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ARTICLE INFO ABSTRACT

Keywords: Denoising diffusion models (DDM) have gained recent traction in medical image translation given their high
Medical image translation training stability and image fidelity. DDMs learn a multi-step denoising transformation that progressively
SymheSi'S maps random Gaussian-noise images provided as input onto target-modality images as output, while receiving
I(\;/[egleratwe indirect guidance from source-modality images via a separate static channel. This denoising transformation
o diverges significantly from the task-relevant source-to-target modality transformation, as source images are
Diffusion governed by a non-noise distribution. In turn, DDMs can suffer from suboptimal source-modality guidance and

Bridge performance losses in medical image translation. Here, we propose a novel self-consistent recursive diffusion
bridge (SelfRDB) that leverages direct source-modality guidance within its diffusion process for improved
performance in medical image translation. Unlike DDMs, SelfRDB devises a novel forward process with the
start-point taken as the target image, and the end-point defined based on the source image. Intermediate
image samples across the process are expressed via a normal distribution whose mean is taken as a convex
combination of start-end points, and whose variance is controlled by additive noise. Unlike regular diffusion
bridges that prescribe zero noise variance at start-end points and high noise variance at mid-point of the
process, we propose a novel noise scheduling with monotonically increasing variance towards the end-point in
order to facilitate information transfer between the two modalities and boost robustness against measurement
noise. To further enhance sampling accuracy in each reverse step, we propose a novel sampling procedure
where the network recursively generates a transient-estimate of the target image until convergence onto a
self-consistent solution. Comprehensive experiments in multi-contrast MRI and MRI-CT translation indicate
that SelfRDB achieves state-of-the-art results in terms of image quality.

1. Introduction contrast agents or exposure to ionizing radiation (Lee et al., 2019),
and imputation of missing target modalities in imaging protocols in

Medical images acquired under multiple modalities capture comple- order to improve protocol homogeneity across participants in retro-

mentary diagnostic information on bodily tissues (Iglesias et al., 2013;
Lee et al., 2017), but running multi-modal protocols is burdening given
associated economic and labor costs (Ye et al., 2013; Huynh et al.,
2016; Jog et al., 2017; Joyce et al., 2017). A powerful approach to
extend the scope of imaging-based assessments without elevating costs
is medical image translation, wherein unacquired target modalities are
predicted from acquired source modalities (Cordier et al., 2016; Wu
et al., 2016; Zhao et al., 2017; Huang et al., 2018). Important clini-
cal applications of translation include imputation of target modalities
with a higher degree of diagnostically redundant information that are
excluded from imaging protocols in order to lower redundancy and
increase scan efficiency, imputation of invasive target modalities from
non-invasive source modalities in order to avoid injection of harmful

spective imaging studies (Clark et al., 2019). That said, medical image
translation is an inherently challenging problem as signal levels for a
given tissue show nonlinear variations across separate modalities that
are difficult to characterize analytically (Roy et al., 2013; Alexander
et al., 2014; Huang et al., 2017). As such, learning-based methods that
excel at solving nonlinear problems have recently become the de facto
framework for medical image translation (Van Nguyen et al., 2015;
Vemulapalli et al., 2015; Sevetlidis et al., 2016; Nie et al., 2016).
Learning-based methods commonly aim to capture a conditional
prior for the distribution of target images given respective source im-
ages, albeit differ in the approach that they adopt in order to learn this
prior (Bowles et al., 2016; Chartsias et al., 2018; Nie et al., 2018; Yang
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Fig. 1. Diffusion methods commonly take the target image as the start-point x, of the diffusion process, albeit they can differ in expression of image samples in remaining
timesteps. Illustrations of images across the forward process are depicted along with underlying schedules for the mean (u,,, u,,) and noise variance (af). (a) Classical diffusion:
DDMs use a white-Gaussian noise image as an asymptotic end-point x; ~ N(0, ). Intermediate samples are obtained by adding increasing levels of random Gaussian noise onto
the target image. (b) Regular diffusion bridge: Regular bridges use the source image as a finite end-point, x; = y. Intermediate samples are taken as a convex combination of
source-target images, corrupted with additive noise. Noise variance is zero at start- and end-points, and it peaks at the mid-point. (¢) Proposed: SelfRDB is a novel diffusion
bridge that uses a noise-added source image as the end-point, x; = y.. Intermediate samples still depend on a convex combination of source-target images, yet SelfRDB uniquely

prescribes monotonically-increasing noise variance towards the end-point.

