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Complex natural tasks likely recruit many different functional brain networks, but
it is difficult to predict how such tasks will be represented across cortical areas
and networks. Previous electrophysiology studies suggest that task variables are
represented in a low-dimensional subspace within the activity space of neural
populations. Here we develop a voxel-based state space modeling method for
recovering task-related state spaces from human fMRI data. We apply this method to
data acquired in a controlled visual attention task and a video game task. We find that
each task induces distinct brain states that can be embedded in a low-dimensional state
space that reflects task parameters, and that attention increases state separation in the
task-related subspace. Our results demonstrate that the state space framework offers a
powerful approach for modeling human brain activity elicited by complex natural tasks.

Keywords: functional magnetic resonance imaging, state space, dimensionality reduction, naturalistic stimuli,
complex task environments

INTRODUCTION

To maximize efficiency and statistical power, most neuroimaging experiments use simple
parametric designs and highly focused data analysis. However, the results of such experiments
often do not generalize to the real world (Wu M. C. et al., 2006; Krakauer et al., 2017; Yarkoni
and Westfall, 2017; Matusz et al., 2019). To address this problem, some neuroimaging experiments
use more complex naturalistic conditions, such as watching movies (Hasson et al., 2004; Nishimoto
and Gallant, 2011; Huth et al., 2012), listening to stories (Huth et al., 2016), or playing video games
(Mathiak and Weber, 2006; Spiers and Maguire, 2007; Mathiak et al., 2011). Neuroimaging data
collected under naturalistic conditions elicit complex, dynamic patterns of brain activity across
multiple functional networks that reflect the explicit and implicit task structure of the experiment
(Çukur et al., 2013b). Therefore, such experiments dramatically increase the complexity of data
analysis and modeling. For example, while watching movies selective attention to one target or
another may change the representation of information in relevant functional networks (Çukur
et al., 2013b), and while playing a video game the dynamic evolution of goals and subgoals
over the course of the game might evoke activity in distinct functional networks over time
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(Spiers and Maguire, 2006). Current methods for describing
functional networks rely overwhelmingly on functional
connectivity (FC) (Friston, 1994). FC analysis has become
popular for use in resting state studies, where the factors driving
brain activity are unknown latent variables (Shen et al., 2010;
Van Dijk et al., 2010; Yeo et al., 2011; Blumensath et al., 2013;
Buckner et al., 2013; Smith et al., 2013; Gordon et al., 2014).
However, networks recovered by FC have no clear functional
assignment. Therefore, there is a need for new methods of
analysis that can efficiently describe whole-brain activity under
complex naturalistic conditions.

Previous neurophysiology studies suggest that the population
activity vector of a neural population represents task-related
information, and that this information can be recovered even
when the activities of individual neurons cannot be well-
explained (Fitzpatrick et al., 1997; Pouget et al., 2000; Reich et al.,
2001; Pillow et al., 2008). Indeed, many neurophysiology studies
have treated the activity of multiple neurons as a dynamical
system whose state represents task variables. For example, in
arm reach tasks, motor neurons in the non-human primate
brain traverse uniquely identifiable trajectories in their state space
during reaches to distinct targets (Srinivasan et al., 2006; Wu M.
C. et al., 2006; Wu W. et al., 2006). In decision making tasks, the
state of prefrontal neurons in non-human primates represents
several task-relevant variables including the attentional target
(Mante et al., 2013). In navigation tasks, the state of parietal
neurons in rats represent information about upcoming turns
and planned routes (Harvey et al., 2012). In a goal-directed
navigation task, the state of neurons in the retrosplenial cortex
(RSC) in rats represents cues and reward locations (Vedder et al.,
2017). In both rats and non-human primates, the state of a
population of neurons also encodes information about a choice
that the animal made (Harvey et al., 2012; Mante et al., 2013;
Vedder et al., 2017).

These studies provide strong evidence, from both non-human
primates and rodents, that task variables are systematically
embedded in a task-related state space that is distributed across
neural populations. The dimensionality of this task-related state
space appears to be markedly lower than the dimensionality of
the total activity space spanned by the population activity vector
(Harvey et al., 2012; Mante et al., 2013; Vedder et al., 2017). For
example, in a rat navigation task, a 3-dimensional subspace of
the total activity space of 65 neurons is sufficient to distinguish
choices made by the animal (Harvey et al., 2012). In non-human
primates, task variables and the animals’ decisions are encoded
a 4-dimension subspace of hundreds of neurons (Mante et al.,
2013). It is thus likely that the human brain also represents
task variables in a low-dimensional subspace of its total activity
space. Furthermore, state-space approaches may be particularly
useful for understanding brain function in complex, naturalistic
tasks that activate complex networks of brain areas (Spiers and
Maguire, 2007; Huth et al., 2016). Therefore, analyzing data in the
context of the population activity vector may offer new insights
about task-related representations in the human brain.

