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a b s t r a c t 

Magnetic resonance imaging (MRI) offers the flexibility to image a given anatomic volume under a multi- 

tude of tissue contrasts. Yet, scan time considerations put stringent limits on the quality and diversity of 

MRI data. The gold-standard approach to alleviate this limitation is to recover high-quality images from 

data undersampled across various dimensions, most commonly the Fourier domain or contrast sets. A 

primary distinction among recovery methods is whether the anatomy is processed per volume or per 

cross-section. Volumetric models offer enhanced capture of global contextual information, but they can 

suffer from suboptimal learning due to elevated model complexity. Cross-sectional models with lower 

complexity offer improved learning behavior, yet they ignore contextual information across the longitu- 

dinal dimension of the volume. Here, we introduce a novel progressive volumetrization strategy for gen- 

erative models (ProvoGAN) that serially decomposes complex volumetric image recovery tasks into suc- 

cessive cross-sectional mappings task-optimally ordered across individual rectilinear dimensions. Provo- 

GAN effectively captures global context and recovers fine-structural details across all dimensions, while 

maintaining low model complexity and improved learning behavior. Comprehensive demonstrations on 

mainstream MRI reconstruction and synthesis tasks show that ProvoGAN yields superior performance to 

state-of-the-art volumetric and cross-sectional models. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Magnetic resonance imaging (MRI) is a clinically preferred 

odality that produces volumetric images of a given anatomy un- 

er diverse tissue contrasts ( Bauer et al., 2013 ). As MR acquisitions 

re intrinsically slow, there has been persistent interest in recovery 

ethods to improve quality and diversity of images derived from 

ccelerated imaging protocols ( Wang et al., 2020b; Ye, 2019 ). Two 

ainstream MRI recovery problems with pervasive applications are 

econstruction and synthesis ( Griswold et al., 2002; Pruessmann 

t al., 1999; Lustig et al., 2008; Jog et al., 2015; Yurt et al., 2021;

an Nguyen et al., 2015; Roy et al., 2016; 2013 ). While reconstruc- 

ion aims to recover high-quality images from undersampled k- 

pace acquisitions ( Lustig et al., 2007 ), synthesis aims to recover 
∗ Corresponding author at: Department of Electrical and Electronics Engineering, 

ilkent University, Ankara 06800, Turkey. 

E-mail address: cukur@ee.bilkent.edu.tr (T. Çukur). 
1 Denotes equal contribution. 

Y

n

V

s

M

ttps://doi.org/10.1016/j.media.2022.102429 

361-8415/© 2022 Elsevier B.V. All rights reserved. 
igh-quality images of unacquired tissue contrasts from images of 

ollected contrasts ( Roy et al., 2011 ). Learning-based models have 

ffered performance leaps in both recovery tasks, given their abil- 

ty to solve inverse problems ( Yi et al., 2019; Litjens et al., 2017;

hoi et al., 2020 ). However, the trade-off between sensitivity to 

patial context and model complexity introduces a dilemma re- 

arding the use of volumetric versus cross-sectional recovery mod- 

ls ( Singh et al., 2020 ). The primary aim of this study is to intro-

uce a novel volumetrization approach to achieve the contextual 

ensitivity of volumetric models while maintaining on par com- 

lexity with cross-sectional models. 

Among learning-based models, a native recovery approach is to 

erform a single-shot global mapping between source and target 

olumes ( Lan et al., 2020; Malavé et al., 2020; Yang et al., 2020; 

u et al., 2018; 2019; Chen et al., 2021a; Sood et al., 2021; Küst- 

er et al., 2020; El-Rewaidy et al., 2020; Chong and Ho, 2021 ). 

olumetric models leverage spatial correlations across all dimen- 

ions to better capture contextual information ( Lan et al., 2020; 

alavé et al., 2020; Yang et al., 2020; Yu et al., 2018 ). Introduc- 

https://doi.org/10.1016/j.media.2022.102429
http://www.ScienceDirect.com
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ion of these contextual priors can theoretically lead to more con- 

istent and accurate recovery across the volume. However, three- 

imensional (3D) models involve substantially more parameters 

han their two-dimensional (2D) counterparts ( Singh et al., 2020; 

urt et al., 2021 ). Furthermore, each volume constitutes a single 

raining sample for a 3D model, whereas it would yield several 

ens of samples for a 2D model. Taken together, these factors ren- 

er heavier demand for training data and impair the learning pro- 

ess for volumetric models ( Singh et al., 2020 ). 

A less demanding approach in terms of training data for 

earning-based MRI recovery is to perform a spatially-localized 

apping between individual cross-sections ( Akçakaya et al., 2019; 

hartsias et al., 2018; Chen et al., 2021c; Hyun et al., 2018; Joyce 

t al., 2017; Lee et al., 2020; Li et al., 2021; Mardani et al., 2019;

uan et al., 2018; Schlemper et al., 2017; Wang et al., 2021; Zhan 

t al., 2021a,b; Cheng et al., 2018; Mardani, et al., 2017 ). Volumes 

re split along a specific rectilinear orientation, and cross-sectional 

odels are then trained to learn the 2D mapping ( Dar et al., 2019;

020; Hammernik et al., 2017; Han et al., 2018; Lee et al., 2019; 

evetlidis et al., 2016 ). Since a lower-dimensional mapping is to be 

earned, cross-sectional models are of lower complexity and have 

educed demand for training data ( Yurt et al., 2021 ). This facili- 

ates the learning process, and often results in more detailed map- 

ings along the transverse dimensions within cross-sections com- 

ared to 3D models. Yet, 2D models do not fully utilize context 

cross the longitudinal dimension, even when simultaneously pro- 

essing multiple neighboring cross-sections ( Yang et al., 2020; Yu 

t al., 2018; Dar et al., 2019 ). This results in inconsistency and er-

ors across separately recovered cross-sectional images ( Lan et al., 

020; Malavé et al., 2020; Yu et al., 2019 ). 

An effective alternative to either approach is to build hybrid 

rchitectures that bridge 2D and 3D models. A group of studies 

n this domain have proposed aggregated models that fuse the 

utputs of parallel streams, where the streams are cross-sectional 

odels in three orthogonal orientations ( Wei et al., 2019; Peng 

t al., 2020 ). Pseudo target volumes are first recovered separately 

y the 2D streams, and a 3D fusion network then produces the fi- 

al target volume ( Wei et al., 2019; Peng et al., 2020 ). Other stud-

es have instead proposed transfer of learned model weights from 

D to 3D models ( Shan et al., 2018; Liu et al., 2018 ). A 2D model

s first pretrained for a cross-sectional recovery task at a selected 

rientation, the learned weights are then used to initialize the con- 

olutional kernels in 3D models ( Shan et al., 2018; Liu et al., 2018 ).

hile both approaches can improve learning behavior, they involve 

 volumetric processing component that elevates memory require- 

ents and places practical constraints on model complexity, po- 

entially limiting sensitivity to detailed image features. 

Here, we propose a novel progressive volumetrization strat- 

gy for deep generative models (ProvoGAN) for contextual learn- 

ng of MR image recovery. To improve learning efficiency by low- 

ring model complexity, ProvoGAN serially decomposes volumet- 

ic recovery tasks into a sequence of cross-sectional subtasks (e.g., 

xial, coronal, sagittal) for the first time in literature. 2 For a 

iven subtask in a selected orientation, the source volume is split 

cross the respective longitudinal dimension, and a 2D model is 

rained to map between cross-sectional source and target images. 

he predicted pseudo cross-sections are reformatted into a volume 

nd then input to the next subtask as spatial priors ( Fig. 1 ). This

rogressive nature empowers ProvoGAN to recover fine-structural 

etails in each orientation while ensuring contextual consistency 

cross the volume. Furthermore, the progression order of the sub- 

asks is adaptively optimized to enhance task-specific performance. 
2 We presented a preliminary conception of the idea in the IEEE International 

ymposium on Biomedical Imaging (ISBI) on April 4, 2020. 

t

L

w

g

2 
o ensure a high degree of realism, we primarily employ Provo- 

AN to volumetrize a recent conditional generative adversarial net- 

ork based on the ResNet architecture ( Dar et al., 2019 ). Note 

hat ProvoGAN can be viewed as a model-agnostic strategy, so 

t can be extended to volumetrize other 2D network models as 

lso demonstrated here. Comprehensive demonstrations are pro- 

ided for mainstream reconstruction and synthesis tasks in multi- 

ontrast MRI protocols. Our results indicate that ProvoGAN yields 

nhanced recovery performance compared to cross-sectional, volu- 

etric, and hybrid approaches in terms of image quality. Impor- 

antly, ProvoGAN maintains these performance benefits while at 

he same time offering reduced model complexity and improved 

earning behavior. 

ontributions 

• To our knowledge, ProvoGAN is the first volumetrized model 

for MRI recovery that serially decomposes a global 3D mapping 

into a sequence of progressive 2D mappings. 
• ProvoGAN maximizes task performance via adaptive ordering of 

the progression sequence of 2D mappings across rectilinear ori- 

entations. 
• ProvoGAN embodies a model-agnostic learning strategy, so it 

can be implemented to volumetrize various 2D network archi- 

tectures. 
• Demonstrations on mainstream reconstruction and synthesis 

tasks indicate that ProvoGAN yields superior performance to 

several prior 2D, 3D and hybrid models. 

. Methods 

.1. Generative adversarial networks 

Generative adversarial networks (GAN) are generative models 

omposed of two subnetworks. The first subnetwork is a genera- 

or ( G ) that aims to synthesize fake samples closely mimicking a 

arget data distribution, while the second subnetwork is a discrim- 

nator ( D ) that aims to detect whether a given data sample has 

een drawn from the target distribution or not ( Goodfellow et al., 

014 ). These subnetworks are trained alternately in a two player 

ero-sum min-max game in an adversarial setup: 

 GAN = E y [ log (D (y ))] + E z [ log (1 − D (G (z)))] (1) 

here L GAN is the adversarial loss function, E denotes expectation, 

denotes a random noise vector sampled from a prior distribu- 

ion, and y denotes an arbitrary real sample drawn from the tar- 

et domain. In practice, the log-likelihood terms are replaced with 

quared-loss terms to improve stability ( Mao et al., 2017 ): 

 GAN = −E y [(D (y ) − 1) 2 ] − E z [ D (G (z)) 2 ] (2) 

here D is trained to maximize L GAN , whereas G is trained to min-

mize it. 

While the basic GAN model synthesizes target data samples 

iven a random noise input, recent studies on computer vision 

 Isola et al., 2017; Zhu et al., 2017 ) and medical imaging ( Dar et al.,

019; Lee et al., 2019; Li et al., 2019; Olut et al., 2018; Sharma and

amarneh, 2019; Yang et al., 2018b; Yu et al., 2018; 2019 ) have 

emonstrated that conditional GAN (cGAN) models ( Mirza and 

sindero, 2014 ) are highly effective in image-to-image translation 

asks. The central aim in these tasks is to synthesize data samples 

rom the target image domain, given data samples from a sepa- 

ate source image domain. The cGAN model is therefore modified 

o condition both G and D on the source domain image: 

 cGAN = −E x,y [(D (x, y ) − 1) 2 ] − E x [ D (x, G (x )) 2 ] (3) 

here x denotes the source domain image, and y denotes the tar- 

et domain image. When paired images from the source and target 
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Fig. 1. ProvoGAN decomposes complex volumetric image recovery tasks into a cascade of progressive cross-sectional subtasks defined across the rectilinear orientations 

(axial, coronal, and sagittal). Given a specific order of progression sequence (axial → sagittal → coronal is given here for demonstration), ProvoGAN first learns a cross- 

sectional mapping in the first orientation, and processes cross-sections within the entire source volume to estimate the target volume. This volumetric estimate is then 

divided into cross-sections in the second orientation, and a separate cross-sectional model is learned in the second orientation. The volumetric estimate from the second 

progression is then fed onto the final progression in which a third cross-sectional model is learned for final recovery (see Supp. Fig. 1 for further details). The sequential 

implementation of the progressive cross-sectional models enables ProvoGAN to gradually improve capture of fine-structural details in each orientation and to ensure global 

contextual consistency within the volume while at the same time manifesting reduced model complexity and improved learning behavior of cross-sectional mapping. 

d

a

L

T

t

i

a

g

2

p

m

v

Y

e

t

t

L

w

i

s

r

u

s

t

F

w

a

c

c

e

s

f

m

omains are available, a pixel-wise loss between the ground truth 

nd synthesized images can also be included: 

 cGAN = −E x,y [(D (x, y ) − 1) 2 ] − E x [ D (x, G (x )) 2 ] 

+ E x,y [ || y − G (x ) || 1 ] (4) 

he pixel-wise loss is typically based on the mean-absolute error 

o reduce sensitivity to outliers and alleviate undesirable smooth- 

ng. The mapping learned by the cGAN model grows more accurate 

s the statistical dependence between source and target domains 

ets stronger ( Yurt et al., 2021 ). 

