trained
to translate between the resultant coil-combined magnitude
images of source and target contrasts.

a) pix2pix: A GAN model was implemented with
the architecture, loss terms and hyperparameters adopted
from [12].

b) pGAN: A GAN model was implemented with the archi-
tecture, loss terms and hyperparameters adopted from [23].

3) Cascaded Reconstruction-Synthesis Models: Given a
training set of undersampled data, a cascaded reconstruction-
synthesis approach is an alternative to ssGAN. In the absence
of fully-sampled ground truth, an unsupervised model must
be used to reconstruct undersampled data from the source
and target contrasts. A supervised synthesis model can then
be trained on the reconstructed coil-combined source and
target images. Five cascaded models were considered based
on different reconstruction methods. In all cases, synthesis was
implemented based on the pGAN method, with the loss terms
and hyperparameters adopted from [23].

a) CasCS: For single-coil data in IXI, reconstruction was
implemented using SparseMRI [10]. Hyperparameters were
selected via cross-validation: 4 iterations, total variation weight
of 10−4, and wavelet-domain L1 weight of 10−1.

b) CasSPIRiT: For multi-coil data from the in vivo dataset,
reconstruction was implemented using L1-SPIRiT [52]. Hyper-
parameters were selected via cross-validation: a 5 × 5 kernel,
wavelet-domain L1 weight of 10−1, Tikhonov weight of 10−3,
10 iterations for PD and 20 iterations for T2 images.

c) CasRAKI: Reconstruction was implemented using
RAKI with the architecture and loss terms adopted from [56].
Hyperparameters reported in [56] were selected that also
yielded near-optimal performance during cross-validation.

d) CasUnsup: Reconstruction was implemented using an
unsupervised GAN method with the architecture and loss
terms adopted from [45]. Hyperparameters reported in [45]
were selected that also yielded near-optimal performance
during cross-validation.

e) CasSSDU: Reconstruction was implemented using
a self-supervised approach, SSDU [44]. As SSDU is a
model-agnostic training strategy, the network architecture and
loss terms were adopted from ssGAN for fair comparison.
Undersampled k-space data were split into two nonoverlapping
subsets, where 40% were used for defining losses, and 60%
were used to estimate model weights as proposed in [44]. The
relative weighting of image, k-space, and adversarial losses
was [100, 3000, 1] as determined via cross-validation.

F. Modeling Procedures

All models were trained for 100 epochs using the Adam
optimizer with parameters β1 = 0.5 and β2 = 0.999. The
learning rate was set to 0.0002 in the first 50 epochs and lin-
early decayed to 0 in the last 50 epochs. Expectation values of
the loss components were estimated via Monte Carlo sampling
over images sampled from the training set. Models were run
on Nvidia 2080 Ti GPUs in Python2.7 using PyTorch. Train-
ing ssGAN on 32 subjects with 100 cross-sections required

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 05,2023 at 20:29:19 UTC from IEEE Xplore.  Restrictions apply. 



3900 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 12, DECEMBER 2022

nearly 8 hrs. Meanwhile, it required nearly 8 sec of inference
for a single test subject with 100 cross-sections.

Performance was evaluated using peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) on coil-combined
magnitude images derived from synthesized and ground-truth
target-contrast images. The ground-truth image was based on
inverse Fourier transform of the fully-sampled target acquisi-
tion. In Tables, summary statistics of quantitative metrics were
provided as mean ± std across test subjects, except for ablation
analyses where metrics were provided as mean. Significance
of PSNR, SSIM, and radiological opinion scores was assessed
via Kruskal Wallis H-test ( p < 0.05) to collectively compare
ssGAN models with fsGAN, and via Wilcoxon signed-rank
test ( p < 0.05) to individually compare ssGAN against
competing methods trained under matched RS,T .