Here we develop a voxel-based state space modeling method
for analyzing fMRI data under naturalistic conditions. Our
framework is inspired by methods developed originally to

model primate electrophysiology data (Mante et al., 2013). The
framework is based on the idea that task variables, such as
stimulus information and cognitive states of the subject, are
represented implicitly in the population activity vector of the
entire cortex. The framework specifies a simple algorithm that
finds the subspace of the entire activity space that best represents
these task variables. We use this framework to successfully
recover and interpret task-related state spaces in two naturalistic
fMRI experiments: a controlled visual attention task and an
open-ended video game.

MATERIALS AND METHODS

Experimental Paradigm
Subjects
Seven healthy volunteers (six males, one female; ages 25–32)
with normal or corrected to normal vision participated in the
experiments. Six subjects (S1–S6) participated in the visual
search experiment that was published as a part of a previous
study (Çukur et al., 2013b). Two male volunteers (age 25
and 26) participated in the second video game experiment
that was run as a part of a pilot experiment for a separate
purpose (subjects S1 and S7). The experimental procedures were
approved by the Institutional Review Board at the University
of California, Berkeley. Written informed consent was obtained
from all subjects.

Experiment Procedure
Subjects participated in two experiments, a visual attention task
and a first-person shooter video game. We used the visual
attention task to investigate whether representations of known
task variables in a relatively controlled naturalistic task could be
recovered from the population activity vector of the brain. We
used the video game to investigate whether representations of
task variables could be recovered from brain activity during a
complex and open-ended task, and also whether a data-driven
method might recover these representations.

In the visual attention task (Çukur et al., 2013b), subjects
viewed short natural movies while steadily fixating on a central
dot. In separate runs, subjects covertly attended either to the
presence of humans or the presence of vehicles in the movies.
Humans and vehicles appeared in a diverse array of settings
and in many different sizes, positions, and orientations. In some
frames, both humans and vehicles were present. Subjects were
instructed to respond with a button press when an exemplar of
the attended category was present on the screen. Data for each
attention condition were collected across three 10-min runs. In
separate sessions, subjects passively viewed an extended set of
natural movies without performing visual search. All attention
conditions were mutually exclusive (i.e., there were no “attend
to humans and vehicles” condition). Here we analyzed data from
five subjects included in the original visual search study (Çukur
et al., 2013b) as well as one additional subject whose data was
acquired subsequently.

In the video game task, subjects engaged in a simulated
first-person combat against computer players in Counter Strike:
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Source (Valve Co. Bellevue, WA). In this game the subject played
a member of a counter-terrorism force attempting to stop a
terrorist force from planting a bomb. The first subject controlled
the game using two button fiber optics response pads and an MR-
compatible trackwheel mouse (Current Designs, Philadelphia,
PA), while the second subject used a gamepad that was modified
to be MR-compatible. To alleviate the difficulty of gameplay in
the scanner and to better capture game dynamics, gameplay
speed was slowed down to 50% of the normal speed. Because
Counter Strike: Source is an interactive open-ended game, it
was not possible to obtain identical repeats of the audiovisual
stimuli or player actions. Gameplay was recorded using a system
built into the game engine. After the MR experiment, the
audiovisual stimulus during the gameplay was reconstructed
based on these recorded data. Ninety minutes of data was
collected across six 15-min runs for one subject and 45 min
of data was collected across three 15-min runs for the second
subject. Because these data were originally collected as a pilot
project, the subjects differed in the controls used and amount of
time spent in the task.

Task Variables
The supervised state space method requires explicit definition of
task variables. We therefore operationally defined task variables
for each of the two tasks. Here, “task variables” can encompass
both task-relevant stimulus features, and also states endogenous
to the subject such as attention.

Visual attention task
The relevant task variables are the attentional state of the
subject (attend to humans, attend to vehicles, or passive), the
presence of humans in the movies, and the presence vehicles
of the movies. Because the search for humans and for vehicles
were performed in distinct runs, the attentional conditions were
mutually exclusive. Thus, they are grouped under a single task
variable. Taken together, these three variables define a three-
dimensional state space that encompasses both stimulus- and
task-related information.

Video game task
Because the video game task is complex and open-ended, ground-
truth task variables are not available. To obtain reliable, human-
interpretable task variables, two human observers inspected
the game recordings and together they defined a set of nine
behavioral states for the video game task: “dead,” “round start,”
“safe explore,” “unsafe explore,” “kill,” “engage close,” “engage
far,” “flash,” and “run away.” (The full definition of each state
is given in Table 1). The observers then labeled each TR with
these states. The states were not mutually exclusive. For this
analysis, each behavioral state was treated as a task variable.
Taken together, these variables define a nine-dimensional task
space for the video game task that captures the behavioral
state of the subject.