.2. MR image recovery via volumetric GANs 

As MR images are intrinsically volumetric, a comprehensive ap- 

roach for 3D MR image recovery is to use volumetric GAN (vGAN) 

odels that perform a global mapping between source and target 

olumes ( Lan et al., 2020; Malavé et al., 2020; Yang et al., 2020; 

u et al., 2018 ). To learn this mapping, vGAN models commonly 

mploy complex generator G V and discriminator D V modules con- 

aining 3D convolutional kernels. The loss function is defined over 

he entire volume in an adversarial setup: 
3 
 vGAN = − E X,Y [(D V (X, Y ) − 1) 2 ] − E X [ D V (X, G V (X )) 2 ] (5) 

+ E X,Y [ || Y − G V (X ) || 1 ] (6) 

here X denotes the source and Y denotes the target volumetric 

mages. For MRI reconstruction, X is typically the Fourier recon- 

truction of undersampled acquisitions, and Y is the fully-sampled 

eference volume. For MRI synthesis, X is the source contrast vol- 

me, and Y is the target contrast volume. Note that, in MRI recon- 

tructions, an additional constraint is introduced to enforce consis- 

ency of acquired and recovered k-space data: 

 u (G V (X )) := F u (X ) (7) 

here F u denotes the partial Fourier operator that is defined at the 

cquired k-space points. 

Due to their 3D nature, vGAN models can better incorporate 

ontextual information across MRI volumes by leveraging spatial 

orrelations across separate cross-sections ( Yang et al., 2020; Yu 

t al., 2018; 2019 ). This contextual prior can lead to elevated con- 

istency across the volume and increased accuracy in recovery per- 

ormance. That said, learning in 3D network models is inherently 

ore difficult since they involve substantially more parameters 
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 Singh et al., 2020 ). The learning process might be further impaired 

y data scarcity as the entire volume of each subject is taken as a 

ingle training sample ( Singh et al., 2020 ). These limitations often 

ause vGAN models to settle on suboptimal parameter sets, com- 

romising recovery performance. 

.3. MR image recovery via cross-Sectional GANs 

A more focused approach for 3D MRI recovery is based on 

ross-sectional GAN (sGAN) models that perform localized map- 

ings between 2D cross-sectional images within source and tar- 

et volumes ( Dar et al., 2019; Yurt et al., 2021; Shin et al., 2018;

harma and Hamarneh, 2019 ). These 2D images are typically taken 

o be individual cross-sections within the volume in a specific rec- 

ilinear orientation, i.e., axial, sagittal or coronal. To learn this 2D 

apping, sGAN models employ relatively simpler generator G S and 

iscriminator D S modules containing 2D convolutional kernels. The 

oss function is defined for individual cross-sections in an adver- 

arial setup with a pixel-wise loss: 

 sGAN = −E x i o ,y 
i 
o 
[(D S (x i o , y 

i 
o ) − 1) 2 ] − E x i o 

[ D S (x i o , G S (x i o )) 
2 ] 

+ E x i o ,y 
i 
o 
[ || y i o − G S (x i o ) || 1 ] (8) 

here x i o and y i o denote the i th cross-sections within the source 

nd target volumes in orientation o. As with sGAN models, x i o − y i o 
re taken as cross-sectional images for undersampled and fully- 

ampled acquisitions in MRI reconstruction, and x i o − y i o are taken 

s cross-sectional images of source and target contrasts in MRI 

ynthesis. Consistency between acquired and recovered data can 

gain be enforced during reconstruction via the following proce- 

ure: 

 u (G S (x i o )) := F u (x i o ) (9) 

here F u denotes the partial Fourier operator that is defined at the 

cquired k -space points. Once the mapping between the source 

nd target cross-sections is learned, cross-sections of the target 

olumes are independently generated, and then the target volumes 

re recovered by concatenating the generated cross-sections. 

Due to their 2D nature, sGAN models are less complex and 

o they naturally have lower demand for data Yurt et al. (2021) . 

ndividual cross-sections within a subject’s volume are taken as 

eparate training samples, expanding the effective size of the 

ataset. As a result, more detailed cross-sectional mapping can be 

earned. However, this advantage comes at the expense of neglect- 

ng global contextual information across the volume ( Yang et al., 

020; Yu et al., 2018; 2019 ). Therefore, sGAN models might suffer 

rom inconsistency or inaccuracy of recovered images across cross- 

ections. 

.4. Progressively volumetrized GAN 

Here, a novel architecture is proposed to address the limita- 

ions of volumetric and cross-sectional GAN models. The proposed 

odel, named progressively volumetrized GAN (ProvoGAN), de- 

omposes complex volumetric image recovery tasks into a series of 

impler cross-sectional tasks ( Fig. 1 ). The cross-sectional recovery 

asks are defined in separate orientations, and are implemented 

equentially via cascaded 2D GAN models. We consider rectilinear 

ross-sections of volumetric MRI datasets in this study, so the se- 

ected orientations are axial, coronal and sagittal. Given a specific 

rder of the three orientations ( o 1 , o 2 , o 3 ), ProvoGAN first learns a

D recovery model in orientation o 1 . The entire source volume is 

rocessed by this model to estimate the target volume. Afterwards, 

his volumetric estimate is separated into cross-sections in orienta- 

ion o 2 , and a separate 2D recovery model is trained. The estimated 

arget volume for o 2 is then fed onto the final stage, where a third

D recovery model is trained in orientation o . 
3 

4 
The cascaded 2D models in ProvoGAN are trained sequentially 

n the three rectilinear orientations, where the 2D model weights 

t earlier orientations are frozen upon training. This learning strat- 

gy empowers ProvoGAN to progressively recover fine-structural 

etails at each orientation, while bypassing the need for compu- 

ationally expensive calculation of error gradients across the entire 

olume and across all orientations. Therefore, ProvoGAN offers the 

bility to efficiently capture global contextual information with- 

ut drastically elevating computational demand. At the same time, 

his step-wise training can increase sensitivity to progression order. 

herefore, progression order across orientations is adaptively tuned 

o maximize performance in specific tasks. Detailed formulation of 

he ProvoGAN model is provided below. 

First progression: ProvoGAN first learns a cross-sectional map- 

ing between the source-target volumes in o 1 via a generator ( G o 1 ) 

nd a discriminator ( D o 1 ). The source and target cross-sections in 

 1 are extracted with a division block ( d o 1 ) . 

 

i 
o 1 

∈ { x 1 o 1 
, x 2 o 1 

. . . , x I o 1 } = d o 1 (X ) 

 

i 
o 1 

∈ { y 1 o 1 
, y 2 o 1 

. . . , y I o 1 } = d o 1 (Y ) 
(10) 

here X denotes the source volume, Y denotes the target volume, 

 

i 
o 1 

denotes the i th cross-section of the source volume in o 1 , y i o 1 
enotes the i th cross-section of the target volume in o 1 , and I de-

otes the total number of cross-sections within the volumes in o 1 . 

 o 1 then learns to recover the cross-sections of the target volume 

rom the corresponding cross-sections of the source volume. 

ˆ 
 

i 
p 1 ,o 1 

= G o 1 (x i o 1 ) (11) 

here ˆ y i p 1 ,o 1 denotes the i th cross-section of the target volume in 

 1 recovered via the first progression. Meanwhile, D o 1 learns to dis- 

inguish between the real and fake cross-sections. 

 o 1 (x i o 1 , m ) ∈ [0 , 1] (12) 

here m is either generated ( ̂  y i p 1 ,o 1 ) or ground truth ( y i o 1 ) target

ross-section. To simultaneously train G o 1 and D o 1 , a loss function 

 L o 1 ) consisting of adversarial and pixel-wise losses is used. 

 o 1 = −E x i o 1 
,y i o 1 

[(D o 1 (x i o 1 , y 
i 
o 1 

) − 1) 2 ] 

− E x i o 1 
[ D o 1 (x i o 1 , G o 1 (x i o 1 )) 

2 ] 

+ E x i o 1 
,y i o 1 

[ || y i o 1 − G o 1 (x i o 1 ) || 1 ] (13) 

nce G o 1 and D o 1 are properly trained, cross-sections in o 1 for the 

arget volume are independently generated, and then combined 

ith a concatenation block ( c o 1 ) to recover the entire target vol- 

me. 

ˆ 
 p 1 = c o 1 ( ̂  y 1 p 1 ,o 1 

, . . . , ̂  y I p 1 ,o 1 ) (14) 

here ˆ Y p 1 denotes the target volume recovered after the first pro- 

ression. 

Second progression: Having learned the cross-sectional mapping 

n o 1 , ProvoGAN then learns a separate recovery model in the sec- 

nd orientation o 2 to gradually enhance capture of fine-structural 

etails and spatial correlations. The prediction for the target vol- 

me generated in the first progression is also incorporated as an 

nput to the generator G o 2 to leverage global contextual priors. 

ˆ 
 

j 
p 2 ,o 2 

= G o 2 (x j o 2 , ̂  y j p 1 ,o 2 ) (15) 

here x 
j 
o 2 

denotes the jth cross-section of the source volume in 

 2 , ˆ y 
j 
p 1 ,o 2 

denotes the jth cross-section in o 2 of the target volume 

ecovered in the first progression, and ˆ y 
j 
p 2 , o 2 

denotes the jth cross- 

ection in o 2 of the target volume recovered in the second progres- 

ion. Meanwhile, discriminator D o 2 learns to distinguish between 

he generated and real cross-sections. 
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Third progression: Lastly, ProvoGAN learns a cross-sectional 

apping in the third orientation o 3 . As in the second progression, 

he prediction from the previous progression is incorporated into 

he mapping as prior information. Therefore, the third generator 

 o 3 receives as input the cross-sections in o 3 of the source volume 

nd the previously recovered volume: 

ˆ 
 

k 
p 3 , o 3 

= G o 3 (x k o 3 
, ̂  y k p 2 , o 3 ) (16) 

here x k o 3 
denotes the k th cross-section of the source volume in 

 3 , ˆ y k p 2 ,o 3 denotes the k th cross-section in o 3 of the target vol- 

me recovered in the second progression, and ˆ y k p 3 , o 3 denotes the 

 th cross-section in o 3 of the target volume recovered in the third 

rogression. Meanwhile, discriminator D o 3 learns to distinguish be- 

ween the generated and real cross-sections. The final output vol- 

me ˆ Y p 3 of the proposed method is recovered by combining the 

enerated cross-sections in o 3 via a concatenation block c o 3 : 

ˆ 
 p 3 = c o 3 ( ̂  y 1 p 3 ,o 3 

, . . . , ̂  y K p 3 ,o 3 
) (17) 

here K denotes the total number of cross-sections in o 3 . Note 

hat, in MRI reconstruction, an additional constraint is introduced 

fter each progression to enforce consistency of the acquired and 

ecovered k-space data via the following procedure. 

 u ( ̂  Y p n ) := F u (X ) (18) 

here F u denotes the partial Fourier operator defined on the sam- 

ling mask utilized to acquire X , and n denotes the ongoing pro- 

ression index. Meanwhile, an additional consistency between the 

rogressions is enforced in the form of residual learning for MRI 

ynthesis, where the generator models in the second and third pro- 

ressions learn to predict the cross-sectional residuals between the 

arget volume and the previously synthesized target volume. 

ˆ 
 p n , o n = 

ˆ y p n −1 , o n + G o n (x o n , ̂  y p n −1 , o n ) (19) 

.5. Datasets 

We demonstrated the proposed ProvoGAN approach on a public 

rain dataset, an in vivo knee dataset, and an in vivo brain dataset. 

he public dataset, IXI ( https://brain- development.org/ixi- dataset/ ), 

onsisted of coil-combined magnitude multi-contrast brain MR im- 

ges of healthy subjects. The in vivo knee dataset ( Epperson et al., 

013 ) consisted of multi-coil complex knee MR images of healthy 

ubjects. The in vivo brain dataset contained multi-contrast brain 

R images of both healthy subjects and glioma patients. Further 

etails about each dataset are provided below. 

IXI eataset: T 1 -, T 2 -, and proton-density (PD-) weighted brain 

R images of 52 subjects were used, where 37 subjects were 

eserved for training, 5 for validation, and 10 for testing. T 1 - 

eighted images were acquired sagittally with repetition time = 

 . 813 ms, echo time = 4 . 603 ms, flip angle = 8 ◦, spatial resolu-

ion = 0 . 94 × 0 . 94 × 1 . 2 mm 

3 , and matrix size = 256 × 256 × 150 .

 2 -weighted images were acquired axially with repetition time 

 8178 ms, echo time = 100 ms, flip angle = 90 ◦, spatial resolu-

ion = 0 . 94 × 0 . 94 × 1 . 20 mm 

3 , and matrix size = 256 × 256 × 150 .