III. RESULTS

A. Robustness Against Training Set Deficiencies

We first examined the reliability of ssGAN against the
degree of undersampling and the number of subjects in the
training dataset. Models were learned for T1 → T2 mapping
in the IXI dataset (network input: T1, network output: T2),
while the undersampling factor of target-contrast acquisitions
in the training set ranged in RT = [2 : 2 : 10] and the
number of training subjects ranged in nT = [8 : 8 : 64].
As a benchmark, the fully-supervised fsGAN model was also
trained for matching nT but with ground-truth images derived
from fully-sampled target-contrast acquisitions RT = 1.
All models received as input source-contrast images derived
from fully-sampled acquisitions (RS = 1). Note that all
models were trained on the same selected set of subjects
for a given nT , and they were tested on the same set of
test subjects that did not overlap with training subjects.
Synthesis performance is displayed in Fig. 3 as a function
of RT and nT . Synthesis quality of ssGAN is on par with
the supervised fsGAN model ( p > 0.05), where ssGAN
performance is within [−0.51,0.13]dB PSNR, [−0.70,0.02]%
SSIM of fsGAN. Synthesized images displayed in Fig. 4
further indicate that ssGAN models trained with varying RT

yield highly similar performance, and near-optimal synthesis
quality can be maintained for a broad range of undersampling
rates for target-contrast acquisitions in the training set.

Synthesis performance naturally improves towards larger nT

for both fsGAN and ssGAN as depicted in Fig. 3. Comparing
nT = 16 against nT = 32, similar average improvements in
(PSNR, SSIM) are observed with (0.68dB,0.57%) for ssGAN,
and (0.58dB,0.47%) for fsGAN. Yet, because ssGAN permits
training with undersampled acquisitions (i.e., RT > 1), a larger
group of training subjects can be recruited under the same
scan budget compared to fsGAN that requires RT = 1. For
instance, T1- and T2-weighted images required to train fsGAN
can be collected from 16 subjects in a total scan time of
192 min. In the same time, training data for ssGAN can be
captured from 32 subjects with this two-contrast protocol at
RT = 10. Therefore, ssGAN facilitates curation of training
sets to improve practicality of learning-based MRI synthesis.

We then extended comparison of ssGAN against fsGAN to
the T2 → T1 task in the IXI dataset with a fixed number of

Fig. 3. Reliability against (a) the undersampling factor of target-contrast
acquisitions in the training set (RT ∈ [2 : 2 : 10]) and (b) the number
of training subjects (nT = [8 : 8 : 64]). The supervised fsGAN model
was trained with fully-sampled source and target acquisitions (RS = 1,
RT = 1); ssGAN was trained with RS = � and varying RT. PSNR and
SSIM are reported in the test set.

TABLE I
IMAGE QUALITY IN IXI FOR RS = 1, RT = [1 − 4]

training subjects nT = 32 (used hereafter in all evaluations
in IXI). Measurements of synthesis quality are reported in
Table I. The reported measurements reveal that ssGAN models
trained with RT = [2 : 1 : 4] maintain near-optimal synthesis
quality on par with fsGAN. Representative results displayed
in Fig. 5 corroborate the quantitative findings by showing that
ssGAN offers a similar level of accuracy in tissue depiction
to the benchmark supervised model, fsGAN.

B. Single-Coil MRI Synthesis

Next, we comparatively demonstrated ssGAN for
T1 → T2and T2 → T1 on the single-coil IXI dataset.
Competing methods included single-coil synthesis models
trained on magnitude images (pix2pix, pGAN), and
cascaded reconstruction-synthesis models (CasCS, CasUnsup,
CasSSDU, CasRAKI). For all models, the training dataset
comprised undersampled acquisitions of both source and target
contrasts. Models were built for RS = {2, 4}, RT = {2, 4}.
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Fig. 4. Independent ssGAN(RS,RT) models with RS = 1, RT = [2 − 10] were demonstrated on IXI for T1 → T2 mapping against fsGAN(RS,RT)
with RS = 1, RT = 1. Synthesized images are displayed along with error images underneath (see colorbar). The source image and the ground-truth
target image derived from fully-sampled acquisitions are also shown.