MRI Protocols
Functional MRI data were collected using a 32-channel head
coil on a 3T Siemens Tim Trio scanner at the University of

TABLE 1 | Descriptions of the nine behavioral states in the video game task.

Behavioral
state

Definition

Dead The subject’s character is dead and the subject is unable to
participate in the game

Round start Prep time at the beginning of a round

Safe
explore

Subject is exploring the map when it is known that the enemy is
too far away to engage

Unsafe
explore

Subject is exploring the map but there is a possibility of
engaging enemies

Kill Subject has killed an enemy

Engage
close

Subject is engaging enemies in close quarters combat

Engage far Subject is engaging enemies at a distance

Flash Subject is hit with a flashbang and is unable to see

Run away Subject is running away from enemies

Because ground-truth task variables were not available in the open-ended video
game task, two human observers inspected the game recordings and defined nine
behavioral states. These states capture the range of behaviors of the subjects in
the video game task and serve as human-interpretable task variables. These states
were used to label each TR for the state space analyses. The states and their
definitions are given here.

California, Berkeley. Functional data were acquired using a T∗
2-

weighted gradient-echo EPI sequence customized with a water-
excitation radiofrequency pulse to prevent contamination from
fat signal. The following parameters were prescribed: repetition
time = 2 s, echo time = 34 ms, flip angle = 74◦, voxel
size = 2.24 × 2.24 × 3.5 mm3, field of view = 224 × 224 mm2,
matrix size = 100 × 100, and 32 axial slices to cover the entire
cortex. Data were acquired in 325-volume runs. The first and
last 10 volumes of each run were discarded. No acceleration was
used. Head motion was minimized with foam padding. To enable
reconstruction of cortical surfaces, anatomical data were acquired
using a three-dimensional T1-weighted MP-RAGE sequence with
the following parameters: voxel size = 1 × 1 × 1 mm3 and field of
view = 256 × 212 × 256 mm3.

Preprocessing and Visualization
Preprocessing of functional data was performed using an in-
house processing pipeline. For each subject, the Statistical
Parameter Mapping toolbox (SPM81) was used to align all brain
volumes to the first volume in the first run. Non-brain tissues
were excluded using the Brain Extraction Tool (BET)2. Cortical
surfaces were reconstructed using Freesurfer (Dale et al., 1999).
All analyses were performed on cortical voxels. All stages of
preprocessing were checked carefully by hand.

Low-frequency drifts in single voxel responses were estimated
using a 240-s Savistsky-Golay filter of third order and removed
from the responses. The detrended voxel responses were
normalized to zero mean and unit variance. No spatial smoothing
or filtering was used. Functional regions of interest (ROIs)
in each subject were localized using functional localizer and
retinotopic mapping data collected for this purpose. Boundaries
of functional ROIs were delineated on each subject’s cortex

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET
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based on relative response levels to standard functional
localizers (Huth et al., 2012). Mapping of functional signals
to the cortical surface and visualization of results on the
cortical surfaces was performed using the pyCortex toolbox
(Gao et al., 2015).

It is possible that subcortical structures and the cerebellum are
activated during these naturalistic tasks, particularly the video
game task that requires motor commands. However, the pulse
sequence used in this study was optimized for cortical signals and
the slice prescription did not include the cerebellum. Therefore,
the data were insufficient to permit modeling of subcortical
voxels and the cerebellum, and so all analysis procedures were
restricted to cortical voxels.

Deconvolution of the Hemodynamic Response in the
Attention Task
As a further step in the preprocessing, we deconvolved
the hemodynamic response function (HRF) from data in
the attention task. BOLD measurements reflect delayed
hemodynamic responses consequent to underlying neural
activity (Ogawa et al., 1990; Kay et al., 2008a). The HRF lasts
many seconds, peaking at 5–10 s from the onset (Glover, 1999).
In the visual attention task, the presence of target categories
can switch rapidly on the order of seconds. The HRF effectively
smooths the measured brain activity and causes states between
successive TRs to be less distinguishable from each other than
they might be otherwise. This smoothing could hamper state
space analyses. Therefore, we aimed to deconvolve the HRF
from the raw brain activity by fitting a voxelwise encoding
model. Briefly, voxelwise modeling (VM) (Kay et al., 2008b;
Naselaris et al., 2009, 2011; Nishimoto et al., 2011) treats the
activity of each voxel as a linear transformation of stimulus
features. The HRF is modeled by fitting a separate finite impulse
response (FIR) filter to every distinct feature separately for
every voxel. The FIR filter is implemented by concatenating
feature vectors that had been delayed by 1, 2, 3, and 4 TRs. In
the attention task, subjects focused on the semantic contents
of the stimulus. Therefore, we use the WordNet semantic
category labels as used in our earlier study (Çukur et al.,
2013b) as a basis for the HRF deconvolution. This model was
previously shown to provide comprehensive descriptions of the
responses of visual and non-visual cortical voxels to semantic
information (Huth et al., 2012; Çukur et al., 2013a, 2016). To
construct timecourses of the WordNet features, salient semantic
categories in each 1-s movie clip were manually labeled, and
then temporally downsampled to match the fMRI sampling
rate. Ridge regression was used to estimate weights with 10-fold
cross validation. For each voxel, the set of weights across the
FIR were averaged to obtain a single weight per feature. These
average weights reflect the mean selectivity of each voxel to
each feature without temporal smoothing. They were then
multiplied with the feature timecourses to estimate brain activity
deconvolved from the HRF. This deconvolution procedure
greatly improved the interpretability of state space results on
the attention task.