et al., 2018; Wei et al., 2019). Among previous methods, generative
adversarial networks (GAN) have been widely adopted for their excep-
tional realism in synthesized target images (Yu et al., 2018; Armanious
et al., 2019; Li et al., 2019; Dar et al., 2019b; Yu et al., 2019), and
successfully reported in diverse tasks including multi-contrast MRI (Kim
et al., 2021; Yurt et al.,, 2021; Hu et al.,, 2022; Xia et al., 2023;
Han et al.,, 2023; Zhang et al., 2025) and MRI-CT translation (Jin
et al., 2019; Dalmaz et al., 2022; Gu et al., 2023; Xin et al., 2024).
Yet, GANSs capture an implicit prior through a generator-discriminator
interplay, so they are susceptible to training instabilities that often
hamper image fidelity (Wang et al., 2020; Zhou et al., 2020). Instead,
recent studies have employed denoising diffusion models (DDM) to
capture an explicit prior with improved training stability (Ozbey et al.,
2023; Meng et al., 2022; Lyu and Wang, 2022; Wang et al., 2024).
DDMs employ a forward process that gradually degrades the target
image by repeated addition of Gaussian noise till an asymptotic end-
point of a pure noise image is reached (Fig. 1a). To recover the target
image, a reverse process is then operationalized via a recovery network
that progressively denoises the random noise image while receiving the
source image as a separate, static input (Ho et al., 2020). Since the for-
ward process is completely agnostic to the source modality, the reverse
process is devised to learn a denoising transformation from noise to
target images under indirect guidance from the source modality (Ozbey
et al.,, 2023). The recovery network then compromises between the
task-irrelevant denoising transformation and the task-relevant source-
to-target image transformation at each reverse diffusion step, which can
result in under- or over-emphasis of source-modality guidance (Song
et al., 2021; Giingor et al.,, 2023). As such, DDMs can suffer from
suboptimal translation performance due to the divergence between the
denoising and source-to-target transformations (Liu et al., 2023a).

An emerging approach to enhance task relevance in diffusion-based
priors employs diffusion bridges that can directly transform between
two separate modalities (Delbracio and Milanfar, 2023; Chung et al.,
2023). To do this, diffusion bridges define the start- and end-points of
the forward process based on target and source images, respectively
(Fig. 1b). As the imaging operator linking the two modalities is typically
unknown, image samples in intermediate steps are derived from a
normal distribution whose mean is a convex combination of start- and
end-points (Liu et al., 2023a; Kim et al., 2024a). Initiating sampling
on the source image, the reverse process progressively maps the source

onto the target image. Few recent imaging studies have successfully em-
ployed diffusion bridges in the reconstruction of single-modal images
from degraded measurements due to factors such as undersampling
or low resolution (Mirza et al., 2023; Kim and Ye, 2024; Kim et al.,
2024b). However, the potential of diffusion bridges in medical image
translation remains largely unexplored, as existing methods face several
key challenges. Regular diffusion bridges adopt a noise scheduling with
zero variance at start-end points albeit high variance near the mid-
point of the diffusion process (Su et al., 2023). Zero variance at the
end-point results in a hard-prior on the source modality reflecting a
deterministic Dirac-delta distribution centered on source images within
the training set, hampering reliability against source-image variability
due to measurement noise (Fig. 2a). Meanwhile, high variance at the
mid-point can disrupt information transfer across the diffusion process
between source and target modalities. Furthermore, diffusion bridges
typically synthesize a one-shot estimate of intermediate samples, limiting
sampling accuracy for generated images (Peng et al., 2022).

Here, we propose a novel self-consistent recursive diffusion bridge,
SelfRDB, to improve performance in multi-modal medical image trans-
lation. Unlike regular diffusion bridges, SelfRDB leverages a novel
noise scheduling in its forward process, with monotonically increas-
ing variance towards the end-point that corresponds to a noise-added
source image (Fig. 1c). As such, it captures a soft-prior on the source
modality to attain improved robustness to measurement noise, while it
facilitates information transfer between modalities by prescribing lower
variance near the mid-point of the process (Fig. 2b). To avoid loss
of tissue information at the noise-added end-point, SelfRDB’s recovery
network employs stationary guidance from the original source image
in the reverse process. Finally, to improve sampling accuracy in each
reverse step, SelfRDB leverages a novel self-consistent recursive estimation
procedure for the target image, and uses this self-consistent estimate
to synthesize intermediate samples with enhanced accuracy (Fig. 3).
Comprehensive demonstrations are performed for multi-contrast MRI
and MRI-CT translation. Our results clearly indicate the superiority
of SelfRDB against competing GAN and diffusion models, including
previous diffusion bridges. Code for SelfRDB is available at https://
github.com/icon-lab/SelfRDB.

Contributions

+ To our knowledge, SelfRDB is the first diffusion bridge for medical
image translation between separate modalities in the literature.
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Fig. 2. Diffusion models learn the score function of the data through a multi-step transformation between the start- and end-points of the underlying diffusion process. Image
samples are typically corrupted with Gaussian noise that smooths the data distribution by masking some of the original image features. Smoothing enables more uniform coverage
of the data space in order to boost reliability against noise-induced variability. (a) Regular diffusion bridges use zero noise variance at the end-point constraining them to a

Dirac-delta distribution centered on the source images within the training set. This can compromise generalization performance to source images outside the training set (see
purple-colored dashed paths). (b) SelfRDB instead uses monotonically-increasing variance towards the end-point, so it is trained on noise-added source images. This improves
robustness against variability in measurement noise levels of source images between training and test sets (see purple-colored dashed paths).

+ SelfRDB leverages a novel forward diffusion process that captures
a soft-prior on the source modality to improve robustness against
measurement noise and to facilitate information transfer between
source-target modalities.

» SelfRDB leverages a novel self-consistent recursive estimation
procedure to improve sampling accuracy in reverse diffusion
steps.