Fig. 5. ssGAN(RS,RT) models with RS = 1, RT = [2 : 1 : 4]
were demonstrated on IXI for T2 → T1 mapping against fsGAN with
RS = 1, RT = 1. Synthesized images are displayed along with error
images. The source image and the ground-truth target image derived
from fully-sampled acquisitions are also shown.

TABLE II
IMAGE QUALITY IN IXI FOR RS = 2, RT = {2, 4}

Synthesis performance is reported in Table II for RS = 2,
RT = {2, 4} and in Table III for RS = 4, RT = {2, 4}.
ssGAN outperforms all competing models consistently across
tasks ( p < 0.05). On average, ssGAN improves PSNR by
7.49dB, SSIM by 14.49% over single-coil models, and PSNR
by 4.86dB, SSIM by 10.09% over cascaded models. Note
that incremental steps from RT = 2 to RT = 4 result in
modest performance losses of 0.16dB PSNR, 0.34% SSIM for
ssGAN. In contrast, performance losses are 3.18dB PSNR,

TABLE III
IMAGE QUALITY IN IXI FOR RS = 4, RT = {2, 4}

5.26% SSIM for single-coil models and 1.32dB PSNR, 2.37%
SSIM for cascaded models. Representative synthesis results
are shown in Fig. 6. Single-coil models generate images
with native aliasing artifacts; and cascaded models suffer
from residual errors from the reconstruction step. Meanwhile,
ssGAN yields superior synthesis quality with the sharpest
tissue depiction and highest artifact suppression.

C. Multi-Coil MRI Synthesis

We also conducted experiments to demonstrate ssGAN for
T2 → PD and PD → T2 tasks on the multi-coil in vivo dataset.
Competing methods included single-coil synthesis models and
cascaded reconstruction-synthesis models. For all methods,
the training dataset comprised undersampled acquisitions of
source and target contrasts (RS = {2, 4}, RT = {2, 4}). Per-
formance is reported in Table IV for RS = 2 and RT = {2, 4},
and in Table V for RS = 4 and RT = {2, 4}. Overall, ssGAN
achieves the highest performance among competing methods
in all examined tasks ( p < 0.05), except for PSNR against
CasSPIRiT PD → T2 with (RS = 4, RT = 2). On average,
ssGAN improves PSNR by 2.30dB, SSIM by 17.71% over
single-coil models, and PSNR by 2.70dB, SSIM by 12.30%
over cascaded models. Representative results displayed in

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 05,2023 at 20:29:19 UTC from IEEE Xplore.  Restrictions apply. 



3902 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 12, DECEMBER 2022

Fig. 6. ssGAN was demonstrated on the IXI dataset for the T1 → T2 synthesis task. Synthesized images from all competing methods trained
at (RS,RT)=(2, 2) are displayed along with error images underneath (see colorbar). The undersampled source image and the ground-truth target
image are also shown.

Fig. 7. ssGAN was demonstrated on the in vivo dataset for the PD → T2 synthesis task. Synthesized images from all competing methods trained
at (RS,RT)=(2, 2) are displayed along with error images underneath (see colorbar). The undersampled source image and the ground-truth target
images are also shown.

TABLE IV
IMAGE QUALITY IN THE IN VIVO DATASET FOR RS = 2

Fig. 7 corroborate the superior synthesis quality of ssGAN
over single-coil models that suffer from aliasing artifacts,
and cascaded models that suffer from residual reconstruction
errors. Note that increasing the target-contrast undersampling
factor from RT = 2 to 4 results in a 0.30dB PSNR, 0.96%
SSIM performance loss for ssGAN, and instead 1.72dB PSNR,
9.52% SSIM loss for single-coil models, and 0.75dB PSNR,
4.60% SSIM loss for cascaded models.