D-weighted images were acquired axially with repetition time 

 8178 . 34 ms, echo time = 8 ms, flip angle = 90 ◦, spatial resolu-

ion = 0 . 94 × 0 . 94 × 1 . 2 mm 

3 , and matrix size = 256 × 256 × 150 .

ince the images of separate contrasts were spatially unregistered 

n this dataset, T 2 - and PD-weighted images were registered onto 

 1 -weighted images using FSL ( Jenkinson and Smith, 2001; Jenkin- 

on et al., 2002 ) via an affine transformation. For synthesis images 

ere further registered onto the Montreal Neurological Institute 

MNI) template of T 1 -weighted images with an isotropic resolution 

f 1 mm 

3 . Registration was performed based on mutual informa- 

ion loss. 
5 
In vivo knee dataset: PD-weighted multi-coil knee MR images of 

0 subjects were used, where 12 subjects were reserved for train- 

ng, 3 for validation, and 5 for testing. Images were sagittally ac- 

uired with 8 receive coils, repetition time = 1550 ms, echo time 

 25 . 661 ms, spatial resolution = 0 . 5 × 0 . 5 × 0 . 6 mm 

3 , and matrix

ize = 320 × 320 × 256 . MRI scans were performed in the Richard 

. Lucas Center at Stanford University, California, United States on 

T GE scanners. 

In vivo brain dataset: T 1 -weighted, contrast enhanced T 1 - 

eighted (T 1c ), T 2 -weighted, and FLAIR coil-combined brain MR 

mages of 11 healthy subjects, 12 glioma patients with homoge- 

ous tumor, and 62 glioma patients with heterogenous tumor were 

sed. 55 subjects were reserved for training (healthy: 8, homoge- 

ous: 7, heterogenous: 40), 15 for validation (healthy: 2, homoge- 

ous: 2, heterogenous: 11), and 15 for testing (healthy: 2, homoge- 

ous: 2, heterogenous: 11). Data augmentation was performed to 

revent class imbalance among the three subject groups. Augmen- 

ation was achieved by rotating the volumes around their longi- 

udinal axis by a random angle in the range [ −10 ◦, 10 ◦] , and re-

eated 10 times for healthy subjects, 9 times for glioma patients 

ith homogenous tumor, and performed once for glioma patients 

ith heterogenous tumor. MRI exams were performed in the De- 

artment of Radiology at Hacettepe University, Ankara, Turkey, on 

iemens and Philips scanners under a diverse set of protocols with 

arying spatial resolution across both contrast sets and subjects. 

pecifically, the prescribed resolutions included 1 × 1 × 1 mm 

3 , 

 . 9 × 0 . 9 × 1 . 5 mm 

3 , 0 . 9 × 0 . 9 × 1 . 8 mm 

3 , 0 . 9 × 0 . 9 × 2 . 2 mm 

3 for

 1 - and T 1c -weighted images, and 0 . 3 × 0 . 3 × 5 mm 

3 , 0 . 4 × 0 . 4 ×
 mm 

3 , 0 . 5 × 0 . 5 × 5 mm 

3 , 0 . 6 × 0 . 6 × 5 mm 

3 , 0 . 7 × 0 . 7 × 5 mm 

3 

or T 2 -weighted and FLAIR images. For demonstrations, all images 

ere registered onto the MNI template of T 1 -weighted images with 

n isotropic resolution of 1 mm 

3 . Registration was performed via 

SL ( Jenkinson and Smith, 2001; Jenkinson et al., 2002 ) using affine 

ransformation based on mutual information loss. Imaging proto- 

ols were approved by the local ethics committee at Hacettepe 

niversity. All participants provided written informed consent. 

For MRI reconstruction, volumes in the IXI and in vivo knee 

atasets were retrospectively undersampled with variable-density 

ampling patterns for acceleration factors ( R = 4 , 8 , 12 , 16 ). A sam-

ling density function across k-space was taken a bi-variate nor- 

al distribution with mean at the center of k-space. The variance 

f the distribution was adjusted to achieve the expected sampling 

ate given R . The in-plane orientation was designated as axial. For 

RI synthesis, all brain images were further skull stripped us- 

ng FSL ( Jenkinson and Smith, 2001; Jenkinson et al., 2002 ) with 

unctional intensity threshold of 0.5, and vertical gradient intensity 

hreshold of 0. 

.6. Competing methods 

To demonstrate the performance of ProvoGAN in MR image re- 

overy, we compared it against several state-of-the-art 3D mod- 

ls (vGAN, SC-GAN, REPLICA), 2D models (sGAN, RefineGAN, SPIRiT, 

parseMRI), and hybrid models (M 

3 NET, TransferGAN). Baselines 

mplemented for both reconstruction and synthesis included sGAN, 

GAN, M 

3 NET, and TransferGAN. Meanwhile, task-specific baselines 

ere RefineGAN, SPIRiT, and SparseMRI in MRI reconstruction, and 

C-GAN and REPLICA in MRI synthesis. 

The main effect that we seeked in comparing ProvoGAN against 

GAN and vGAN was the benefit of progressive volumetriza- 

ion over purely 2D or 3D processing. To improve reliability of 

hese comparisons, we wanted to control for potential confounds 

rom secondary factors such as network architecture or loss func- 

ion. Therefore, the sGAN and vGAN models embodied consis- 

ent generator-discriminator architectures and loss functions with 

rovoGAN (see Supp. Text 1,2 and Supp. Fig. 1,2 for details). 

https://brain-development.org/ixi-dataset/
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vGAN: A learning-based volumetric GAN model that performs a 

lobal one-shot mapping between source and target volumes (see 

ection 2.2 ). vGAN was implemented with a ResNet-based gener- 

tor and a PatchGAN discriminator. sGAN A learning-based cross- 

ectional GAN model that performs a localized mapping between 

ross-sections of the source and target volumes (see Section 2.3 ). 

GAN contained a ResNet-based generator and a PatchGAN dis- 

riminator. 

RefineGAN: A learning-based cross-sectional GAN model pro- 

osed for MRI reconstruction ( Quan et al., 2018 ). RefineGAN uses 

 cycle-consistency loss for acquired k-space samples in addition 

o adversarial and pixel-wise image loss to improve reconstruc- 

ion quality. The overall architecture and loss terms were taken 

rom Quan et al. (2018) , but a ResNet-based generator was im- 

lemented to enable fair comparisons against ProvoGAN as it was 

bserved here to yield higher reconstruction quality. SC-GAN A 

earning-based volumetric GAN model proposed for MRI synthe- 

is ( Lan et al., 2020 ). SC-GAN leverages self-attention modules to 

mprove capture of long-range spatial dependencies. SC-GAN was 

mplemented with a U-Net based generator and a PatchGAN dis- 

riminator as described in Lan et al. (2020) , where the encoder and 

ecoder components in the generator and the intermediate layer in 

he discriminator contained a self-attention module. 

M 

3 NET: A learning-based hybrid model proposed for MRI seg- 

entation ( Wei et al., 2019 ). First, M 

3 NET separately learns or- 

hogonal cross-sectional mappings in three rectilinear orientations 

i.e., axial, coronal, sagittal). Using these 2D mappings as paral- 

el streams, it fuses their outputs with a 3D fusion module to re- 

over the target volume. The overall architecture, 3D fusion mod- 

le, and loss functions were adopted from Wei et al. (2019) , where 

D models were implemented with ResNet-based generators and 

atchGAN discriminators as they were observed to yield enhanced 

erformance in this study. 

TransferGAN: A learning-based hybrid GAN model proposed for 

ow-dose CT denoising ( Shan et al., 2018 ). TransferGAN pretrains 

 2D model for image recovery in a specific orientation, and then 

erforms domain transfer from 2D onto 3D by transferring model 

eights. The transfer learning procedure was implemented as de- 

cribed in Shan et al. (2018) , with 2D-3D models implemented 

s conditional GANs using ResNet-based generators and PatchGAN 

iscriminators for fair comparison against ProvoGAN. 

SparseMRI: A compressed sensing-based cross-sectional method 

or single-coil MRI reconstruction ( Lustig et al., 2007 ). SparseMRI 

nforces transform domain sparsity as prior information during re- 

onstruction from undersampled acquisitions. Here, SparseMRI was 

mplemented as described in Lustig et al. (2007) . 

SPIRiT: A compressed sensing-based cross-sectional method for 

ulti-coil MRI reconstruction ( Lustig and Pauly, 2010 ). SPIRiT em- 

loys k-space interpolation kernels to estimate missing k-space 

amples. Here, SPIRiT was implemented as described in Lustig and 

auly (2010) . 

REPLICA: A compressed sensing-based volumetric method for 

ulti-contrast MRI synthesis ( Jog et al., 2017 ). REPLICA performs 

 nonlinear intensity transformation in multi-resolution feature 

pace via a regression ensemble based on random forests. Here, 

EPLICA was implemented as described in Jog et al. (2017) . 

In single-coil reconstruction, learning-based models were 

rained to recover a magnitude image given real and imagi- 

ary parts of the undersampled image. In multi-coil reconstruc- 

ion, learning-based models were first trained to recover a coil- 

ombined magnitude image given real and imaginary parts of coil- 

ombined Fourier reconstructions of undersampled acquisitions. A 

omplex image was then formed by mapping the phase of the coil- 

ombined undersampled image onto the predicted magnitude im- 

ge. Coil combination was performed using sensitivity maps esti- 

ated via ESPIRiT ( Uecker et al., 2014 ). A multi-coil complex image 
6 
as obtained by projecting the coil-combined network prediction 

nto individual coils with the estimated sensitivity maps. Data- 

onsistency was enforced in Fourier domain using the multi-coil 

omplex images. In synthesis, learning-based models were trained 

o recover the magnitude image of the target contrast given mag- 

itude images of the source contrasts. 

The volumetric vGAN, SC-GAN, and REPLICA methods received 

s input volumetric source images. The cross-sectional sGAN-A, 

GAN-C, sGAN-S, RefineGAN, SPIRiT, and SparseMRI methods re- 

eived as input individual cross-sections of source volumes. M 

3 NET 

eceived cross-sectional inputs, aggregated them across the vol- 

me and finally processed the entire volume. TransferGAN received 

ross-sectional inputs during pretraining of the 2D model, and in- 

tead received volumetric inputs during training of the 3D model. 

etails regarding the dimensionality of input data to each method 

re provided in Supp. Text 3. 

ProvoGAN, vGAN, and sGAN were implemented in Python 2.7 

sing PyTorch 0.4 and NumPy 1.14 libraries. Implementations of 

efineGAN and SC-GAN were adopted from Quan et al. (2018) and 

an et al. (2020) respectively, and performed in Python 3.6 us- 

ng PyTorch 1.10 and Numpy 1.19 libraries. Implementations of 

 

3 NET and TransferGAN were adapted from Wei et al. (2019) and 

han et al. (2018) respectively, and performed in Python 2.7 using 

he PyTorch 0.4 and Numpy 1.14 libraries. SparseMRI and SPIRiT 

ere implemented in MATLAB using the toolboxes available at 

ttps://people.eecs.berkeley.edu/ ∼mlustig/Software.html . REPLICA 

as also implemented in MATLAB using the toolbox available at 

ttps://github.com/jcreinhold/replica . All implementations were 

un on workstations equipped with Intel(R) Core(TM) i7-7800X 

 3.50 GHz and i7-6850K @ 3.60 GHz CPUs, and nVidia GeForce 

TX 1080 Ti and RTX 2080 Ti GPUs. Quantitative performance as- 

essments based on PSNR and SSIM were performed in Python 2.7 

sing the Scikit-image 0.14 library. A toolbox to implement Provo- 

AN and competing deep-learning models is publicly available at 

ttps://github.com/icon-lab/ProvoGAN . 

.7. Experiments 

Task-specific progression order in ProvoGAN: Experiments were 

erformed on ProvoGAN to optimize its progression order across 

he rectilinear orientations for specific tasks. To do this, multi- 

le independent ProvoGAN models were trained while varying the 

rogression order: 1) A → C → S, 2) A → S → C, 3) C → A → S,

) C → S → A, 5) S → A → C, 6) S → C → A, where A denotes

he axial, C denotes the coronal, and S denotes the sagittal orien- 

ation. Performance of these models were evaluated on the valida- 

ion set via PSNR measurements. The experiments were performed 

eparately for all synthesis and reconstruction tasks, and the pro- 

ression orders optimized for specific tasks were used in all evalu- 

tions thereafter. 

MRI reconstruction: Reconstruction experiments were performed 

n the IXI and in vivo knee datasets to compare ProvoGAN against 

GAN, vGAN, RefineGAN, SparseMRI, and SPIRiT. In the IXI dataset, 

he proposed and competing methods were demonstrated sepa- 

ately for single-coil reconstruction of T 1 - and T 2 -weighted images 

ith four distinct acceleration factors ( R = 4 , 8 , 12 , 16 ). Meanwhile,

n the in vivo knee dataset, the proposed and competing methods 

ere demonstrated for multi-coil reconstruction of PD-weighted 

mages again with ( R = 4 , 8 , 12 , 16 ). Note that a single sGAN model

as trained in the axial orientation (sGAN-A) given the axial read- 

ut direction. 