2. Related work
2.1. Generative diffusion models

Diffusion models have emerged as a promising alternative to GANs
for generative modeling in computer vision applications (Ho et al.,
2020). In the conventional diffusion framework, DDMs create image
samples by progressively denoising a pure noise sample through an
iterative process, guided by a neural network trained to optimize a
correlate of the data likelihood known as the score function (Song et al.,
2020). The gradual stochastic sampling approach and the explicit like-
lihood formulation enable DDMs to deliver improved sample quality
and diversity through more reliable network mappings (Dhariwal and
Nichol, 2021). As such, recent studies have adopted DDMs for imple-
menting various single-modality imaging tasks, including image recon-
struction (Jalal et al., 2021; Chung and Ye, 2022; Giingor et al., 2023),
unconditional image generation (Pinaya et al., 2022b), and anomaly
detection (Wolleb et al., 2022; Pinaya et al., 2022a). Extending beyond
these unimodal applications, here we focus on multi-modal translation
tasks that involve mappings between separate imaging modalities.

2.2. Multi-modal medical image translation with DDMs

DDMs have recently been adopted in multi-modal medical image
translation given their improved image fidelity (Ozbey et al., 2023;
Meng et al., 2022; Lyu and Wang, 2022; Wang et al., 2024). Employing
a forward process where target images are corrupted with additive
noise over a large number of steps, DDMs progressively map a random
noise image onto the target under indirect guidance from the source
image (Ho et al., 2020). This multi-step denoising transformation helps
improve training stability over GANs (Wolterink et al., 2017; Dong
et al.,, 2019). Unfortunately, the image mapping performed by the
denoising transformation is weakly associated with the desired source-
to-target image mapping for translation tasks, and the source-image
guidance in DDMs is primarily implicit (Liu et al., 2023a). In turn, these
limitations can compromise performance in DDM-based translation. To
address these issues, here we introduce the first diffusion bridge for
multi-modal medical image translation to our knowledge. Unlike DDMs

that express intermediate samples as noise-added target images and
use an end-point of Gaussian noise, SelfRDB expresses intermediate
samples as a convex combination of source and target images corrupted
with additive noise, and employs an end-point of a noise-added source
image. Unlike DDMs that use one-shot sampling in each reverse step,
SelfRDB employs self-consistent recursive estimation to improve sam-
pling accuracy. Based on these unique advances, we provide the first
demonstrations of multi-contrast MRI and MRI-CT translation based on
diffusion bridges.

2.3. Image translation with diffusion bridges

Diffusion bridges are an emerging alternative to DDMs to improve
flexibility in generative modeling tasks. Several computer vision stud-
ies (Daras et al., 2022; Delbracio and Milanfar, 2023; Chung et al.,
2023) and a few recent imaging studies (Mirza et al., 2023; Kim and Ye,
2024) have devised diffusion bridges for single-modal reconstruction
tasks, with the aim to recover an image from its linearly corrupted
measurements (e.g., blurred, undersampled or low-resolution). Unlike
single-modal diffusion bridges operating on a single imaging modality,
SelfRDB performs a translation task to map between distinct source and
target modalities whose relationship is uncharacterized. Several recent
computer vision studies have also built diffusion bridges for multi-
modal translation tasks (Su et al., 2023; Liu et al., 2023a; Kim et al.,
2024a). However, regular diffusion bridges were commonly employed
based on a noise schedule with zero variance at start-end points corre-
sponding to target-source images, yet high variance near the mid-point.
This scheduling can hamper generalization to source images in the test
set due to native variability in the level of measurement noise on the
source modality (Chung et al., 2023), and induce substantial losses in
tissue information near the mid-point of the diffusion process during
source-to-target mapping (Liu et al., 2023a). To address these limi-
tations, SelfRDB uniquely leverages a monotonically-increasing noise
variance towards the end-point. Furthermore, compared to previous
single- and multi-modal bridges that use a one-shot sampling process
in reverse steps, SelfRDB leverages a novel self-consistent recursive es-
timation procedure to improve accuracy in generation of intermediate
image samples.

3. Theory and methods
3.1. Diffusion bridges
Diffusion bridges are a general framework to describe the evolution

between two arbitrary probability distributions across a finite time
interval + € [0,7] (Liu et al., 2023a). In the context of mapping a
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Fig. 3. SelfRDB casts a diffusion bridge between source and target images of an anatomy. (a) In the forward process, the start-point x, is taken as the target image and the
end-point x; is taken as a noise-added version of the source image y.. Intermediate image samples are derived via the forward transition probability ¢(x, | x,_,,y), whose mean is a
convex combination of target—source images, and whose variance is driven by noise. In the reverse process, sampling is initiated on x; = y,, and intermediate samples are derived

via the reverse transition probability py(x,_; | x,,y.). (b) Reverse diffusion steps are operationalized via a recovery network G,(x,,1,y,X{) that recursively generates a target-image

estimate X!