D. Radiological Evaluations
Radiological evaluations were performed to assess synthe-

sized images in terms of their general visual similarity to the

TABLE V
IMAGE QUALITY IN THE IN VIVO DATASET FOR RS = 4

ground-truth target image derived from fully-sampled acquisi-
tions (Fig. 8). On a 5-point Likert scale, we examined the com-
parative performance of ssGAN against three top-contending
competing methods, pGAN, CasSPIRiT, CasSSDU. This eval-
uation was conducted for PD → T2 and T2 → PD tasks on
the in vivo dataset, where independent models were trained
at (RS, RT )=(2,2) and (2,4). ssGAN outperforms all com-
peting methods in opinion scores ( p < 0.05). On average,
the proposed method achieves a 3.72 opinion score across
tasks, whereas the opinion score is 1.03 for pGAN, 1.94 for
CasSSDU, and 2.28 for CasSPIRiT.
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Fig. 8. Radiological opinion scores for ssGAN, pGAN, CasSPIRiT, and
CasSSDU for the PD → T2 and T2 → PD tasks on the in vivo dataset, with
independent models trained at (RS,RT)=(2,2) and (2,4) are displayed.
Error bars denote standard error.

TABLE VI
EFFECTS OF LOSSES ON SYNTHESIS PERFORMANCE

E. Ablation Studies
We first conducted ablation studies to examine the con-

tribution of individual loss components to ssGAN’s perfor-
mance by forming three variants: ssGAN(w/o image) without
image loss, ssGAN(w/o k-space) without k-space loss, and
ssGAN(w/o adv) without adversarial loss. Models were trained
for T1 → T2 and T2 → T1 in IXI. The effects of image
and k-space losses were evaluated using PSNR and SSIM,
whereas the effect of adversarial loss was assessed using
Frechlet Inception Distance (FID) [57] and visual inspection
as common in literature [58]. Performance metrics in Table VI
indicate that image and k-space losses serve to improve
synthesis quality in both tasks. Meanwhile, adversarial loss
increases realism with decreased FID scores. Representative
results in Fig. 9 corroborate the quantitative findings by
showing that ssGAN(w/o image) and ssGAN(w/o k-space)
suffer from residual artifacts and ssGAN(w/o adv) suffers from
smoothing. In contrast, ssGAN with all loss components yields
enhanced artifact suppression and visual acuity.

Next, we compared ssGAN against a variant model
ssGAN(single) with traditional single-coil losses. Models were
trained for T2 → PD and PD → T2 tasks on the multi-coil
in vivo dataset. Performance metrics are listed for RS =
{2, 4} and RT = {2, 4} in Table VII. ssGAN model con-
sistently yields enhanced synthesis performance. On aver-
age, it improves PSNR by 1.46dB, SSIM by 6.32% over
ssGAN(single). These results demonstrate the value of the
multi-coil loss terms in improving quality of synthetic images.

Finally, we compared ssGAN against a variant model
ssGAN(w/o rand) with a common sampling mask across
training subjects. Models were trained for T1 → T2 and

Fig. 9. Variant ssGAN(4,4) models with RS = 4 and RT = 4 were
trained on IXI for T2 → T1 (upper row) and T1 → T2 (lower row) tasks.
Synthesized images are shown for variant models with ablated image,
k-space or adversarial loss along with ssGAN. The source image derived
via inverse Fourier transform of the undersampled acquisition, and the
ground-truth target image derived from a fully-sampled acquisition are
also shown.

TABLE VII
EFFECTS OF MULTI-/SINGLE-COIL LOSS TERMS

TABLE VIII
EFFECTS OF RANDOMIZED/NON-RANDOMIZED SAMPLING MASKS

T2 → T1 tasks on the IXI dataset. Performance metrics for
RS = 2 and RT = [2 : 2 : 10] are listed in Table VIII.
ssGAN yields consistently higher performance compared to
the non-randomized variant, with 0.15dB PSNR, 0.25% SSIM
improvement over ssGAN(w/o rand). These results indicate
that leveraging randomized sampling masks across training
subjects helps improve synthesis quality.