MRI synthesis: Synthesis experiments were performed on 

he IXI and in vivo brain datasets to demonstrate ProvoGAN 

gainst sGAN, vGAN, SC-GAN, and REPLICA. All synthesis ex- 

eriments were conducted on coil-combined magnitude im- 

ges. In the IXI dataset, three synthesis tasks were consid- 

https://people.eecs.berkeley.edu/~mlustig/Software.html
https://github.com/jcreinhold/replica
https://github.com/icon-lab/ProvoGAN
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red: 1) T 2 , PD → T 1 , 2) T 1 , PD → T 2 , 3) T 1 , T 2 → PD.

n the in vivo brain dataset, four synthesis tasks were con- 

idered: 1) T 2 , FLAIR, T 1c → T 1 , 2) T 1 , FLAIR, T 1c → T 2 ,

) T 1 , T 2 , T 1c → FLAIR, 4) T 1 , T 2 , FLAIR → T 1c . For each task,

hree independent sGAN models were implemented to recover tar- 

et cross-sections in separate orientations: sGAN-A for the axial, 

GAN-C for the coronal, sGAN-S for the sagittal orientation. 

Progressive volumetrization versus hybrid models: Experiments 

ere conducted on the IXI dataset to demonstrate ProvoGAN 

gainst M 

3 NET and TransferGAN. Reconstruction experiments were 

onducted for T 1 - and T 2 -weighted image recovery tasks at four 

istinct acceleration factors ( R = 4 , 8 , 12 , 16 ). Meanwhile, synthesis

xperiments were conducted for the many-to-one recovery tasks 

f T 2 , PD → T 1 , T 1 , PD → T 2 , and T 1 , T 2 → PD. 

Radiological evaluation: To assess the clinical value of the re- 

overed images, an expert radiologist ( 25+ years of experience) 

ave opinion scores to the images while blinded to the method 

ame and order of presentation. Reconstructed images were eval- 

ated for single-coil reconstructions of T 1 - and T 2 -weighted acqui- 

itions at R = 8 in the IXI dataset, and multi-coil reconstructions 

f PD-weighted acquisitions at R = 8 in the in vivo knee dataset. 

ynthesized images were evaluated for T 2 , PD → T 1 in IXI and 

 1 , T 2 , T 1c → FLAIR in the in vivo brain datasets. From each

ecovered volume, intermediate axial, coronal, and sagittal cross- 

ections were randomly selected, and the image quality was rated 

s the similarity to ground truth images on a five-point scale (5: 

erfect match, 4: good, 3: moderate, 2: limited, 1: very poor, 0: 

nacceptable). 

Multi-cross-section models: To demonstrate the benefit of lever- 

ging contextual priors by incorporating multiple neighboring 

ross-sections at the input level, variants of ProvoGAN and sGAN, 

eferred to as ProvoGAN(multi) and sGAN(multi), were imple- 

ented, which receive as input n c consecutive cross-sections to re- 

over the corresponding central cross-section in the target volume. 

ere n c = 3 was selected as higher number of cross-sections did 

ot yield a notable benefit in recovery performance ( Dar et al., 

019 ). Experiments were performed on the IXI dataset for recon- 

truction of T 1 - and T 2 -weighted images with distinct accelera- 

ion factors ( R = 4 , 8 , 12 , 16 ), and for many-to-one synthesis tasks

T 2 , PD → T 1 , T 1 , PD → T 2 , T 1 , T 2 → PD). The ordering of

he progressions across the orientations in ProvoGAN was opti- 

ized via PSNR measurements in the validation set. Three separate 

GAN(multi) models were implemented in each individual rectilin- 

ar orientation: sGAN(multi)-A for the axial, sGAN(multi)-C for the 

oronal, and sGAN(multi)-S for the sagittal orientation. 

Cross-sectional models of varying complexity: An additional anal- 

sis was performed on ProvoGAN and sGAN to examine recovery 

erformance as a function of the complexity of convolutional lay- 

rs. Several variants of ProvoGAN and sGAN were implemented 

hile the number of network weights in individual convolutional 

ayers were scaled by n f ∈ { 1 / 16 , 1 / 9 , 1 / 4 , 1 , 4 , 9 , 16 } , where the

ernel size, number of layers, number of hidden units were kept 

xed but the number of filters were modified. This resulted in 

even distinct ProvoGAN and sGAN pairs: ProvoGAN( n f )-sGAN( n f ). 

xperiments were performed on the IXI dataset for single-coil re- 

onstruction of T 1 -weighted acquisitions undersampled at R = 8 

nd a many-to-one synthesis task of T 2 , PD → T 1 . The ordering

f the progressions across the orientations in ProvoGAN( n f ) was 

ptimized via PSNR measurements in the validation set. Separate 

GAN models were trained in the individual rectilinear orienta- 

ions (axial, coronal, and sagittal) for each model complexity level: 

GAN( n f )-A, sGAN( n f )-C, sGAN( n f )-S. 

Data efficiency: The complexity of volumetric models can elevate 

he amount of data samples required for successful training. In- 

tead, ProvoGAN comprises sequential cross-sectional models that 

re of lower complexity and that can be trained effectively with 
7 
ewer data. Experiments were conducted to comparatively demon- 

trate the data efficiency of ProvoGAN against vGAN. To do this, 

odels were trained using data from varying number of subjects 

 n T ∈ { 5 , 15 , 25 } ), yielding ProvoGAN( n T ) and vGAN( n T ). T 1 - and

 2 -weighted reconstructions in the IXI dataset at R = 4 , 8 , 12 , 16

ere considered. T 2 , PD → T 1 , T 1 , PD → T 2 , and T 1 , T 2 → PD syn-

hesis tasks were considered. To prevent potential confounds, the 

ptimal progression orders determined for the original ProvoGAN 

odels were retained. 

Generalizability of progressive volumetrization: Experiments were 

onducted to demonstrate the generalizability of the proposed pro- 

ressive volumetrization to another network architecture. Demon- 

trations were performed on the IXI dataset for T 1 , T 2 → PD, 

 1 , PD → T 2 , and T 2 , PD → T 1 synthesis tasks. A recent state-of-

he-architecture, SC-GAN, with a U-Net backbone using intermit- 

ent self-attention layers ( Lan et al., 2020 ) was considered. Variants 

f sGAN, vGAN, and ProvoGAN were implemented based on this ar- 

hitecture: sSC-GAN, vSC-GAN, ProvoSC-GAN. Again, three separate 

SC-GAN models were trained in each orientation: sSC-GAN-A in 

he axial, sSC-GAN-C in the coronal, and sSC-GAN-S in the sagittal 

rientation. 

Statistical assessments: PSNR, SSIM, and opinion scores were 

tilized to quantitatively evaluate the recovery quality of the 

ethods under comparison. Since the performance measurements 

rom these metrics followed a non-normal distribution ( p < 0 . 05 

ith Shapiro–Willks test), significance of differences in quantita- 

ive metrics were evaluated using non-parametric statistical tests. 

ssessments of progression order in ProvoGAN were performed 

ia Kruskal–Wallis tests, whereas performance comparisons among 

ompeting methods were performed via Wilcoxon signed-rank 

ests. 

. Results 

.1. Task-specific progression order 

ProvoGAN serially decomposes a given volumetric recovery task 

nto cross-sectional mappings in three rectilinear orientations. Sub- 

equent 2D mappings are residually learned based on outputs from 

arlier progressions. Please note that spatial distribution of the tis- 

ues and the correlations between the source-target images may 

ary uniquely across orientations for each recovery task. In this 

etup, if an earlier 2D model yields relatively higher artifacts, the 

ask difficulty for the remaining progressions would be elevated. 

ontrarily, initiating the progression at a different orientation with 

ower artifacts can reduce task difficulty for the remaining stages. 

herefore, we predicted that the progression sequence in Provo- 

AN can significantly affect task-specific recovery performance. 

To test this prediction, we performed reconstruction and syn- 

hesis experiments separately on the IXI, in vivo brain, and in 

ivo knee datasets (see Section 2.5 for details). We comparatively 

valuated performance of multiple independent ProvoGAN mod- 

ls for the six possible permutations of the progression sequence: 

) A → C → S, 2) A → S → C, 3) C → A → S, 4) C → S → A,

) S → A → C, 6) S → C → A, where A denotes the axial, C

enotes the coronal, and S denotes the sagittal orientation. Here, 

e considered volumetric PSNR measurements between the recov- 

red and reference target volumes within the validation set. The 

ighest and lowest performing ProvoGAN models yield an average 

SNR difference of 3.44 dB for single-coil reconstruction tasks in 

XI and 3.42 dB for multi-coil reconstruction tasks in the in vivo 

nee dataset (see Supp. Tables 1,2 for details). Meanwhile, the av- 

rage PSNR difference between the highest and lowest perform- 

ng ProvoGAN models is 1.46 dB for synthesis in IXI, and 1.01 dB 

or synthesis in the in vivo brain dataset (see Supp. Tables 3,4). 

ptimization of the progression order enables a significant per- 
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Table 1 

Quality of Reconstruction in the IXI Dataset: Volumetric PSNR (dB) and SSIM (%) measurements between the reconstructed and ground truth 

images in the test set in the IXI dataset are given as mean ± std for the test set. The measurements are reported for zero-filled images (ZF), 

the proposed ProvoGAN and competing sGAN, vGAN, RefineGAN, and SparseMRI reconstruction methods for four distinct acceleration factors 

( R = 4 , 8 , 12 , 16 ). Boldface indicates the best performing method. 

ProvoGAN sGAN vGAN RefineGAN SparseMRI ZF 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

R = 4 T 1 35.25 96.73 33.85 93.21 30.82 88.61 31.04 92.13 26.25 72.16 24.59 64.96 

±1.78 ±0.57 ± 1.29 ± 0.78 ± 1.24 ± 0.93 ± 1.74 ± 0.94 ± 0.80 ± 1.92 ± 1.17 ± 3.07 

T 2 35.50 96.08 32.95 86.44 33.09 93.13 33.96 94.00 28.08 82.44 27.54 75.14 

±2.62 ±1.07 ± 1.50 ± 1.26 ± 1.73 ± 1.20 ± 0.91 ± 0.57 ± 0.73 ± 1.42 ± 1.04 ± 2.09 

R = 8 T 1 31.38 94.93 30.08 91.18 29.71 88.73 27.63 91.81 25.92 72.26 23.04 62.53 

±1.26 ±0.86 ± 1.32 ± 1.01 ± 0.88 ± 1.23 ± 1.56 ± 0.68 ± 0.36 ± 1.52 ± 1.05 ± 3.32 

T 2 33.49 95.92 32.24 90.47 31.35 92.57 30.70 93.82 26.55 79.35 26.67 74.16 

±2.21 ±1.01 ± 2.14 ± 0.95 ± 0.66 ± 0.86 ± 1.51 ± 0.40 ± 0.51 ± 1.39 ± 0.87 ± 2.10 

R = 12 T 1 29.67 92.48 27.34 86.23 27.56 82.70 27.48 88.56 23.84 60.77 20.76 52.72 

±0.91 ±0.90 ± 1.06 ± 1.36 ± 1.20 ± 1.70 ± 1.08 ± 1.07 ± 0.28 ± 1.74 ± 1.04 ± 3.62 

T 2 30.41 91.98 28.48 79.50 27.97 85.76 29.16 91.49 24.67 70.16 24.60 66.90 

± 1.03 ±1.40 ± 1.06 ± 2.15 ± 0.79 ± 1.74 ± 1.54 ± 0.87 ± 0.59 ± 1.67 ± 0.70 ± 2.12 

R = 16 T 1 29.15 91.40 26.73 85.23 25.47 79.56 22.37 84.31 23.42 61.64 20.95 52.85 

±1.09 ±1.09 ± 1.53 ± 1.74 ± 1.07 ± 2.16 ± 1.07 ± 1.36 ± 0.47 ± 1.86 ± 1.07 ± 3.46 

T 2 30.66 93.74 29.05 83.38 27.66 85.47 28.12 91.07 24.37 69.15 24.44 66.70 

±1.60 ±1.35 ± 1.04 ± 1.22 ± 0.50 ± 1.57 ± 1.26 ± 0.84 ± 0.69 ± 1.60 ± 0.76 ± 2.19 

Table 2 

Quality of Reconstruction in the In vivo Knee Dataset: Volumetric PSNR (dB) and SSIM (%) measurements between the reconstructed and 

ground truth images in the test set in the in vivo knee dataset are given as mean ± std for the test set. The measurements are reported for 

zero-filled images (ZF), the proposed ProvoGAN and competing sGAN, vGAN, RefineGAN, and SPIRiT methods for four distinct acceleration 

factors ( R = 4 , 8 , 12 , 16 ). Boldface indicates the best performing method. 