Sk

onto a self consistent solution X;

at the current timestep, given the target-image estimate from the previous recursion ¥; and the original source image y. Recursions are stopped upon convergence
= Gy(x,,t,y,%;), which is then used for posterior sampling of %,_, according to the normal distribution g(x,_, | x,,y,%;). To improve posterior

sampling, a discriminator subnetwork D,(x,_, or %,_,,t,x,) is used to perform adversarial learning on the recovered sample %,_,.

source image x; := y onto a target image x, the learning objective
for diffusion bridges can be expressed as:

s.t. pg = Prarget> PT = Psource, (@)

min Dy (pll 9),
PEP, 1)

where P, ) is the space of path measures with marginal densities
for the target and source (py = Prarger aNd Pr = Pgource) taken as
boundary conditions, and g is the reference path measure. Solution of
(1) is the optimal path measure p* € P 1, that can be described via the
following forward-reverse stochastic differential equations (Chen et al.,
2021):

=[f +g°Vlog¥(x,,0]dt + gdw,, Xy ~ Prarget-

dx, = [f — g2V 1og ¥ (x,, )]dt + gdi®,, X7 ~ Psource- 2

Here, f is the drift coefficient, g is the diffusion coefficient, w,, @,
are forward-reverse Wiener processes, and Vlog¥(x,,1), Vlog®(x,,?)
are nonlinear forward-reverse drift terms related to the score func-
tion Vlogp,(x;) (Nelson, 1967). In contrast to DDMs based on linear
drifts (Song et al., 2020), the nonlinear drifts in diffusion bridges enable
the use of non-Gaussian p, e A Dirac-delta distribution is assumed for
the target modality, i.e., py(-) := 6,(-), such that the marginal density
at the start-point is taken as p,(x,) = 1 given a (target, source) image

pair (x(,xp). This assumption ensures computational tractability by
decoupling the constraints in Eq. (2) (Liu et al., 2023a).

In regular diffusion bridges, high-quality image pairs from target
and source modalities are taken as start- and end-points of the diffusion
process as in Eq. (1), with zero additive-noise variance at + = 0 and
t =T (Fig. 1b). This choice ensures optimal transport for training data,
and enables the bridge to directly translate high-quality source images
during inference (Liu et al., 2023a). However, it also constrains the
bridge to capture a hard-prior on the source modality, since the end-point
follows a Dirac-delta distribution based on source images in the training
set, i.e., pp(xy) = 1 given a training pair (x,, x;). Combined with high
noise variance near + = T/2, this distributional constraint can com-
promise generalization and information transfer from source-to-target
images (Fig. 2a).

3.2. SelfRDB

SelfRDB is a novel diffusion bridge for medical image translation
that maps the source image y Psource Of an anatomy onto the
respective target image xj ~ Prarger- 10 do this, it leverages a novel
forward process with a soft-prior on the source modality to improve
noise robustness and facilitate information transfer, and a novel reverse
process with self-consistent recursion to improve sampling accuracy.
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3.2.1. Forward process with soft-prior on source modality
SelfRDB forms a diffusion bridge between x, and y based on the
following forward transition probability (Fig. 1):

a(x, | X0, ) = N (X3 pyy X + 1y, 07 1), 3

where x, is the intermediate image sample at timestep 7, A" denotes the
Gaussian distribution, and I is the identity matrix. Accordingly, given
an image pair (x,, y), intermediate image samples are generated as
follows:

Xp = gy X0 + My Y + OLE, 4

where € ~ N'(0, I) is a standard normal variable. Note that the mean of
x, is determined via a convex combination of target and source images
with weights u, ;, u,, (Liu et al., 2023a):

§t2 St2 ( )
”x N = K /‘y,t - >
o Sr2 + S,2 ST2 + Sr2

where s? := /0’ g(r)dr and §? := ftT g(r)dr are the time-accumulated
diffusion coefficients in forward and reverse directions. To satisfy
positivity and symmetry conditions with respect to the mid-point (Chen
et al., 2023), here we propose to use the following diffusion coefficient:
(T = |2t = T|)?
1) ox —————. 6

g« — To12 (6)

Meanwhile, the variance of x, depends on the scale parameter af. In
regular diffusion bridges, o7 is defined to follow Dirac-delta constraints
at start- and end-points (Liu et al., 2023a):

22
STS
tot
0-2:

! 5,2+s

> (regular bridge), @
t

where o2 peaks at t = T/2 and is reduced to 0 at t = T resulting in an
end-point x; = y ~ N'(xp;y,0). Regular bridges learn an exact mapping
between a target image and its paired source image, resulting in a
hard-prior on the source modality. This can compromise generalization
during inference on a source image drawn from a low-density region
of the data space poorly covered in the training set (Song and Ermon,
2019).

In contrast, SelfRDB adopts a novel noise variance schedule where
o2 grows monotonically across :
o7 = y—'— (SelfRDB), ®)

t t

where y is a scalar. Note that ‘7;2 ranges in [0 y], so y is tuned as a
hyperparameter to control the level of noise corruption at the end-
point. The above schedule elicits an end-point of a noise-added source
image x; =y, ~ N(xg;y, 0'% I). Noise addition relaxes the Dirac-delta
constraint on the data distribution at the end-point, and smooths the
corresponding data space to enable more uniform coverage. In turn,
SelfRDB learns a mapping between a target image and the neighbor-
hood of its paired source image (Fig. 2). The resultant soft-prior serves
to enhance the reliability of SelfRDB against noise-induced variability
in source images, thereby boosting generalization.