In this study, we used existing semantic labels from previous
experiments for the visual attention data. However, no such

labels existed for the video game data, and only behavioral
labels were available. Furthermore, it is challenging to compile
an explicit feature space a priori that captures all aspects of
the video game task. Therefore, no HRF deconvolution was
applied in the video game task, and state space modeling was
performed directly on measured BOLD responses. Note that,
as a result, the recovered states might be less separable in the
state space than if the responses had been deconvolved using an
appropriate feature space.

Voxel-Based State Space Modeling
To recover task-related state spaces from preprocessed BOLD
responses, we adopt targeted dimensionality reduction,
a modeling framework originally devised for primate
electrophysiology experiments (Mante et al., 2013). This
framework assumes that task variables are represented in the
activity vector of all cortical voxels. The task-related state space is
a subspace within the entire space spanned by the cortical activity
vector. This subspace captures the variance in cortical activity
that can be attributed to the representation of task variables. The
dimensions of this task-related state space collectively reflect
the representation of task variables. Each task-related brain
state can then be characterized by a unique set of state variable
values. The projection of the cortical activity vector into this
state space characterizes the representation of state variables
in the brain at each point in time. In the current paper we
make no assumptions about specific brain regions that may be
involved in representation of the task-related state space. Thus,
all cortical voxels (voxels that fall between the pial and white
matter surfaces) are analyzed in each subject (48,673 ± 4,382
voxels, mean ± std across subjects). However, this same analysis
could easily be applied to specific ROIs by analyzing only the
activity of voxels within those ROIs.

The voxel-based state space method consists of two steps.
First, a set of task variables that are assumed to capture the
underlying structure of the task are operationally defined (see
section “Task Variables”). Then a low-dimensional task-related
state space that is hypothesized to represent these task variables
is recovered by regressing task variables on to cortical activity.

Here, cortical activity Y was modeled as a linear combination
of the task variables X. The timecourses were regressed against
all task variable timecourses (three for the visual attention task,
and nine for the video game task) using ordinary least squares
(OLS) regression. We use OLS instead of ridge regression here
because the number of state variables is far fewer than the
number of samples, and thus overfitting is not likely to be a
concern. This step is identical to traditional univariate analyses
of voxelwise regression with binary categorical features. This
procedure yielded a set of weights B that map task variables to
cortical activity [size (variables × voxels)] (Y = XB).

The set of weights obtained for each task variable forms a
vector of length (voxels) in the cortical activity space. Each weight
vector represents the characteristic pattern of cortical activity
associated with the representation of that task variable. However,
these weights are inherently noisy since they can implicitly
capture other non-task-related activity patterns irrelevant to this
experiment and which account for little variance. To focus on
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the task-driven activity, a denoiser was created using principal
component analysis (PCA) as was performed in the original
electrophysiology analysis method (Mante et al., 2013). PCA
was performed on the timecourse Y of cortical activity [size
(TRs × voxels)] in individual subjects. The first 24 eigenvectors
of Y , UL, were retained [size (voxels × 24)], accounting for ∼70%
of the total variance in BOLD responses, and a denoiser D was
calculated as D = UL UL

T .
Next, B was denoised using D to create BL = DB and to form

the state space. Note that the weight vectors of the task variables
are not guaranteed to be orthogonal. To form an orthonormal
basis for the task-related state space, QR decomposition was
performed on the transpose of BL [size (variables × voxels)],
factorizing BL

T = QR. The first (variables) columns of the
resulting Q [size (voxels × voxels)] matrix, QS, then represent the
dimensions of the state space. Each dimension in this state space
reflects the brain’s representation of one task variable. Finally, the
cortical activity vector at each TR was projected to a point in this
state space (pi = yiQS). This point is the estimate of the state of
the brain at that TR.