ProvoGAN sGAN vGAN RefineGAN SPIRiT ZF 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

R = 4 40.75 95.74 40.34 95.69 36.80 92.79 40.31 95.21 39.46 95.35 32.17 93.50 

±1.35 ±0.94 ± 1.43 ± 0.87 ± 1.69 ± 1.36 ± 1.50 ± 1.15 ± 1.39 ± 1.12 ± 2.38 ± 1.85 

R = 8 39.45 95.13 38.73 93.73 30.83 87.54 38.22 92.43 35.61 93.16 29.85 90.81 

±2.15 ±1.08 ± 1.01 ± 0.98 ± 1.44 ± 2.80 ± 1.43 ± 1.58 ± 2.70 ± 1.60 ± 1.77 ± 1.88 

R = 12 36.99 93.63 36.76 91.99 29.03 88.10 36.21 90.82 33.58 91.66 28.65 89.17 

±1.29 ±0.95 ± 1.18 ± 0.97 ± 1.49 ± 1.78 ± 0.88 ± 1.47 ± 3.17 ± 1.86 ± 1.25 ± 1.64 

R = 16 37.86 92.27 35.11 89.34 28.99 86.00 35.42 89.70 32.28 90.69 27.93 87.94 

±0.50 ±1.45 ± 1.06 ± 1.61 ± 2.21 ± 2.28 ± 0.55 ± 1.13 ± 2.63 ± 1.85 ± 1.25 ± 1.60 
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ormance increase in both reconstruction ( p < 0 . 05 , Kruskal–Wallis 

est) and synthesis ( p < 0 . 05 ). Therefore, the optimal orders were

tilized for each recovery task in all evaluations thereafter unless 

therwise stated. 

Note that brain and knee MRI acquisitions were undersampled 

cross the two phase-encoding dimensions in the axial plane (A/P, 

/R) in the reconstruction experiments, so the reconstruction task 

n the axial plane is relatively more difficult. Accordingly, there is a 

eneral performance increase in progression orders that leave the 

xial orientation towards later stages of ProvoGAN, and this effect 

s particularly emphasized towards higher acceleration rates R (see 

upp. Tables 1,2). For synthesis, a factor that contributes to task 

ifficulty is the level of structural details in the target contrast. Im- 

ges in the IXI dataset and T 2 -weighted and FLAIR images in the 

n vivo brain dataset have relatively higher spatial resolution in 

he axial plane, but broader voxel dimensions in the longitudinal 

irection. Accordingly, a general performance increase is observed 

n progression orders that leave the axial orientation towards later 

tages, and these effects are more accentuated when the target is 

 1 - and T 2 -weighted images that have relatively better capture of 

tructural details compared to other contrasts such as PD- or T 1c - 

eighted (see Supp. Tables 3,4). 

.2. Accelerated MRI reconstruction 

Next, we performed comprehensive experiments on the IXI and 

n vivo knee datasets for accelerated MRI reconstruction. We com- 

aratively demonstrated the recovery quality of ProvoGAN against 
8 
tate-of-the-art cross-sectional (sGAN, RefineGAN, SparseMRI, and 

PIRiT), and volumetric (vGAN) models (see Section 2.6 for de- 

ails). We first assessed the performance of the competing methods 

uantitatively based on volumetric PSNR and SSIM measurements 

etween the reconstructed and high-quality reference images in 

he test set. We considered single-coil reconstruction tasks in the 

XI dataset for T 1 - and T 2 -weighted images with distinct accelera- 

ion factors ( R = 4 , 8 , 12 , 16 ). The proposed ProvoGAN model offers

nhanced recovery performance compared to competing methods 

 p < 0 . 05 ), where it achieves in the range of [1.85,6.55] dB higher

SNR and [3.26,23.17] % higher SSIM (see Table 1 ). We then con- 

idered multi-coil reconstruction of PD-weighted images in the 

n vivo brain dataset with R = 4 , 8 , 12 , 16 . ProvoGAN again main-

ains superior performance to the competing methods ( p < 0 . 05 ), 

here it achieves in the range of [1.03,7.35] dB higher PSNR and 

1.48,5.59] % higher SSIM (see Table 2 ). 

To corroborate quantitative assessments, we visually examined 

he reconstructed volumes from individual methods to identify the 

ature of reconstruction errors ProvoGAN alleviates. Representative 

esults from the competing methods are shown in Fig. 2 for IXI and 

n Fig. 3 for the in vivo knee dataset. Overall, cross-sectional mod- 

ls (sGAN, RefineGAN, SparseMRI, SPIRiT) that perform 2D mapping 

ia compressed sensing or deep learning suffer from discontinu- 

ty artifacts across individually recovered cross-sections and retro- 

raded capture of fine-structural details. Meanwhile, the volumet- 

ic vGAN model performing 3D mapping suffers from loss of spa- 

ial resolution within the reconstructed volumes due to noticeable 

ver-smoothing. In contrast, ProvoGAN reconstructs the target vol- 
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Fig. 2. The proposed ProvoGAN method is demonstrated on the IXI dataset for single-coil reconstruction of T 1 -weighted acquisitions undersampled at R = 8 . Representative 

results are displayed for all competing methods together with the zero-filled (ZF) undersampled source images (first column) and the reference target images (second 

column). The top two rows display results for the axial, the middle two rows for the coronal, and the last two rows for the sagittal orientation. Error was taken as the absolute 

difference between the reconstructed and reference images (see colorbar). Overall, the proposed ProvoGAN method offers delineation of tissues with higher acuity compared 

to the volumetric (vGAN) model, and alleviates undesirable discontinuities compared to cross-sectional models (sGAN, RefineGAN, SparseMRI) by improving reconstruction 

performance in all orientations. 
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mes with higher consistency across the cross-sections in all ori- 

ntations and offers sharper delineation of brain and knee tissues. 

aken together, these findings clearly outline ProvoGAN’s potential 

o mitigate the limitations of volumetric and cross-sectional mod- 

ls for accelerated MRI reconstruction. 

.3. Multi-contrast MRI synthesis 

We further conducted experiments on the IXI and in vivo brain 

atasets for multi-contrast MRI synthesis to demonstrate Provo- 

AN against state-of-the-art cross-sectional (sGAN) and volumet- 

ic (vGAN, SC-GAN, REPLICA) models (see Section 2.6 for details). 

e again measured volumetric PSNR and SSIM between the syn- 

hesized and reference target images for quantitative performance 

valuation. In the IXI dataset, we considered synthesis tasks of 

 2 , PD → T 1 , T 1 , PD → T 2 , and T 1 , T 2 → PD. ProvoGAN out-

erforms the competing methods in all tasks ( p < 0 . 05 ), where it

chieves in the range of [1.20,2.90] dB higher PSNR and [2.08,4.37] 

 higher SSIM (see Table 3 ). In the in vivo brain dataset, we con-

idered synthesis tasks of T , FLAIR, T → T , T , FLAIR, T → T ,
2 1c 1 1 1c 2 

9 
 1 , T 2 , T 1c → FLAIR, and T 1 , T 2 , FLAIR → T 1c . ProvoGAN again

ields enhanced recovery performance in all tasks compared to the 

ompeting methods ( p < 0 . 05 ), where it maintains [0.59,5.01] dB 

igher PSNR and [1.96,5.36] % higher SSIM (see Table 4 ). Note that 

he in vivo brain dataset was acquired under a diverse set of scan- 

ing protocols with varying spatial resolution where T 2 -weighted 

nd FLAIR images were acquired with larger slice thickness (see 

ection 2.5 ). Here, models were built to synthesize T 1 -weighted 

nd T 1c -weighted images, where the thick-slices data were on the 

nput side. Models were also built to synthesize T 2 -weighted and 

LAIR images where thick-slice data were on the output side (see 

ection 2.7 ). In both cases, ProvoGAN enhances recovery perfor- 

ance compared to sGAN. On average, ProvoGAN achieves 1.69 dB 

igher PSNR and 4.18% higher SSIM when thick-slice data are on 

he input side, and 0.70 dB higher PSNR and 1.85% higher SSIM 

hen thick-slice data are on the output side. 

The superior synthesis quality offered by ProvoGAN is clearly 

isible in representative results displayed in Fig. 4 for the IXI 

ataset and Fig. 5 for the in vivo brain dataset. These results in- 

icate that the cross-sectional sGAN-A, sGAN-C, and sGAN-S mod- 
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Fig. 3. The proposed method is demonstrated on the in vivo multi-coil knee dataset for reconstruction at an acceleration ratio of R = 8 . Representative results are displayed 

for all competing methods together with the zero-filled (ZF) undersampled source images (first column) and the reference target images (second column). The top two rows 

display results for the axial, the middle two rows for the coronal, and the last two rows for the sagittal orientation. Error was taken as the absolute difference between 

the reconstructed and reference images (see colorbar). Overall, ProvoGAN achieves sharper tissue depiction compared to vGAN, and alleviates undesirable discontinuities 

compared to cross-sectional models (sGAN, RefineGAN, SPIRiT) by improving reconstruction performance in all orientations. 

Table 3 

Quality of Synthesis in the IXI Dataset: Volumetric PSNR (dB) and SSIM (%) measurements between the synthesized and ground truth images in the test set in the IXI 

dataset are given as mean ± std. The measurements are provided for the proposed and competing methods for all synthesis tasks: 1) T 2 , PD → T 1 , 2) T 1 , PD → T 2 , 

3) T 1 , T 2 → PD. sGAN-A denotes the sGAN model trained in the axial orientation, sGAN-C in the coronal orientation, and sGAN-S in the sagittal orientation. Boldface 

indicates the highest performing method. 

ProvoGAN sGAN-A sGAN-C sGAN-S vGAN SC-GAN REPLICA 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

T 2 , PD → T 1 24.15 90.33 23.20 85.81 22.58 86.60 23.65 87.71 23.35 85.48 22.58 85.32 21.14 86.30 

±2.80 ±4.47 ± 2.08 ± 3.95 ± 2.11 ±4.05 ±1.98 ±4.15 2.89 4.18 2.99 4.00 ±4.15 ± 3.80 

T 1 , PD → T 2 28.97 94.17 27.64 92.49 27.74 92.67 27.93 93.28 25.97 90.61 25.29 89.81 26.98 92.51 

±2.91 ±4.16 ± 2.59 ± 4.20 ± 2.67 ± 4.31 ± 2.19 ± 2.88 ± 1.81 ± 4.04 ± 1.95 ± 4.31 ± 2.37 ± 4.57 

T 1 , T 2 → PD 29.81 95.41 27.69 93.64 29.00 94.21 27.12 92.67 26.17 90.70 26.36 92.12 26.96 94.10 

±2.96 ±2.75 2.20 ± 3.00 ± 2.41 ± 2.99 ± 1.61 ± 2.95 ± 1.41 ± 2.47 ± 1.41 ± 2.59 ± 2.93 ± 3.03 
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ls suffer from suboptimal recovery in the longitudinal dimension 

ue to independent synthesis of cross-sections. Meanwhile volu- 

etric vGAN, SC-GAN, and REPLICA models suffer from poor recov- 

ry of fine-structural details and loss of spatial resolution in the 

arget images due to increased model complexity. In comparison 

o cross-sectional baselines, ProvoGAN alleviates discontinuity arti- 

acts by pooling global contextual information via progressive ex- 

cution of cross-sectional mappings. In comparison to volumetric 

aselines, ProvoGAN offers sharper and improved tissue depiction 
10 
articularly near tumor regions due to its improved learning be- 

avior. Overall, these findings demonstrate ProvoGAN’s utility for 

iverse synthesis tasks in multi-contrast MRI exams. 

.4. Demonstrations against hybrid models 

Having demonstrated the superior performance of ProvoGAN 

gainst several state-of-the-art cross-sectional and volumetric 

odels, we conducted additional experiments to comparatively 
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Table 4 

Quality of Synthesis in the In vivo Brain Dataset: Volumetric PSNR (dB) and SSIM (%) measurements between the synthesized and ground truth images in the test set of the in 

vivo brain dataset are given as mean ± std. The measurements are provided for proposed and competing methods for all many-to-one synthesis tasks: 1) T 2 , FLAIR, T 1c → T 1 , 

2) T 1 , FLAIR, T 1c → T 2 , 3) T 1 , T 2 , T 1c → FLAIR, 4) T 1 , T 2 , FLAIR → T 1c . sGAN-A denotes the sGAN model trained in the axial orientation, sGAN-C in the coronal orientation, 

and sGAN-S in the sagittal orientation. Boldface indicates the highest performing method. 