IV. DISCUSSION

A novel semi-supervised deep generative model was intro-
duced for image synthesis in multi-contrast MRI. Unlike
supervised models, ssGAN learns to synthesize high-quality
target-contrast images in the absence of training sets composed
of costly Nyquist-sampled acquisitions. Unlike prior synthesis
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models trained on coil-combined magnitude images, ssGAN
is trained on multi-coil complex MRI data from undersampled
acquisitions with selective multi-coil losses. It holds promise
in facilitating curation of large training sets required for
deep-learning models, thereby advancing the practicality of
multi-contrast MRI synthesis. Through imputation of missing
target contrasts, ssGAN can aid in radiological assessment
and image analysis tasks such as registration, segmentation
or detection. Note that ssGAN can receive as input multi-coil
data from undersampled source-contrast acquisitions during
inference without an intermediate reconstruction step. Thus,
a side benefit of ssGAN is to shorten the scan time for
the source-contrast acquisition, albeit obtaining high-quality
source images requires a separate reconstruction.

We find superior synthesis performance with ssGAN over
cascaded models, best attributed to differences in learning
strategy. ssGAN performs end-to-end mapping between under-
sampled source-target acquisitions to directly maximize syn-
thesis quality. In contrast, cascaded models recover images
from undersampled acquisitions to maximize reconstruction
quality, and then map between reconstructed images for
synthesis. This step-wise learning causes error propagation
in cascaded models, where the synthesis step supervised by
reconstructed images will learn to reproduce reconstruction
errors. Note that reconstruction performance is primarily dom-
inated by low-spatial-frequency information given k-space
spectra of MR images [10], so elevated reconstruction errors
are typically evident at high frequencies. This can undermine
synthesis performance as contrast translation critically relies
on high-frequency information regarding shared tissue bound-
aries between contrasts [23].

Several lines of development can be pursued for ssGAN.
Cycle-consistency loss was proposed to improve performance
and enable unsupervised training of GAN-based MRI recon-
struction [45], [59] and synthesis models [16], [23], [60].
Incorporation of cycle-consistency in ssGAN can also per-
mit training on unpaired source-target contrast acquisitions.
A GAN model proposed for retrospective motion correction
of MRI scans employed a generator with cascaded U-Net
backbones for improved performance [61]. Synthesis perfor-
mance for ssGAN might also benefit from cascading multiple
residual backbones in its generator. Third, many-to-one syn-
thesis was recently demonstrated with a multi-stream model
that adaptively fuses one-to-one mapping streams between
each individual source and the target, and a many-to-one
mapping stream between all sources and the target [35]. Unlike
the semi-supervised ssGAN model trained on undersampled
acquisitions with multi-coil loss functions, this prior method
used a supervised model trained on fully-sampled acquisi-
tions with single-coil loss functions. Yet, ssGAN might be
generalized to perform many-to-one synthesis by adopting
a multi-stream approach. Lastly, recent studies demonstrated
improvements in image quality and resolution during joint
reconstruction of multi-contrast MRI scans [9], [17], [62].
Accordingly, recovery of target-contrast images might be
enhanced by modifying ssGAN to receive as input not only
source-contrast but also undersampled target-contrast acquisi-
tions, and adopting a self-supervised training procedure [44].

Here, we demonstrated all methods using uniform-density
random sampling patterns that improve peripheral k-space
coverage for a given undersampling factor. Our motivation
was to aid recovery of high-frequency information during MRI
synthesis. An alternative would be to collect low-resolution
images by Nyquist-sampling in a central k-space region
to achieve similar acceleration. A superresolution task on
coil-combined images could then be performed [63], [64],
[65]. Since superresolution is challenging when both source
and target images are low resolution, external priors might
be required to assist recovery. Another alternative would
be to adopt variable-density sampling that trades-off high-
frequency coverage for increased SNR [10]. While aggre-
gate performance metrics (e.g., PSNR) that are dominated
by low-frequency errors might be improved, variable-density
masks would have relatively sparse coverage of peripheral
k-space compared to uniform-density masks, potentially com-
promising recovery of detailed structure. The influence of
sampling patterns on the relative performance of ssGAN
versus cascaded models remains an important topic for future
research.