Quantification of State Space Results
We developed two convergent metrics to validate the
performance of the state space model. The first metric is
based on the assumption that a good state space should allow
clear separation of different states. To quantify this we defined
a cluster separation index (CSI) as follows. First, a multivariate
normal distribution was fitted to each cluster. Next, all pairwise
Jensen-Shannon divergences (JSD) between the clusters were
calculated (Lin, 1991). JSD provides a measure of the difference
between two distributions by averaging the Kullback-Leibler
divergence (KLD) (Kullback and Leibler, 1951) of individual

distributions from their average distribution. We chose the JSD
because it is symmetric and has a finite upper bound. Finally,
the CSI was taken as the average of all inter-cluster JSDs. CSI
ranges from 0 to 1, where 0 indicates no separation and 1
indicates complete separation. While visualization occurs in 2D
space, CSI values were calculated in the original state space (3
dimensions for the visual attention task and 9 dimensions for the
video game task).

The second metric is based on the assumption that any
valid state space model should accurately predict state given
new cortical activity. To quantify this we used a 10-fold
cross-validation procedure to evaluate state-space prediction
performance in each individual subject. In each fold, 10% of the
data were held out as the validation set, and the proposed method
was applied on the remaining portion to learn the state space.
Each TR in the training set was labeled using the same labels
used for the supervised method. The visual attention task used
12 labels (the four labels for human and vehicle presence × three
attention conditions), while the video game task used nine
labels (the set of behavioral states). Afterward, each TR in the
validation set was projected into the learned space, and assigned
to the nearest cluster to classify its state. This label was then
compared against the ground truth label. Classification accuracy
was averaged across cross-validation folds. For both metrics,
significance was evaluated using permutation tests. Null models
were created by permuting the state labels, and performing the
full analysis using the permuted labels.

RESULTS

To understand how task information may be represented in
the population activity space of the cortex, we developed a

FIGURE 1 | The state space method recovered a task-related state space in the visual attention task. Cortical activity at each TR for subject S2 is projected to a
point in this space. The state space is projected on to the 2D plane spanned by the “human presence” (horizontal) and “vehicle presence” (vertical) axes. Projections
are shown for the attend-human, attend-vehicles, and passive viewing conditions. Positive values indicate presence, and negative values indicate absence. TRs are
color-coded by their ground truth states. Orange: neither present; blue: only humans present; green: only vehicles present; purple: both humans and vehicles
present. Crosses indicate the mean positions of each group. The cluster separation index (CSI) is 0.75 for attend-humans, 0.69 for attend-vehicles, and 0.67 for
passive (p < 1e-5, permutation test), all indicating significant separation of the clusters. Clusters are more distinct in the attentive conditions than in the passive
condition (p < 1e-5, permutation test). These results are consistent with the hypothesis that task variables are represented in a low-dimensional task-related
subspace of the cortical activity space, and that attention increases the separation of the states in this task-related state space.
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voxel-based state space framework for fMRI. The task-related
state space is recovered by regressing task variables directly
on to cortical activity, and activity at each TR can then be
projected to a point in this task-related state space. We use this
framework to recover low-dimensional task-related state spaces
from cortical activity recorded during a visual attention task and
a video game task.

The Voxel-Based State Space Method
Recovers a State Space for Variables in
the Attention Task
In the attention task, subjects watched short, naturalistic movies
while attending to the presence of humans or vehicles in different
runs, or they watched the movies passively. The visual attention
task had three main variables: the presence of humans, the
presence of vehicles, and the attention target of the subject. We
applied the voxel-based state space method to data from this task
to examine whether task variables are represented in the cortical
activity vector. The voxel-based state space method was used to
learn a state space on data from all attentional conditions for
each subject separately. Figure 1 shows the recovered state space
for one subject, projected onto the 2D plane defined by human-
and vehicle-presence axes (for all subjects see Supplementary
Figures 1, 2). On this plane, TRs were labeled with the states of
“only humans present,” “only vehicles present,” “neither present,”
and “both present.”

Animal studies show neural activities corresponding to
different choices projected to distinct regions in their state space
(Harvey et al., 2012; Mante et al., 2013; Vedder et al., 2017).
Based on this result we hypothesize that a good state space should
allow clear separation of different states. Therefore, the state
space was evaluated by measuring how well these states were
separated. A CSI was defined as the average pairwise JSD of the
state clusters. The states are distinctly separated with a CSI of
0.66 ± 0.09 (mean ± std across subjects) for attend-humans,
0.74 ± 0.03 for attend-vehicles, and 0.53 ± 0.24 for passive
viewing (p < 1e-5; permutation test). These results show that
task variables are represented in a low-dimensional task-related
state space that can be recovered successfully by the supervised
state space method. Furthermore, we found that the CSI in the
passive condition was significantly lower than the CSI in the
attentive conditions for five out of the six subjects (p < 1e-5;
permutation test).