ProvoGAN sGAN-A sGAN-C sGAN-S vGAN SC-GAN REPLICA 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

T 2 , FLAIR, T 1c → T 1 26.92 94.24 24.17 88.23 25.31 90.78 26.22 91.17 22.73 87.73 21.70 85.60 17.14 83.34 

±4.55 ±3.41 ± 3.83 ± 4.68 ± 4.12 ± 4.09 ± 3.09 ± 3.03 ± 3.69 ± 3.60 ± 2.96 ±3.45 ± 4.43 ± 7.43 

T 1 , FLAIR, T 1c → T 2 26.87 92.79 25.67 89.76 25.98 90.95 26.85 92.11 25.48 89.75 24.48 88.63 24.68 89.06 

±2.40 ±4.22 ± 1.75 ± 3.20 ± 2.18 ± 4.10 ± 2.38 ± 4.11 ± 1.82 ± 3.93 ± 1.72 ± 3.54 ± 1.94 ± 3.16 

T 1 , T 2 , T 1c → FLAIR 25.52 90.39 24.50 87.21 24.95 88.09 24.81 88.39 22.94 85.67 23.07 85.88 22.70 87.63 

±2.22 ±3.06 ± 1.84 ± 2.73 ± 2.03 ± 3.18 ± 2.21 ± 2.67 ± 1.61 ± 3.23 ± 2.23 ±2.62 ±2.79 ± 2.97 

T 1 , T 2 , FLAIR → T 1c 29.67 94.14 28.53 91.70 28.48 89.91 28.75 92.06 27.21 89.11 27.57 90.19 24.44 90.09 

±2.23 ±2.09 ± 1.98 ± 2.34 ± 2.11 ± 3.09 ± 2.23 ± 2.44 ± 1.46 ± 1.74 ± 1.68 ± 2.00 ± 2.49 ± 3.03 

Fig. 4. The proposed method is demonstrated on the IXI dataset for T 2 -weighted image synthesis from T 1 - and PD-weighted images. Representative results are displayed 

for all competing methods together with the reference target images (first column). The first row displays results for the axial orientation, the second row for the coronal 

orientation, and the third row for the sagittal orientation. Overall, the proposed method delineates tissues with higher spatial resolution compared to volumetric vGAN, 

SC-GAN, and REPLICA models, and alleviates discontinuity artifacts by improving synthesis performance in all orientations compared to cross-sectional sGAN-A, sGAN-C, and 

sGAN-S models. 

Fig. 5. The proposed method is demonstrated on the in vivo brain dataset for T 1 -weighted image synthesis from T 2 -, T 1c -weighted and FLAIR images. Representative results 

are displayed for all competing methods together with the reference target images (first column). The first row displays results for the axial, the second row for the coronal, 

and the third row for the sagittal orientation. Overall, the proposed method delineates tissues with higher spatial resolution compared to volumetric vGAN, SC-GAN, and 

REPLICA models, and alleviates discontinuity artifacts by improving synthesis performance in all orientations compared to cross-sectional sGAN-A, sGAN-C, and sGAN-S 

models. Meanwhile, the proposed method achieves more accurate depictions for tumor regions, which are suboptimally recovered by the competing methods. 
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valuate it against alternative volumetrization methods. In partic- 

lar, ProvoGAN was compared with hybrid models based on fu- 

ion (M 

3 NET) and transfer learning strategies (TransferGAN) that 

oth involve a mixture of cross-sectional and volumetric mappings 

see Section 2.6 for details). Experiments were performed on the 

XI dataset for accelerated MRI reconstruction and multi-contrast 

RI synthesis. For reconstruction, T 1 - and T 2 -weighted image re- 

overy tasks at four distinct acceleration factors ( R = 4 , 8 , 12 , 16 )
11 
ere examined. Table 5 reports performance measurements for 

he methods under comparison. ProvoGAN yields superior per- 

ormance compared to both hybrid models in all reconstruction 

asks ( p < 0 . 05 ), where on average it achieves 1.87 dB higher

SNR and 4.34% higher SSIM compared to M 

3 NET, and 1.83 dB 

igher PSNR and 5.02% higher SSIM compared to TransferGAN. 

eanwhile, T 1 , T 2 → PD, T 1 , PD → T 2 , T 2 , PD → T 1 recovery

asks were considered for synthesis. The respective measurements 



M. Yurt, M. Özbey, S.U.H. Dar et al. Medical Image Analysis 78 (2022) 102429 

Table 5 

Comparison of Volumetrization Approaches for Reconstruction in the IXI 

Dataset: Volumetric PSNR (dB) and SSIM (%) measurements between the 

reconstructed and ground truth images in the test set in the IXI dataset 

are given as mean ± std. The measurements are reported for the proposed 

ProvoGAN and competing M 

3 NET and TransferGAN methods for four distinct 

acceleration factors ( R = 4 , 8 , 12 , 16 ). Boldface indicates the best performing 

method. 

ProvoGAN M 

3 NET TransferGAN 

PSNR SSIM PSNR SSIM PSNR SSIM 

R = 4 T 1 35.25 96.73 31.25 92.07 31.80 89.11 

±1.78 ±0.57 ± 1.87 ± 1.18 ± 0.88 ± 1.10 

T 2 35.50 96.08 33.85 92.88 34.18 94.12 

±2.62 ±1.07 ± 2.73 ± 1.12 ± 1.30 ± 0.84 

R = 8 T 1 31.38 94.93 29.61 90.78 30.37 88.44 

±1.26 ±0.86 ± 1.03 ± 1.05 ± 1.22 ± 0.99 

T 2 33.49 95.92 32.12 93.09 31.69 93.49 

±2.21 ±1.01 ± 2.25 ± 1.32 ± 0.83 ± 0.71 

R = 12 T 1 29.67 92.48 28.55 87.61 28.79 85.31 

±0.91 ±0.90 ± 1.05 ± 1.46 ± 0.89 ± 1.54 

T 2 30.41 91.98 30.29 88.31 29.18 90.49 

± 1.03 ±1.40 ± 1.00 ± 1.08 ± 0.81 ± 0.94 

R = 16 T 1 29.15 91.40 25.83 85.59 27.61 83.31 

±1.09 ±1.09 ± 1.13 ± 1.90 ± 0.88 ± 1.65 

T 2 30.66 93.74 29.02 88.03 27.28 88.84 

±1.60 ±1.35 ± 1.24 ± 1.71 ± 1.69 ± 1.36 

Table 6 

Comparison of Volumetrization Approaches for Synthesis in the IXI Dataset: 

Volumetric PSNR (dB) and SSIM (%) measurements between the synthesized 

and ground truth images in the test set in the IXI dataset are given as 

mean ± std. The measurements are reported for the proposed ProvoGAN 

and competing M 

3 NET and TransferGAN methods for all synthesis tasks: 

1) T 2 , PD → T 1 , 2) T 1 , PD → T 2 , 3) T 1 , T 2 → PD. Boldface indicates the highest 

performing method. 

ProvoGAN M 

3 NET TransferGAN 

PSNR SSIM PSNR SSIM PSNR SSIM 

T 2 , PD → T 1 24.15 90.33 20.85 86.81 23.84 87.09 

±2.80 ±4.47 ± 4.08 ± 5.00 ± 3.37 ± 4.09 

T 1 , PD → T 2 28.97 94.17 23.79 89.82 27.78 93.10 

±2.91 ±4.16 ± 1.23 ± 3.12 ± 2.47 ± 3.98 

T 1 , T 2 → PD 29.81 95.41 29.48 94.84 28.71 94.45 

±2.96 ±2.75 ± 2.24 ± 2.41 ± 1.89 ± 2.52 
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3 In radiological evaluation, an sGAN model is called transverse for those opinion 

scores given for the orientation where that sGAN model is trained, e.g., sGAN-A for 

OS A . 
4 In radiological evaluation, an sGAN model is called longitudinal for those opin- 

ion scores given for the orientation where that sGAN model is not trained, e.g., 

sGAN-A for OS C or OS S . 
re reported in Table 6 . We find that ProvoGAN again maintains 

nhanced recovery performance in all synthesis tasks ( p < 0 . 05 ),

here it achieves an average of 2.94 dB higher PSNR and 2.81% 

igher SSIM compared to M 

3 NET, and 0.87 dB higher PSNR and 

.76% higher SSIM compared to TransferGAN. 

Quantitative improvements that ProvoGAN offers are also vis- 

ble in representative images displayed in Supp. Fig. 3 for re- 

onstruction and in Fig. 6 for synthesis. The M 

3 NET model 

hat performs 3D fusion of 2D model outputs at separate ori- 

ntations moderately increases contextual sensitivity, but suf- 

ers from residual discontinuity artifacts and over-smoothing. 

eanwhile, the TransferGAN model that transfers pretrained 

eights from a 2D model to condition the final 3D model im- 

roves learning behavior, but it suffers from elevated model 

omplexity leading to loss of spatial resolution and struc- 

ural details. In contrast, ProvoGAN yields enhanced recovery 

erformance in all orientations with higher contextual con- 

istency and sensitivity to structural details in the recovered 

mages. 

.5. Radiological evaluation 

Quantitative performance assessments in MRI recovery tasks 

learly indicate that ProvoGAN outperforms competing volumet- 

ic and cross-sectional models in terms of image quality metrics 
12 
i.e., PSNR, SSIM). Yet, an important question concerns to what ex- 

ent these quantitative improvements will benefit diagnostic as- 

essments. Given its ability to effectively capture global context 

s well as fine structural details, we hypothesized that Provo- 

AN will recover MR images of equivalent or higher diagnostic 

alue than competing models. To test this hypothesis, radiological 

valuations were performed on images recovered via ProvoGAN, 

GAN and vGAN, as well as SC-GAN, REPLICA for synthesis, and 

efineGAN, compressed-sensing methods (SparseMRI and SPIRIT) 

or reconstruction (see Section 2.7 for details). Opinion scores for 

ll methods in axial, coronal, and sagittal orientations denoted 

s (OS A , OS C , OS S ) are reported in Fig. 7 a–c for reconstruction

nd in Fig. 7 d,e for synthesis. Across reconstruction tasks, Provo- 

AN achieves average opinion scores of ( 4 . 13 , 3 . 97 , 3 . 93 ) where

GAN yields ( 3 . 33 , 2 . 77 , 2 . 67 ), vGAN yields ( 2 . 00 , 1 . 93 , 1 . 70 ), Re-

neGAN yields ( 3 . 63 , 3 . 67 , 3 . 13 ) and compressed-sensing recon-

tructions yield ( 2 . 00 , 2 . 27 , 2 . 13 ). Across synthesis tasks, Provo-

AN achieves average opinion scores of ( 3 . 73 , 3 . 85 , 4 . 10 ) whereas

GAN yields ( 1 . 50 , 1 . 63 , 1 . 33 ), SC-GAN yields ( 1 . 47 , 1 . 43 , 1 . 40 ) and

EPLICA yields ( 2 . 40 , 2 . 17 , 1 . 83 ). Meanwhile, transverse sGAN mod-

ls 3 maintain ( 2 . 90 , 3 . 23 , 3 . 38 ) and longitudinal sGAN models 4 

ield ( 1 . 64 , 1 . 81 , 1 . 47 ). Overall, ProvoGAN outperforms all com-

eting methods in synthesis ( p < 0 . 05 , Wilcoxon signed-ranked 

est) and reconstruction ( p < 0 . 05 ) tasks, except for RefineGAN and

PIRIT in the in-vivo knee dataset where the three methods per- 

orm similarly ( p > 0 . 05 ). In synthesis, ProvoGAN surpasses not 

nly longitudinal sGAN models in transverse dimensions but also 

ransverse sGAN models in transverse dimensions for which they 

ave been optimized. 

Radiological evaluations were also performed on recovered im- 

ges from M 

3 NET and TransferGAN, as competing volumetriza- 

ion baselines. Opinion scores for all volumetrization approaches 

n axial, coronal, and sagittal orientations denoted as (OS A , OS C , 

S S ) are reported for the IXI dataset in Supp. Fig. 4. Across re- 

onstruction tasks, ProvoGAN achieves average opinion scores of 

 4 . 00 , 3 . 95 , 3 . 90 ) where M 

3 NET yields ( 2 . 95 , 3 . 25 , 3 . 50 ) and Trans-

erGAN yields ( 2 . 80 , 2 . 75 , 2 . 8 ). For synthesis, ProvoGAN achieves

verage opinion scores of ( 4 . 00 , 4 . 3 , 4 . 2 ) where M 

3 NET yields

 2 . 90 , 3 . 20 , 3 . 00 ) and TransferGAN yields ( 1 . 90 , 2 . 10 , 1 . 9 ). Over-

ll, ProvoGAN outperforms competing volumetrization methods 

n both synthesis ( p < 0 . 05 ) and reconstruction ( p < 0 . 05 ) tasks.

aken together, these findings strongly suggest that ProvoGAN can 

ffer im proved diagnostic quality in accelerated multi-contrast MRI 

rotocols. 