3.2.2. Reverse process with self-consistent recursive estimation

SelfRDB casts a reverse process to progressively map the noise-
added source image at the end-point x; = y. back onto the target
image x, at the start-point (see Alg. 1). Since y. is corrupted by
additive noise, stationary guidance from the original source image y is
also employed to avoid potential losses in tissue information. Starting
sampling at x;, intermediate image samples are drawn based on a net-
work operationalization of the reverse transition probability p,(x,_; |
x;,¥):=q(x,_; | x;,y). An adversarial recovery network comprising a
generator—discriminator pair (Gy, D,) with parameters 0 is adopted
here, as inspired by the recent success of adversarial diffusion models
in image synthesis tasks (Xiao et al., 2022; Ozbey et al., 2023).
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Algorithm 1: Inference for SelfRDB
Input:
y: original source image, y.: noise-added source image
Gy(x,,1,y,X(): recovery network
T: number of diffusion steps
R: number of recursions
Output:
%o: recovered target image

1 x; =y, b set end-point sample

2 fort=T,...,1do

3 J”c(]) =0 b initialize target-image estimate
4 forr=1,...,R do

5

L 5:6“ = Gy(x,,1,y.X) > update estimate

6 x5 = J“c(’f > retrieve self-consistent estimate
7 | %_1~q(x,_1|x.y,%;) 1 posterior sampling

8 return X,

Note that reverse diffusion steps can be implemented by deriving an
analytical expression for p,(x,_; | x;, y) based on a reparametrization of
the reverse transition probability as g(x,_; | x;, y. xy) (Ho et al., 2020).
Since the actual x, is unknown at timestep ¢ during reverse diffusion,
the generator G, can be used to produce a target-image estimate X;
as a surrogate of x(, as in DDMs (Ho et al., 2020). However, during
a given reverse step, common diffusion methods produce a one-shot
image estimate of x,, by performing a single forward-pass through the
recovery network as Sc(“; = Gy(x,,1,y) (Ozbey et al., 2023). This one-
shot estimation procedure is susceptible to deviations in synthesized
image samples (i.e., x,) from the true data distribution, especially when
a moderate number of timesteps T are prescribed for the diffusion
process. When these deviations accumulate across reverse diffusion
steps, they can yield significant estimation errors in X (Peng et al.,
2022).

To alleviate estimation errors, SelfRDB instead leverages a novel
self-consistent recursive estimation procedure that performs multiple
recursions via the recovery network. Specifically, individual recursions
in SelfRDB’s estimation procedure are expressed as a forward pass
through Gy:

X0t = Gy(x,.1,y, %)), ©)

where r € Z* denotes the recursion index, and % is the target-image
estimate at the rth recursion. Note that, unlike conventional recovery
networks in previous diffusion methods that only receive as input
(x;,1,y), the recovery network in SelfRDB additionally receives X[ to
enable recursions. Initially setting 55(1) = 0, recursions are continued until
a self-consistent solution is obtained at the Rth recursion:

xR = Gpx ty. 2T, st xR 2l 10

The target-image estimate for the current timestep is then taken as
the self-consistent solution, i.e., Sc(’; = i(’)‘. This recursive estimation
procedure gives a chance for the generator to correct intermittent
estimation errors across recursions, thereby improving the accuracy of
target-image estimates.

Once an accurate target-image estimate X; is derived, the image
sample at timestep 7—1 can be drawn from the reparametrized posterior

by taking X as a surrogate for x:

X~ a(xg | %,y %) 11)

Based on Bayes’ rule and Markov property of the diffusion process (Ho
et al., 2020), the posterior can be expressed as:
q(x, | %y, y)alx,_y | y, 5‘8)

qlx,_y | x, ¥, %)) = p . 12)
=1 130 % aCx, | y, x3)
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Note that, in Eq. (12), the terms in the fractional expression can be
computed based on the forward transition probability in Eq. (3). In
turn, here we derive the posterior probability for the novel diffusion
process in SelfRDB as a Gaussian distribution N'(x,_;; m,v) such that:

2 2
_o-t—l Hxg,t Oro1 Hxgot
m=—- X, + (Hy, o1 = My, -
> v L
67 Hxg,i-1 0p  Fxg,1-1
Gtzlt—l
L= gy 0%, (19
O,
t
) O
v=o;  —, a#
lt-1 2
[
t
2 2 2 2
where o | =07 =0, (Hyy o/ Hyy -1

The recovery network also employs the discriminator D, to distin-
guish the synthetic samples produced with the aid of the generator from
the actual image samples drawn using the forward diffusion process.
Conditioned on x,, D, predicts a logit of the input sample at timestep
t—1:

¢ = Dy((X,_; Of X,_1),1,%,). 15)

3.2.3. Learning procedure

Given a training set of target-source image pairs (x, y), the forward
process described in Egs. (3)—(4) is used to generate corresponding
intermediate samples x, for 1 € [0 T'] that bridge between each image
pair. Afterward, these intermediate samples are used to train the ad-
versarial recovery network in SelfRDB. The generator aims to produce
accurate target-image estimates X that subsequently elicit realistic
intermediate image samples %,_;. Thus, following self-consistent recur-
sive estimation of X, G, is trained using pixel-wise 7, and adversarial

loss terms (Dar et al., 2019a):

LGa = Et,q(x,\xo,y),pg(x,_l \x,,y){ll ”xO - 5‘3 ”]
~1og(Dg(%,-1)}. (16)

where E is expectation, 4, is the weight of the pixel-wise loss. Mean-
while, the discriminator primarily aims to distinguish between syn-
thetic and actual intermediate image samples, so D, is trained an
adversarial loss with a gradient penalty (Dar et al., 2019a):

Lp, = Ef,q(xrlxo,y){]Eq(x,_lIx,,y){_IOg(Do(xr_l))}
+EP9(XI—1|XrJ’){_IOg(1 - Dﬂ(xt—l))}
+AhEx,_, Ix,,y>{||vxr—| De(xx_l)”%} } a7

where A, is the relative weight of the gradient penalty (Ozbey et al.,
2023).