Any valid state space model should accurately predict brain
states in a new data set that was not used to fit the model. To
test this, cross-validated (10-fold) classification performance in
each subject was evaluated using 12 distinct labels (the four labels
for human and vehicle presence × three attention conditions).
Average performance across subjects is 48.4 ± 7.6% (p < 1e-5,
permutation test, chance = 8.3%). This result indicates that the
recovered state space can be used to predict cortical state in a
separate test data set.

To better understand the cortical representations of the
recovered state space, we projected the weights for each
dimension of the task-related subspace onto the cortical surface
(Figure 2 and Supplementary Figure 3). The “human presence”

FIGURE 2 | Task variables in the visual attention task are represented in broad
functionally specialized networks distributed across the cerebral cortex. Model
weights for human- and vehicle-presence are shown on the flattened cortical
surface for subject S1. Blue correspond to negative weights, white to no
weights, and red to positive weights. Voxels are thresholded by the prediction
performance of a semantic encoding model at a non-FDR-corrected p < 0.05
significance level. Selected ROIs are highlighted and labeled. Inflated cortices
are shown for reference. The human presence axis is represented in FFA,
OFA, and EBA, which are known to be activated by faces or body parts.
Additionally, it is represented in MT, LO, SEF, and around the inferior frontal
sulcus. The vehicle presence axis is represented in RSC, OPA, and PPA, all
activated during spatial perception or navigation; in the IPS and FEF, both
involved in spatial attention; and also in FO and inferior frontal sulcus. These
model weights agree well with the known functions of the cortex and further
suggest that task variables are meaningfully represented in a low-dimensional
subspace of cortical activity.

dimension projects heavily onto FFA (Kanwisher et al., 1997),
OFA (Gauthier et al., 2000), and EBA (Downing et al., 2001),
functional areas that represent faces and/or body parts. This
dimension also projects onto MT+ (Zeki et al., 1991; Tootell
et al., 1995), which represents motion and human movement,
LO (Grill-Spector et al., 1999), which is activated during object
perception, and the frontal operculum (FO) (Corbetta et al.,
1998), activated in spatial attention tasks. The “human presence”
dimension also projects to the inferior frontal sulcus, which
is known to contain a face-selective region (Avidan et al.,
2005; Tsao and Livingstone, 2008). In contrast, the “vehicle
presence” dimension projects strongly onto RSC (Maguire, 2001;
Epstein, 2008), PPA (Epstein et al., 1999), and OPA (Dilks et al.,
2013), regions known to be active during spatial perception or
navigation. The “vehicle presence” dimension also projects onto
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FIGURE 3 | The state space method recovered a task-related state space in the open-ended video game task. Cortical activity at each TR is projected to a point in
a 9-dimensional state space. The state space method revealed significant relationships between the nine behavioral states in the video game task. The nine states
are not orthogonal, and some states are likely to lead to others. (A) The state space projected to two dimensions for “safe explore” and “engage close” for both
subjects. TRs are color-coded by their ground truth state. Blue: safe explore; Green: engage close; Orange: all other states. Crosses indicate the mean positions of
each group. The CSI was 0.72 for subject C1 and 0.62 for subject C2, indicating significant separation of the clusters (p < 1e-5, permutation test). These two states
are mutually exclusive and score negatively on each other’s axis. (B) Relationships between states are reflected in non-zero projections of states on to other state
dimensions. Rows and columns are behavioral states as described in Table 1. The table is asymmetric because relationships between states are not necessarily
reciprocal. Colors indicate Bonferroni-corrected significance (p < 0.01, permutation test). Red: significant for subject C1; Blue: significant for subject C2; White:
significant in both subjects; Black: not significant in either subject. Because the task is open-ended, subjects may adopt different strategies and thus the exact
pattern of correlation differs between subjects. Task variables in a complex, open-ended task are represented in a low-dimensional space in cortical activity that also
captures relationships between states.

the IPS (Kastner et al., 1999; Silver et al., 2005) and frontal
eye field (FEF) (Paus, 1996; Corbetta et al., 1998; Kastner et al.,
1999; Moore and Fallah, 2001), both of which are activated in
tasks requiring spatial attention. Finally, the “vehicle presence”
dimension projects around the inferior frontal sulcus. These
results show that the dimensions of the task-related state space
recovered by the voxel-based state space method are related
systematically to the functional selectivity of the brain regions
that are activated under each state.