.6. Complexity of cross-sectional mappings 

Model complexity in deep neural networks depends on sev- 

ral architectural choices, including the number of layers, num- 

er of filters in each layer, and kernel size. To minimize bias in 

erformance comparisons, here we aligned the architectural de- 

igns as closely as possible among the competing methods. To do 

his, the number of layers, number of filters, and kernel size were 

ll kept fixed across methods, except that 2D convolutional ker- 

els were used in sGAN and ProvoGAN whereas 3D convolutional 

ernels were used in vGAN (see Supp. Figs. 1,2). The precise pa- 

ameter values were guided by the demanding vGAN model. We 

elected the parameter set that resulted in maximal model com- 

lexity while still allowing us to fit a single vGAN model into the 
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Fig. 6. The proposed ProvoGAN method is demonstrated on the IXI dataset against hybrid models (M 

3 NET and TransferGAN) for T 1 -weighted image synthesis from T 2 - 

and PD-weighted images. Representative results are displayed for all methods under comparison together with the ground truth target images (first column). The first row 

displays results for the axial orientation, the second row for the coronal orientation, and the third row for the sagittal orientation. Error was taken as the absolute difference 

between the reconstructed and reference images (see colorbar). Overall, the proposed method offers sharper and more accurate delineation of tissues than the competing 

methods. Furthermore, ProvoGAN better alleviates residual discontinuity artifacts compared to M 

3 NET. 

Fig. 7. Methods were compared in terms of radiological opinion scores for three reconstruction tasks: a) single-coil reconstruction of T 1 -weighted images undersampled by 

R = 8 in the IXI dataset, b) single-coil reconstruction of T 2 -weighted images undersampled by R = 8 in the IXI dataset, c) multi-coil reconstruction of PD-weighted images 

undersampled by R = 8 in the in vivo knee dataset, and for two synthesis tasks: d) many-to-one synthesis task of T 2 , PD → T 1 in the IXI dataset, e) many-to-one synthesis 

task of T 1 , T 2 , T 1c → FLAIR in the in vivo brain dataset. The quality of the recovered axial, coronal, and sagittal cross-sections were rated by an expert radiologist by assessing 

their similarity to the reference cross-sections via a five-point scale (0: unacceptable, 1: very poor, 2: limited, 3: moderate, 4: good, 5: perfect match). Figure legends denote 

the colors used for marking the methods under comparison. 
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RAM of the GPUs used to conduct the experiments here. Thus, 

t is reasonable to consider that vGAN is at its performance lim- 

ts (see Supp. Tables 5,6). That said, a relevant question is whether 

nd how the relative performance benefits of ProvoGAN over sGAN 

hange with model complexity. To examine this issue, we per- 

ormed separate experiments on reconstruction and synthesis tasks 

see Section 2.7 for details) while systematically varying the com- 

lexity of the convolutional layers in both models by a factor of 

 f ∈ { 1 / 16 , 1 / 9 , 1 / 4 , 1 , 4 , 9 , 16 } . This resulted in seven distinct pairs

f models: ProvoGAN( n f )-sGAN( n f ) with n f -fold change in num- 

er of learnable network weights. PSNR and SSIM measurements 

etween the recovered and reference volumes reported in Supp. 

able 7 demonstrate that ProvoGAN achieves superior reconstruc- 

ion performance to sGAN at all complexity levels, with on average 

.42 dB higher PSNR and 3.20% higher SSIM ( p < 0 . 05 , Wilcoxon

igned-rank test). Meanwhile, PSNR and SSIM measurements re- 

orted in Supp. Table 8 indicate that ProvoGAN increases synthesis 

erformance on average by 1.22 dB in PSNR, and 2.82% in SSIM 

ompared to sGAN across complexity levels ( p < 0 . 05 ). Taken to-

ether, these findings suggest that the benefits of ProvoGAN over 

GAN in MRI recovery tasks are reliable across variations in com- 

lexity of network layers. 

An alternative approach to help improve performance of cross- 

ectional models without substantially altering model complex- 

ty would be to admit inputs from multiple neighboring cross- 

ections. Given several neighboring cross-sections as input, this 

ould enable a 2D model to incorporate local context in the vicin- 

ty of the central cross-section. To examine the utility of this ap- 

roach in cross-sectional processing, we implemented multi-cross- 

ection variants of the two methods, namely ProvoGAN(multi) and 

GAN(multi). Both variants received as input three consecutive 
13 
ross-sections and learned to recover the central cross-section of 

he target volume. We postulated that while this approach might 

ncrease sGAN performance to a limited degree, ProvoGAN that 

everages broad spatial priors across all orientations should still 

ield superior performance. To test this prediction, we performed 

omprehensive experiments on the IXI dataset for reconstruc- 

ion and synthesis tasks (see Section 2.7 for details). PSNR and 

SIM measurements were performed between the recovered and 

eference target volumes (see Supp. Tables 9,10). Overall, Provo- 

AN enhances recovery performance compared to sGAN(multi) 

n both tasks ( p < 0 . 05 ), where it achieves on average 1.48 dB

igher PSNR and 6.87% higher SSIM in reconstruction, and 0.87 dB 

igher PSNR and 1.71% higher SSIM in synthesis. These find- 

ngs reveal that ProvoGAN outperforms cross-sectional mappings 

mplemented with extended spatial priors across the longitudi- 

al dimension. Note that ProvoGAN and ProvoGAN(multi) perform 

imilarly across tasks ( p > 0 . 05 ), whereas sGAN(multi) generally 

ields on par or higher performance than sGAN. This result sug- 

ests that sGAN processing each cross-section independently suf- 

ers from loss of spatial context across the longitudinal dimen- 

ion, whereas sGAN(multi) improves performance by incorporat- 

ng short-range context across this dimension. In contrast, Provo- 

AN(multi) captures limited additional information from multiple 

eighboring cross-sections, since ProvoGAN readily captures global 

ontext across the volume. 

.7. Data efficiency 

Volumetric models characteristically involve a substantial 

mount of parameters that result in heavier demand for train- 

ng data for successful model training. Instead, ProvoGAN com- 
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Table 7 

Data Efficiency of ProvoGAN for Reconstruction in the IXI Dataset: Volumetric PSNR (dB) and SSIM (%) measure- 

ments between the reconstructed and ground truth images in the IXI dataset are given as mean ± std across 

the test set. Measurements are reported for ProvoGAN and vGAN trained with varying number of subjects, and 

at four distinct acceleration factors ( R = 4 , 8 , 12 , 16 ). ProvoGAN( n T ) and vGAN( n T ) denote models trained with 

n t ∈ { 5 , 15 , 25 } subjects. 

R = 4 R = 8 R = 12 R = 16 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

T 1 ProvoGAN(25) 34.37 95.47 31.63 94.79 29.07 88.03 28.29 86.73 

± 1.51 ± 0.63 ± 1.23 ± 1.02 ± 0.99 ± 1.61 ± 0.92 ± 1.58 

ProvoGAN(15) 34.04 94.00 31.13 94.42 28.96 87.74 27.96 86.44 

± 1.18 ± 0.84 ± 1.15 ± 1.05 ± 0.94 ± 1.61 ± 1.17 ± 1.50 

ProvoGAN(5) 33.65 92.93 30.72 93.28 28.97 89.83 28.21 88.10 

± 1.33 ± 1.03 ± 1.40 ± 0.98 ± 0.99 ± 1.39 ± 1.08 ± 1.35 

vGAN(25) 28.90 83.27 26.75 81.91 27.14 79.92 24.95 77.50 

± 1.29 ± 1.36 ± 1.29 ± 1.84 ± 0.89 ± 2.40 ± 1.43 ± 2.73 

vGAN(15) 28.52 81.67 26.26 80.33 24.59 75.38 23.98 74.68 

± 1.71 ± 1.59 ± 1.44 ± 2.22 ± 1.39 ± 2.79 ± 1.28 ± 2.53 

vGAN(5) 26.61 74.71 24.43 73.56 23.64 68.63 23.64 69.31 

± 1.25 ± 2.33 ± 1.14 ± 2.20 ± 1.27 ± 3.16 ± 1.18 ± 2.63 

T 2 ProvoGAN(25) 36.32 96.76 32.23 93.83 30.02 91.90 30.59 93.58 

± 2.35 ± 0.72 ± 1.46 ±0.96 ± 1.04 ± 1.20 ± 1.41 ± 1.27 

ProvoGAN(15) 35.89 96.49 32.05 93.50 29.89 91.31 28.99 90.81 

± 2.69 ± 0.99 ± 1.27 ± 0.98 ± 1.08 ± 1.48 ± 0.89 ± 1.25 

ProvoGAN(5) 35.83 96.00 31.45 92.82 29.54 89.91 28.53 89.28 

± 3.03 ± 1.46 ±1.33 ± 1.26 ± 0.82 ± 1.53 ± 0.89 ± 1.80 

vGAN(25) 31.14 88.65 29.75 89.11 27.47 84.13 27.29 85.72 

±1.21 ±1.57 ± 0.73 ± 1.28 ± 0.60 ± 1.71 ± 0.79 ± 1.33 

vGAN(15) 30.25 86.21 28.76 86.58 26.89 83.13 26.67 81.47 

± 1.07 ± 1.87 ± 0.56 ± 1.50 ± 0.50 ± 1.57 ± 0.44 ± 1.81 

vGAN(5) 28.70 82.03 27.63 82.67 25.54 79.22 21.62 77.10 

± 0.55 ± 2.24 ± 0.67 ± 1.50 ± 0.66 ± 1.85 ± 1.05 ± 1.74 
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rises more compact cross-sectional models that can be efficiently 

rained on limited datasets. To demonstrate the data efficiency of 

rovoGAN, we trained independent ProvoGAN and vGAN models 

hile varying the number of training subjects in n T = { 5 , 15 , 25 } ,
ielding ProvoGAN( n T ) and vGAN( n T ). For reconstruction, T 1 - and 

 2 -weighted image recovery tasks in the IXI dataset at four dis- 

inct acceleration factors ( R = 4 , 8 , 12 , 16 ) were considered. Table 7

ists reconstruction performance for all models. As expected, model 

erformance drops for both ProvoGAN and vGAN as number of 

raining subjects is reduced. That said, ProvoGAN( n T ) outperforms 

GAN( n T ) at all n T values and in all tasks ( p < 0 . 05 , Wilcoxon

igned-rank test), with 4.47 dB higher PSNR and 11.70% higher 

SIM on average. Furthermore, the performance drop due to train- 

ng with n T = 5 versus n T = 25 is merely 0.70 dB PSNR and 1.12%

SIM for ProvoGAN, and 2.70 dB PSNR and 7.87% SSIM for vGAN. 

herefore, ProvoGAN better maintains its reconstruction perfor- 

ance on limited datasets to the extent that ProvoGAN models 

rained with n T = 5 outperform vGAN models trained with n T = 

5 . For synthesis, many-to-one recovery tasks of T 2 , PD → T 1 ,

 1 , PD → T 2 , and T 1 , T 2 → PD in the IXI dataset were consid-

red. Measurements reported in Supp. Table 11 again indicate that 

rovoGAN( n T ) outperforms vGAN( n T ) at all n T values and in all

asks ( p < 0 . 05 ), except for PSNR in T 1 -weighted image recovery.

n average, ProvoGAN models yield 1.76 dB higher PSNR and 2.51% 

igher SSIM compared to corresponding vGAN models. Moreover, 

he performance drop due to training with n T = 5 versus n T = 25

s merely 0.68 dB PSNR and 1.63% SSIM for ProvoGAN, and 1.19 dB 

SNR and 2.32% SSIM for vGAN. Taken together, these results sug- 

est that the proposed progressive volumetrization approach offers 

nhanced data efficiency during model training compared to volu- 

etric models. 

The primary factor contributing to the enhanced data efficiency 

f ProvoGAN is the reduced number of parameters in 2D ver- 

us 3D network architectures that elicit improved learning behav- 

or. For the various reconstruction and synthesis tasks examined 

ere, Supp. Table 12 lists comparisons between sGAN, ProvoGAN 
c

14 
nd vGAN in terms of model complexity, memory load, number 

f floating point operations per second (FLOPS), and total training 

ime. Compared to vGAN, ProvoGAN reduces model complexity by 

-fold, memory load by 20-fold, FLOPS by 80-fold approximately. 

ollectively, these benefits empower ProvoGAN to offer improved 

earning behavior and computationally efficient inference while en- 

ancing the capture of global context in volumetric images. Com- 

ared to sGAN, each progression in ProvoGAN naturally maintains 

he same model complexity and memory load. Yet, it has 3-fold 

igher FLOPS and train duration than sGAN due to ProvoGAN’s se- 

uential learning and inference process across the three rectilinear 

rientations, which also pushes its train duration beyond that of 

GAN. As such, ProvoGAN offers a favorable compromise between 

ontextual sensitivity and data efficiency, albeit at the expense of 

 prolonged training procedure. 