Training data for ssGAN were obtained via retrospec-
tive undersampling of the IXI and in vivo datasets. When
undersampled data are derived by masking fully-sampled
data, a paired ground-truth image is available that allows
reference-based performance assessments. That said, our
analyses might be insensitive to certain imperfections in MRI
acquisitions. First, IXI contained coil-combined magnitude
images. While assessment of influences from coil-sensitivity
encoding and image phase are precluded, analyses on IXI still
demonstrate the benefits of selective expression of loss terms
on acquired k-space coefficients. The in vivo dataset contained
multi-coil complex images, albeit no significant phase per-
turbations or swaps were observed within brain tissue, likely
due to adequate shimming. Under large field inhomogeneity,
a field map can be collected or phase unwrapping can be
used against perturbations. Reliability against phase-related
effects remains an important topic for future research. Second,
we estimated coil sensitivities via ESPIRiT that has been
reported to work reliably with undersampled acquisitions [50].
ssGAN uses sensitivity estimates to combine images across
coils, to backproject the combined image onto individual coils,
and thereby to define its loss function. Thus, significant errors
in sensitivity estimates might affect signal homogeneity in the
combined image, elicit suboptimal weighting across coils that
can degrade SNR, and introduce biases that reduce accuracy of
the loss function. Lastly, prospectively undersampled experi-
ments are warranted to demonstrate the reliability of ssGAN in
practice [61], [66]. Prospective undersampling can be achieved
by modifying stock pulse sequences for acceleration, where
the sampling mask for a scan is either selected from a stored
set of a priori determined random masks, or generated on the
fly as the sequence is initiated.

Here, we followed an empirical risk minimization strategy
for model training, as many other studies in the domain of
multi-contrast MRI synthesis [12], [18], [23], [24], [26], [27].
While this strategy performs desirably when training sets are
sufficiently diverse, the resultant models might suboptimally
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generalize to atypical cases scarcely represented in the training
set. Note that the IXI and in vivo datasets only contained
healthy subjects, so atypicaly anatomy was not observed.
It remains important future work to assess the generalization
performance of ssGAN on patients with brain pathology.
When needed, reliability might be improved by adopting
distributionally robust optimization strategies with asymmetric
risk measures that give higher weight to atypical cases [67].

We examined one-to-one synthesis tasks to translate
between single source and target MRI contrasts. A prelimi-
nary radiological evaluation was conducted where synthesized
images were rated according to their general visual similar-
ity to the ground-truth images. Since the examined datasets
involved only healthy subjects, contrast transfer in pathological
tissue was not evaluated. Future studies are required to assess
the quantitative and radiological performance of ssGAN on
patient cohorts with pathology. Furthermore, it is likely that
desired information in the target contrast may not always be
sufficiently encoded in a single source contrast, particularly
for pathological tissue [27]. In those cases, complementary
information from multiple distinct source-contrast acquisitions
might be required for successful estimation of target-contrast
images. To enable many-to-one synthesis, the ssGAN model
could be modified to receive information from multiple source
contrasts as separate input channels [24], and dedicated fusion
modules can be introduced across higher stages of the network
model for improved performance [25], [35].

The ssGAN implementation considered here leverages a
multi-coil loss between undersampled versions of the syn-
thesized and reference target images. This image-domain
loss implicitly assumes that the source- and target-contrast
acquisitions are spatially registered. The datasets examined
here were either aligned or a registration step was performed
during preprocessing. Alternatively, a deep-learning model can
be cascaded to the input of ssGAN for spatial registration.
It remains important future work to explore this integrated
registration and synthesis approach.

In summary, we proposed a semi-supervised learning frame-
work based on a GAN architecture to train synthesis models
in the absence of fully-sampled ground truth. While the
data-efficiency of ssGAN was primarily demonstrated for MRI
contrast translation in the brain, it can also be adopted to other
anatomies, other recovery tasks including multi-parametric
MRI, or cross-modality mapping [39], [42], [68].
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