The Voxel-Based State Space Method
Recovers a Behavioral State Space for
the Open-Ended Video Game Task
Because the visual attention task involves explicit task states,
it is relatively straightforward to perform a state space analysis
of those data. It is more difficult to perform a state space
analysis of complex, open-ended tasks. To explore this issue,
we applied the supervised method to a video game task. In this
task, subjects engaged in simulated combat in Counter Strike:
Source. Each TR was labeled using nine experimenter-defined
behavioral states (Table 1). These were used as task variables
for the supervised method. Because it is impractical to fully
decorrelate the multitude of states that arise during complex
naturalistic tasks, these states are partially correlated. Thus, this
analysis also serves to test whether the state space method can
recover a task-related state space even when states are correlated.

A 9-dimensional task-related state space was learned for the
video game task for each subject using the voxel-based state space

method. Figure 3 shows two dimensions of the recovered state
space for both subjects, projected onto two planes each defined
by “engage close” and “safe explore.” These two dimensions were
chosen as the corresponding brain states project not only on to
their own dimension, but also on to the other. States are labeled
using the nine behavioral labels shown in Table 1. The states are
distinctly separated with a CSI of 0.72 in subject S1 and 0.62
in subject S7 (p < 1e-5, permutation test). Thus, task variables
appear to be represented in a low-dimensional space even in this
complex, open-ended task.

To gain a better understanding of how state correlations
affect these low-dimensional task representations in brain
activity, we examined the projection of states on to other
dimensions in the task-related state space. We find that
when states are correlated, TRs associated with one state
project to a non-zero position in the dimension associated
with the other state. For example, “engaging close” and “safe
explore” each project negatively to the dimension associated
with the other state (Figure 3A) (p < 1e-5, permutation
test). The full list of significant correlations between states for
the two subjects is given in Figure 3B. The exact patterns
of correlations differ between subjects; because the video
game task is open-ended, the subjects used different strategies
and these resulted in different game dynamics and different
correlations. Nonetheless, the correlations between states are
captured by the low-dimensional representations in the brain
activity of both subjects.

As noted earlier, any valid state space model should accurately
predict brain states in a new data set that was not used to fit
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FIGURE 4 | Behavioral states in the video game task are represented in broad functionally specialized networks distributed across the cerebral cortex. The
representations fall into two general groups that share overlapping regions. Weights for one state dimension from each group, “safe explore” and “kill,” are shown on
the flattened cortical surfaces for both subjects. Blue correspond to negative weights, white to no weights, and red to positive weights. Voxels are thresholded by the
prediction performance of an encoding model at a Bonferroni-corrected p < 0.05 significance level. Selected ROIs are highlighted and labeled. Inflated cortices are
shown for reference. The axes for “dead,” “safe explore,” “round start,” “flash,” and “unsafe explore” share representation in the TPJ, precuneus, and prefrontal
cortex. The axes for “kill,” “engage close,” “run away,” and “engage far” share representation in the motor, pre-motor, and supplementary motors areas, and also in
IPS, FEF, and SEF. These model weights further suggest that task variables in complex and open-ended tasks are also represented in a low-dimensional subspace
of cortical activity.

the model. We therefore performed a separate test to determine
whether the state space can be used to predict cortical state
in the video game task. Because the video game task is open-
ended, the behavioral states are not all equally like to occur.
Thus, a simple accuracy score may misrepresent prediction
accuracy by, for example, simply always guessing the most
common class. We therefore used the balanced prediction
accuracy metric (Brodersen et al., 2010), which accounts for
the unequal frequency of classes by averaging the recall score
on each class. Average balanced accuracy across 10 cross-
validation folds in the subject is 32.8 ± 3.8% in subject S1
and 30.4 ± 4.2% in subject S7 (p < 1e-5, permutation test,
chance = 11%). This result suggests that the learned state space
can be used to predict cortical state even in the presence of
correlations between states.

To understand how the recovered states are represented
in the brain, the model weights for each dimension were
projected onto the cortical surface for both subjects (Figure 4
shows two dimensions for both subjects, for all dimensions
see Supplementary Figures 4, 5). They appear to fall into two
general categories. The dimensions for “safe explore,” “round
start,” “flash,” “dead,” and “unsafe explore” project on to the
TPJ, precuneus, and prefrontal cortex. The dimensions for
“run away,” “engage close,” “kill,” and “engage far” project on
to the motor, pre-motor, and supplementary motors areas,

and also in IPS, FEF, and SEF. Because the specific task
states examined here have not been investigated in previous
studies, it is difficult to relate these functional assignments
to neuroimaging literature. However, it appears that the first
category predominantly engages areas within the default-mode
network, while the second category predominantly engages areas
that represent selective attention and motor movement. The
weights for each dimension are largely consistent across the two
subjects. These results suggest that there is a low-dimension
representation of task variables in cortical activity even in more
complex and open-ended tasks.