.8. Generalizability of progressive volumetrization 

Here we primarily implemented ProvoGAN on a recent condi- 

ional GAN architecture with a ResNet backbone within the gener- 

tor ( Dar et al., 2019 ). That said, progressive volumetrization can 

e viewed as a model-agnostic approach that can be adapted to 

arious 2D network architectures. To illustrate the generalizabil- 

ty of ProvoGAN, we performed progressive volumetrization on an- 

ther state-of-the-art architecture SC-GAN with a U-Net backbone 

njected with self-attention layers ( Lan et al., 2020 ). Cross-sectional 

sSC-GAN), volumetric (vSC-GAN) and volumetrized (ProvoSC-GAN) 

ariants of this architecture were built. Demonstrations were per- 

ormed for T 1 , T 2 → PD, T 1 , PD → T 2 , and T 2 , PD → T 1 synthesis

asks on the IXI dataset. Resulting PSNR and SSIM measurements 

re listed in Table 8 , where ProvoSC-GAN achieves in the range 

0.35,2.42] dB higher PSNR and [0.47,3.05] % higher SSIM com- 

ared to sSC-GAN and vSC-GAN ( p < 0 . 05 ). The superior synthesis

uality offered by ProvoSC-GAN is also visible in representative re- 

ults displayed in Fig. 8 . Specifically, sSC-GAN models manifest dis- 

ontinuity artifacts across the respective longitudinal dimensions, 
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Table 8 

Progressive Volumetrization of the SC-GAN Architecture: Volumetric PSNR (dB) and SSIM (%) measurements between the 

synthesized and ground truth images in the test set in the IXI dataset are given as mean ± std. Measurements are 

provided for proposed and competing methods for all many-to-one synthesis tasks: 1) T 2 , PD → T 1 , 2) T 1 , PD → T 2 , 

3) T 1 , T 2 → PD. sSC-GAN-A denotes the sSC-GAN model trained in the axial orientation, sSC-GAN-C in the coronal orien- 

tation, and sSC-GAN-S in the sagittal orientation. Boldface indicates the highest performing method. 

ProvoSC-GAN sSC-GAN-A sSC-GAN-C sSC-GAN-S vSC-GAN 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

T 2 , PD → T 1 23.64 88.27 22.74 85.63 23.03 86.94 23.30 87.53 22.58 85.32 

±3.12 ±4.50 ± 2.27 ± 3.74 ± 2.42 ± 3.80 ± 2.95 ± 4.46 ± 2.99 ± 4.00 

T 1 , PD → T 2 28.20 93.26 27.79 92.64 27.72 92.45 28.09 93.22 25.29 89.81 

±2.97 ±4.53 ± 2.71 ± 4.44 ± 2.74 ± 4.53 ± 2.86 ± 4.35 ± 1.95 ± 4.31 

T 1 , T 2 → PD 29.66 94.86 28.83 94.02 28.93 93.93 29.05 94.21 26.36 92.12 

±2.37 ±2.96 ± 2.12 ± 2.86 ± 2.11 ± 2.95 ± 1.92 ± 2.46 ± 1.41 ± 2.59 

Fig. 8. Progressive volumetrization was performed on recently proposed SC-GAN architecture. Representative results for T 1 -weighted image synthesis from T 2 - and PD- 

weighted images in the IXI dataset are displayed. Results are shown for progressively volumetrized (ProvoSC-GAN), cross-sectional (sSC-GAN), and volumetric (vSC-GAN) 

models, along with the ground truth target images (first column). The first row displays results for the axial orientation, the second row for the coronal orientation, and 

the third row for the sagittal orientation. Overall, ProvoSC-GAN improves delineation of structural details compared to vSC-GAN, and enhances contextual consistency in the 

longitudinal dimensions compared to sSC-GAN models. 
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nd vSC-GAN is suboptimal in recovering fine-structural details. 

n contrast, ProvoSC-GAN alleviates the limitations of both sSC- 

AN and vSC-GAN models to enable more detailed and spatially- 

oherent tissue depiction. Taken together, these results strongly 

uggest that the proposed progressive volumetrization strategy can 

e extended to other network architectures while preserving its 

dvantages against cross-sectional and volumetric mappings. 

. Discussion 

Here, we introduced a progressively volumetrized deep gen- 

rative model (ProvoGAN) for accelerated MRI that decomposes 

omplex volumetric image recovery tasks into a series of cross- 

ectional mappings task-optimally ordered across individual rec- 

ilinear orientations. This progressive decomposition empowers 

rovoGAN to learn both global contextual priors and fine-structural 

etails in each orientation with enhanced data efficiency. Compre- 

ensive evaluations on brain and knee MRI datasets illustrate the 

uperior performance of ProvoGAN against state-of-the-art volu- 

etric and cross-sectional models. Compared to volumetric mod- 

ls, ProvoGAN better captures fine structural details while at the 

ame time maintaining lower instantaneous model complexity. As 

ubtasks in ProvoGAN take single cross-sections as separate train- 

ng samples, the effective size of the training set is expanded. 

herefore, for a given model complexity, ProvoGAN demands an 

rder of magnitude lower memory load than volumetric models. 
15 
ompared to cross-sectional models, ProvoGAN mitigates disconti- 

uity artifacts across the longitudinal dimensions and extends reli- 

ble capture of structural details from transverse onto longitudinal 

imensions. Importantly, ProvoGAN offers this advanced recovery 

erformance for the same budget of model complexity and mem- 

ry load as cross-sectional models, albeit at the expense of a three- 

imes prolonged training procedure due to sequential learning. 

Several recent studies in medical image processing have fo- 

used on improving learning behavior in volumetric models. An 

arlier group of studies proposed spatially-focused 3D models to 

rocess volumetric patches during MRI recovery ( Cordier et al., 

016; Huang et al., 2018; Jog et al., 2015; 2017; Roy et al., 2010; 

013; 2016; Vemulapalli et al., 2015; Ye et al., 2013 ). Patch-based 

odels that restrict the spatial extent of network inputs-outputs 

an reduce model size to offer performance improvements. That 

aid, a compact 3D patch incorporates context along the longitu- 

inal axis at the expense of narrowing coverage in the in-plane 

imensions. Since patches are processed independently, the pre- 

icted volumes might also manifest discontinuity artifacts. These 

imitations can undercut potential benefits of patch-based process- 

ng for 3D models. Later studies proposed hybrid models to bridge 

D and 3D models in an effort to combine their strengths ( Wei 

t al., 2019; Peng et al., 2020; Shan et al., 2018; Liu et al., 2018 ).

mong hybrid methods are fusion models that aggregate the out- 

uts of parallel 2D models in multiple orientations ( Peng et al., 

020; Wei et al., 2019 ). Fusion models employ a cascade of 2D 
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nd 3D processing, so they incur high computational complexity, 

nd sensitivity to fine structural details might be limited by the 

ggregation process across orientations. An alternative approach is 

ransfer learning from 2D onto 3D models to facilitate model train- 

ng ( Shan et al., 2018; Liu et al., 2018 ). A full-scale 3D model is

everaged in transfer learning methods that lead to elevated model 

omplexity, and a similar computational footprint to conventional 

D models. In contrast, ProvoGAN is composed of a sequence of 2D 

odels, without any 3D module, resulting in substantially lower 

odel complexity and computational load. 

An alternative approach to volumetrization in medical imaging 

asks has been to revise cross-sectional models to help them better 

ncorporate spatial context. In ( Zheng et al., 2018 ), enhanced spa- 

ial consistency during cardiac image segmentation was aimed by 

erforming cross-sectional mapping on short-axis images sequen- 

ially across neighboring cross-sections. The segmentation map 

rom the earlier cross-section was used to initialize the map for 

he current cross-section ( Zheng et al., 2018 ). While benefits were 

emonstrated over 2D processing, this approach limits accumula- 

ion of contextual information to a single direction and to neigh- 

oring cross-sections. A different strategy for cardiac MRI segmen- 

ation was to perform cross-sectional mapping in short-axis ori- 

ntation while latent representations captured via an autoencoder 

n a multitude of view orientations were fused at intermediate 

ayers ( Chen et al., 2019 ). The complexity of the resulting mod- 

ls scales with the number of additional views included, and this 

romising approach might be limited in applications where a mul- 

itude of different views on the same anatomy are unavailable. 

n ( Prasoon et al., 2013; Wang et al., 2017; Xie et al., 2019 ), MR

mages at three rectilinear views that span across a target voxel 

ere incorporated as inputs to a cross-sectional model during seg- 

entation or classification tasks. Classifying a center voxel by fus- 

ng information across orientations might limit flow of contextual 

nformation from nearby voxels not covered by the input image 

iews. 

Our analyses involved brain and knee MRI datasets mostly col- 

ected at near-isotropic resolution. That said, the in vivo brain 

ataset was acquired under a diverse set of imaging protocols with 

arying spatial resolution. Note that images from T 2 -weighted and 

LAIR acquisitions had considerably poorer resolution in the longi- 

udinal dimension, although they were registered to the MNI tem- 

late with 1-mm isotropic resolution prior to modeling, In our ex- 

eriments, models were built to synthesize T 1 -weighted and T 1c - 

eighted images, where thick-slice acquisitions were on the in- 

ut side. Models were also built to synthesize T 2 -weighted and 

LAIR images where thick-slice acquisitions were on the output 

ide. We find that ProvoGAN offers enhanced recovery in both 

ases comprising a mixture of isotropic and anisotropic resolutions. 

et, contextual dependencies in the longitudinal dimension might 

e weaker for datasets uniformly acquired with thick slices, which 

n turn can limit the benefits of volumetrization. We plan to in- 

estigate this important issue in future studies by evaluating vol- 

metrization performance on datasets with systematically varied 

lice thickness. 

Several technical lines of development can be taken to fur- 

her improve the performance and reliability of progressive vol- 

metrization. In this study, ProvoGAN was independently demon- 

trated for mainstream MRI reconstruction and synthesis tasks. 

rovoGAN can also be adopted for a joint reconstruction-synthesis 

ask to further improve the utility and practicality of acceler- 

ted multi-contrast MRI protocols ( Dar et al., 2020; Iglesias et al., 

021; Yurt et al., 2020 ). Here ProvoGAN was trained using a fully- 

upervised learning framework, which assumes the availability of 

atasets containing high-quality ground truth target images. How- 

ver, compiling large datasets with high-quality references might 

rove difficult due to various concerns such as patient motion or 
16 
xamination costs ( Liu et al., 2021 ). An alternative would be to 

rain ProvoGAN in a self-supervised setting for reconstruction tasks 

 Yaman et al., 2020; Demirel et al., 2021; Cole et al., 2020; Kork- 

az et al., 2022 ) or in a semi-supervised setting for synthesis tasks 

 Yurt et al., 2020 ) to alleviate dependency on high-quality training 

atasets. Another avenue of development concerns the generaliza- 

ion of ProvoGAN to work on nonrectilinear orientations ( Ramzi 

t al., 2021; Sun et al., 2020; Motyka et al., 2021 ). While ProvoGAN 

as mainly demonstrated for rectilinear acquisitions in this work, 

imilar decompositions can be viable for nonrectilinear sampling 

chemes in MRI such as radial and spiral acquisitions. Addition- 

lly, the number of total progressions in ProvoGAN can be adap- 

ively modified together with the specific ordering of the orien- 

ations used in the progressions to enhance task-optimal recovery 

erformance. Instead of performing a separate sequential training 

f each progression, an end-to-end training of the whole network 

an also be performed for improved performance by leveraging ad- 

anced model parallelism techniques ( Zhu et al., 2020 ). 

In this work, we demonstrated the proposed progressive vol- 

metrization approach via a data-driven deep generative model 

hat performs recovery in the image domain. Although image-to- 

mage learning of deep models proves popular in MRI recovery 

asks ( Wang et al., 2021a; Yang et al., 2018a; Dai et al., 2020; Quan

t al., 2018; Cole et al., 2021; Wang et al., 2020a ), there are other

uccessful approaches to MRI processing based on k-space-to-k- 

pace learning ( Han et al., 2020 ), k-space-to-image learning ( Eo 

t al., 2018; Zhu et al., 2018; Akçakaya et al., 2019; Wang et al., 

019 ), or model-based learning with unrolled network architec- 

ures ( Sun et al., 2016; Zhang and Ghanem, 2018; Aggarwal et al., 

018; Duan et al., 2019; Yang et al., 2018c ). In principle, ProvoGAN 

an also be implemented to volumetrize models based on these re- 

ent powerful approaches. Thus, it remains important future work 

o investigate the potential benefits of progressive volumetrization 

o the contextual sensitivity of a broader family of recovery meth- 

ds ( Wang et al., 2021a; Yang et al., 2021; Chen et al., 2021a; Dal-

az et al., 2021; Tavaf et al., 2021; Güngör et al., 2021; Hu et al.,

021 ). 

In summary, here we introduced a progressive volumetriza- 

ion framework for deep network models to process 3D imaging 

atasets. The superior learning behavior of ProvoGAN was demon- 

trated for inverse problem solutions in two mainstream MRI tasks, 

econstruction and synthesis. Yet, our framework can be adopted 

o other imaging modalities and tasks with minimal effort ( Chung 

t al., 2020; Dewey et al., 2019; Wang et al., 2017; Xie et al., 2019;

in et al., 2019; Singh et al., 2020; Zhao et al., 2020; Zheng et al.,

018; Zhou et al., 2020; Narnhofer et al., 2021 ). As the key idea

f subtasking across cross-sectional orientations is domain general, 

rovoGAN has further implications for computer vision applica- 

ions that rely on 3D processing such as style transfer, semantic 

egmentation and video processing ( Aberman et al., 2020; Chen 

t al., 2021b ). 
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