4. Experiments
4.1. Datasets

Experiments were conducted on two multi-contrast MRI datasets
(IXL,> BRATS Menze et al., 2015) and a multi-modal MRI-CT dataset
(Nyholm et al., 2018). In each dataset, a three-way split was performed
to create training, validation and test sets without any subject overlap.
Separate volumes of a subject were spatially registered via affine trans-
formation (Jenkinson and Smith, 2001). Each volume was normalized
to a mean intensity of 1, and voxel intensities were then normalized to a
range of [—1, 1] across subjects. A consistent 256 x 256 cross-sectional
image size was attained via zero-padding.

2 https://brain-development.org/ixi-dataset/.

Medical Image Analysis 106 (2025) 103747

4.1.1. IXI dataset

T;-, T5-, PD-weighted brain images from 40 healthy subjects were
analyzed. In each volume, 100 axial cross-sections with brain tis-
sue were selected. (25, 5, 10) subjects were reserved for (training,
validation, test) splits, respectively containing (2500, 500, 1000) cross-
sections for each translation task.

4.1.2. BRATS dataset

Ty-, Ty-, Fluid Attenuation Inversion Recovery (FLAIR), and Tj.-
weighted brain images from 55 glioma patients were analyzed. In each
volume, 100 axial cross-sections containing brain tissue were selected.
(25, 10, 20) subjects were reserved for (training, validation, test) splits,
respectively containing (2500, 1000, 2000) cross-sections for each
translation task.

4.1.3. MRI-CT dataset

T, -, To-weighted MRI, and CT images of the pelvis from 15 subjects
were analyzed. In each volume, 90 axial cross-sections were selected.
(9, 2, 4) subjects were reserved for (training, validation, test) splits, re-
spectively containing (810, 180, 360) cross-sections for each translation
task.

4.2. Competing methods

SelfRDB was demonstrated against state-of-the-art methods based
on diffusion bridge, DDM and GAN models. All competing methods
were trained via supervised learning on paired source and target modal-
ities. For each method, hyperparameter selection was performed to
maximize performance on the validation set. The selected parame-
ters included number of epochs, learning rate, loss-term weights, and
the number of diffusion steps (for diffusion-based methods). For a
given method, a common set of parameters was selected that attained
near-optimal validation performance across translation tasks.

4.2.1. SelfRDB

SelfRDB comprised generator and discriminator subnetworks. The
generator was implemented with a residual UNet backbone with 12
residual stages equally split between encoding and decoding mod-
ules (Ronneberger et al.,, 2015). Each residual stage halved spatial
resolution in the encoder, and doubled spatial resolution in the decoder
module. Learnable time embeddings were computed via a multi-layer
perceptron that received as input a 256-dimensional sinusoidal time
encoding (Ho et al., 2020). The time embeddings were added onto fea-
ture maps in each generator stage. The discriminator was implemented
with a convolutional backbone with 6 stages (Giingor et al., 2023).
Each stage halved spatial resolution, and time embeddings were also
added onto feature maps in each discriminator stage. Cross-validated
hyperparameters were 50 epochs, 10~# learning rate, T = 10, y = 2.2,
A1 =1, 4, = 1. For recursive estimation of X}, convergence was assumed
when the relative change in %] between consecutive recursions fell
below 1%, and this criteria was met for R = 2.

4.2.2. DDIB

A diffusion bridge model was considered with architecture, noise
schedule and loss functions adopted from Su et al. (2023). The source
modality was input as stationary guidance to reverse diffusion steps.
Cross-validated hyperparameters were 50 epochs, 10~ learning rate,
T = 1000.

4.2.3. P SB

A diffusion bridge model was considered with architecture, noise
schedule and loss functions adopted from Liu et al. (2023a). The for-
ward diffusion process mapped between source and target modalities.
Cross-validated hyperparameters were 50 epochs, 10~# learning rate, T
= 1000.


https://brain-development.org/ixi-dataset/

F. Arslan et al.

Source |[PD  Reference | T SelfRDB I’SB

28.58dB
SSIM: 93.71%

26.35dB
91.91%

23.76dB

85.02%

Medical Image Analysis 106 (2025) 103747

SynDiff ControlNet DDPM SAGAN

\

¥

26.22dB
92.49%

26.68dB 26.94dB
90.66% 92.39%

26.36dB 25.49dB
91.13% 89.62%

Fig. 4. Multi-contrast MRI translation for a representative PD—T; task in the IXI dataset. Synthesized target images for competing methods are shown along with the reference
target image (i.e., ground truth) and the input source image. Zoom-in display windows are used to highlight differences in synthesis performance.