DISCUSSION

Complex naturalistic behaviors evoke complex, high-
dimensional activity across the cortex that are challenging
to analyze and interpret (Hasson et al., 2004; Mathiak and
Weber, 2006; Spiers and Maguire, 2007; Mathiak et al., 2011;
Nishimoto et al., 2011; Huth et al., 2012, 2016; Çukur et al.,
2013b). To understand this complex activity, we developed a
voxel-base state space modeling framework to find interpretable,
low-dimensional representations of task variables. In both a
visual attention task and a video game task, we find a low-
dimensional representation of task variables in cortical activity.
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Furthermore, the cortical areas associated with representations
during the attention task agree well with previous studies.

These low-dimensional representations also capture both
attentional effects on representation in the attention task and
correlations between representations in the video game task. In
previous studies (David et al., 2008; Çukur et al., 2013b) we found
that attention warps semantic representations by increasing the
distance between categories in semantic space. Here, the CSI in
the passive condition was significantly lower than the CSI in
the attentive conditions in all but one subject. Thus, attention
to semantic categories significantly increases the separation of
states in the task-related subspace relative to what is found under
passive viewing. The increased separation in state space directly
reflects attentional warping: both serve to increase the cortical
representations of task-relevant variables to facilitate the task.
This finding agrees with other studies that also found attention
improved representation of features, such as color (Brouwer and
Heeger, 2013), physical and conceptual properties (Harel et al.,
2014), or animal taxonomy and behavior (Nastase et al., 2017).
Unlike these prior studies, here we were able to demonstrate the
increased separation directly in the activity space of the brain and
using much more naturalistic stimuli. Thus, these data provide
further evidence that attention warps functional representations
to improve task performance (David et al., 2008; Çukur et al.,
2013b). In the video game task, the behavioral states could not
be counterbalanced and therefore were not independent of each
other. In the task-related state space, we find that representations
of correlated behavioral states are not orthogonal. Correlated
states project to non-zero points on each other’s dimension
in state space, showing correlated task variables have similar
cortical representations.

There are several limitations concerning the task-related
state space we recovered from the rich video game data. First,
we used nine behavioral labels for the state space data that
were hand-picked by observers. While the labels were agreed
upon between two observers familiar with the video game,
different observers might pick different labels and thus would
produce a different state space. Second, behavioral labels can
only serve as a proxy to true task variables. An objective
parameterization of the video game task would produce a better
set of variables from which to build the task-related state
space. Using machine learning to parametrize the game state
may be one such avenue for future research (Jaderberg et al.,
2019). Alternatively, a completely unsupervised method may
be able to recover a task-related state space in a completely
data-driven manner. However, using an unsupervised method
would raise the issue of interpreting the recovered state
spaces in the context of the tasks. Last, we collected only a
very limited data set using the video game task. Therefore,
the data may have simply been too noisy to allow us to
recover the optimal task-related state space from cortical data.
Nevertheless, the current results support the existence of low-
dimensional representations even in complex and open-ended
tasks, and suggest that future work focusing on the video game
task is promising.

Many other methods have been proposed for modeling
high-dimensional cortical activity. Multivoxel pattern analysis

(MVPA) (Haxby et al., 2001; Cox and Savoy, 2003; Kamitani
and Tong, 2005; Norman et al., 2006) decodes the stimulus or
task from the activity of a set of voxels to provide a categorical
description of brain activity. The classifier used to evaluate the
quality of the state space model is mathematically similar to
MVPA in that some stimulus or task variable is decoded from
the activity of a collection of voxels. However, the state space
method provides a model of how task variables are continuously
encoded in the cortical activity vector of the brain. The classifier
is distinct from this model and does not form the core of
the state space method. The classifier is not used to interpret
the recovered state space, and is used only to evaluate the
quality and stability of the recovered state space. A few studies
(Billings et al., 2017; Shine et al., 2019a,b) have also attempted
to recover low-dimensional cortical activity in data from the
Human Connectome Project (HCP) (Van Essen et al., 2013).
However, because the HCP used multiple tasks and collected
extremely limited amount of data per task, these studies can
only examine the general activity differences between tasks. They
cannot describe how variables within each task are represented in
cortical activity.

In sum, our results suggest that while overall cortical
activity is high-dimensional, the representation of particular
task variables is reflected in a low-dimensional subspace of
brain activity. Analyzing the cortical activity vector of the
brain complements analyses on single voxel activities by
revealing the complex interactions between brain systems.
These interactions can be useful for discovering functionally
linked networks of brain regions. We expect the voxel-based
state space method will be useful in understanding high-
dimensional brain activity elicited by complex, open-ended
naturalistic tasks.
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