Table 1
Multi-contrast MRI translation in IXI. PSNR (dB) and SSIM (%) are listed as mean + std across the test set, along with FID. Boldface marks the top-performing model in each
task.
T,-T, T,>T, PD—T, T,—~PD
PSNR 1 SSIM 1t FID | PSNR 1 SSIM 1t FID | PSNR 1 SSIM 1t FID | PSNR 1 SSIM 1 FID |
pix2pix 26.56 90.84 1.05 26.44 89.83 4.05 27.19 91.37 2.00 26.65 90.56 0.90
(Isola et al., 2017) +0.93 +1.70 +0.72 +1.71 +0.66 +1.43 +0.79 +1.51
SAGAN 29.25 93.42 0.87 29.72 93.39 2.46 28.57 93.34 1.02 30.34 92.92 0.76
(Zhang et al., 2019) +2.97 +3.58 +2.86 +3.38 +2.67 +3.36 +3.02 +3.37
DDPM 29.08 93.43 1.02 29.89 94.31 3.39 29.98 94.45 0.95 30.58 93.76 0.52
(Nichol and +1.05 +1.35 +1.29 +1.33 +0.89 +1.04 +1.27 +1.08
Dhariwal, 2021)
ControlNet 28.59 92.55 0.67 28.09 89.41 3.03 27.97 92.13 1.37 29.26 91.36 1.01
(Pinaya et al., 2023) +1.03 +1.30 +1.00 +1.51 +0.77 +1.28 +1.10 +1.27
SynDiff 30.13 94.60 0.55 30.19 94.24 2.67 29.74 94.81 1.16 30.89 94.20 0.57
(Ozbey et al., 2023) +1.38 +1.23 +1.45 +1.36 +1.34 +1.12 +1.42 +1.04
12SB 21.07 47.06 2.57 21.98 77.61 10.37 21.61 77.95 2.63 24.88 79.44 1.21
(Liu et al., 2023a) +0.47 +1.85 +0.55 +1.90 +0.42 +1.81 +0.80 +1.94
DDIB 30.47 94.54 0.72 29.88 93.91 2.56 29.48 94.55 1.20 30.81 94.09 0.58
(Su et al., 2023) +1.28 +1.34 +1.18 +1.31 +1.18 +1.13 +1.39 +1.02
SelfRDB 31.63 95.64 0.40 31.28 95.03 1.62 31.23 95.64 0.68 32.17 95.15 0.49
+1.53 +1.12 +1.56 +1.27 +1.22 +0.99 +1.57 +0.99
4.2.4. SynDiff 4.2.8. pix2pix

A DDM model was considered with architecture, noise schedule
and loss functions adopted from Ozbey et al. (2023). Cross-validated
hyperparameters were 50 epochs, 15 x 10~# learning rate, T = 1000,
k = 250 step size, adversarial loss weight of 1.

4.2.5. ControlNet

A latent DDM model was considered with architecture, noise sched-
ule and loss functions adopted from the Generative Brain ControlNet®
repository (Pinaya et al., 2022b, 2023). Cross-validated hyperparame-
ters were 50 epochs, 2 x 10~ learning rate and T = 1000.

4.2.6. DDPM

A DDM model was considered with architecture, noise schedule and
loss functions adopted from Nichol and Dhariwal (2021). The source
modality was input as stationary guidance to reverse diffusion steps.
Cross-validated hyperparameters were 50 epochs, 10~ learning rate,
T = 1000.

4.2.7. SAGAN

A self-attention GAN (SAGAN) model was considered with archi-
tecture and loss functions adopted from Zhang et al. (2019). Cross-
validated hyperparameters were 200 epochs, 2 x 10~4 learning rate,
and adversarial loss weight of 0.1.

3 https://github.com/Warvito/generative_brain_controlnet.

A GAN model was considered with architecture and loss functions
adopted from Isola et al. (2017). Cross-validated hyperparameters were
200 epochs, 1073 learning rate, and adversarial loss weight of 0.01.

4.3. Modeling procedures

Models were implemented via the PyTorch framework and executed
on Nvidia RTX 4090 GPUs. For training, Adam optimizer was used
with g, = 0.5, f, = 0.9. For evaluation, a single target image was
synthesized from the respective source image for each cross section.
Model performance was assessed via peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM), and Frechet inception distance (FID)
metrics. PSNR and SSIM were reported as mean+standard deviation
(std), whereas FID was reported as an aggregate measure across the test
set. Prior to assessment, all images were normalized to a range of [0,
1]. The significance of performance differences in PSNR and SSIM was
examined via non-parametric Wilcoxon signed-rank tests (p < 0.05).

5. Results
5.1. Multi-contrast MRI translation

We first demonstrated SelfRDB in multi-contrast MRI translation
tasks. The proposed method was compared against diffusion bridge
(DDIB, I2SB), DDM (SynDiff, ControlNet, DDPM), and GAN models
(pix2pix, SAGAN). Evaluations were first conducted on the IXI dataset
that contains brain images from healthy subjects. Performance metrics
in IXI are listed in Table 1. SelfRDB achieves the best performance
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Fig. 5. Multi-contrast MRI translation for a representative FLAIR—T, task in the BRATS dataset. Synthesized target images for competing methods are shown along with the

reference target image (i.e., ground truth) and the input source image.

Table 2
Multi-contrast MRI translation in BRATS. PSNR (dB) and SSIM (%) are listed as mean + std across the test set, along with FID.
T,—T, T,-T, FLAIR-T, T,—FLAIR
PSNR 1 SSIM 1 FID | PSNR t SSIM 1 FID | PSNR 1 SSIM 1 FID | PSNR 1 SSIM FID |
pix2pix 26.97 + 1.33  91.36 + 250 0.56 26.59 + 1.74 91.14 + 2.64 4.40 2525+ 1.59 89.00 + 295 498 26.85+ 157 86.36 +3.11 1.50
SAGAN 27.78 + 1.23  92.05 + 2.30 0.46 26.82 + 1.65 91.44 + 2.58 3.86 26.08 + 1.66 90.31 + 2.98 4.24 27.08 + 1.57 87.59 + 293 1.40
DDPM 27.47 £ 1.28 9224 +1.99 0.53 2597 +2.09 90.24 + 3.41 410 2540 +1.76 89.79 + 3.01 838 2690 + 1.84 87.86 + 2.85 4.46
ControlNet 27.83 + 1.24 92,10 + 219 0.45 26.75 + 1.78 91.52 + 2.66 4.01  25.60 + 1.77 89.56 + 3.25 3.25 27.39 + 1.52 88.44 + 283 1.45
SynDiff 27.78 + .72 93.05 + 2.18 0.55 22.21 + 1.52 87.93 + 2.48 6.83 26.14 + 1.91 91.01 + 3.05 4.23 27.77 + 1.77 89.62 + 2.87 2.11
12SB 22.24 + 218 79.87 +5.84 114 21.80 + 2.33 80.75 +549 589 2328 + 233 8438 + 434 1263 2592+ 2.00 8351 +4.05 6.58
DDIB 27.77 £ 1.32 9257 + 217 0.67 2544 +1.90 91.03 +2.89 4.38 2552+ 1.63 89.45+ 290 11.80 24.51 +1.86 8502 +3.06 2091
SelfRDB 28.85 + 1.48 93.70 + 1.87 0.43 27.58 + 1.88 92.99 + 2.44 3.55 26.85 + 1.75 91.66 + 2.72 3.15 27.98 + 1.80 90.01 + 2.70 1.38
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Fig. 6. Multi-modal MRI-CT translation for a representative T,—CT task in the pelvic dataset. Synthesized target images for competing methods are shown along with the reference

target image (i.e., ground truth) and the input source image.

metrics in each individual task, significantly outperforming baselines
in PSNR/SSIM (p < 0.05). On average, SelfRDB outperforms diffusion
bridges by 5.34 dB PSNR, 12.86% SSIM, 1.93 FID; DDMs by 2.05 dB
PSNR, 2.09% SSIM, 0.61 FID; and GANs by 3.49 dB PSNR, 3.41%
SSIM, 0.84 FID. Note that the relatively low performance of regular
diffusion bridges suggest that their diffusion processes governed by the
underlying noise schedules might not be suited to successfully trans-
late between source and target MRI contrasts. Representative target
images synthesized by competing methods are displayed in Fig. 4.
Among diffusion-based baselines, DDIB and DDPM show susceptibility
to hallucinations manifested as over-dark or over-bright signals that
deviate from the actual tissue appearances in ground-truth images, I*SB
shows a degree of noise amplification and poor anatomical fidelity
to the target modality, SynDiff can over-flatten tissue signals that
yields loss of spatially-graded tissue features, and ControlNet shows a
degree of spatial blur yielding suboptimal structure depiction. Among
GAN-based baselines, pix2pix suffers from structural inaccuracies and
residual noise-like artifacts, whereas SAGAN shows a degree of noise
amplification and residual ringing artifacts that mask underlying tissue
structure. In contrast, SelfRDB synthesizes target images with low
artifact/noise levels and reliable depiction of fine structural features
of brain tissues.

We then evaluated competing methods on the BRATS dataset that
contains brain images from glioma patients. Performance metrics in

BRATS are listed in Table 2. Again, we find that SelfRDB achieves
the best performance metrics in each individual task, significantly
outperforming baselines in PSNR/SSIM (p < 0.05). On average, SelfRDB
outperforms diffusion bridges by 3.26 dB PSNR, 6.27% SSIM, 3.62 FID;
DDMs by 1.38 dB PSNR, 1.81% SSIM, 1.24 FID; and GAN models by
1.14 dB PSNR, 2.18% SSIM, 0.55 FID. Representative target images
synthesized by competing methods are displayed in Fig. 5. Corrobo-
rating the multi-contrast MRI translation results on the IXI dataset,
DDIB suffers from hallucinatory features lead to inaccurate depiction of
hyper- or hypo-intense tissue signals, and I*SB shows poor anatomical
consistency. Meanwhile, SynDiff shows regions of gross intensity errors
near CSF tissue, likely due to leakage of signal intensity and image
artifacts from the source modality, DDPM shows a degree of contrast
loss and misses the hypo-intense signal region within the tumor lesion,
and ControlNet shows a degree of structural inaccuracy and suboptimal
contrast depiction. Among GAN-based baselines, SAGAN suffers from
dark-pixel artifacts, noise amplification and structural inaccuracies,
while pix2pix shows suboptimal contrast depiction and a degree of
loss in structural details. In comparison, SelfRDB synthesizes target
images with lower noise/artifact levels and more accurate anatomical
depiction near both tumor lesions and healthy tissues in multi-contrast
MRI scans.
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Table 3
Multi-modal MRI-CT translation in the pelvic dataset. PSNR (dB) and SSIM (%) listed as mean + std across the test set, along
with FID.
T,—CT T,—CT
PSNR 1 SSIM 1t FID | PSNR 1 SSIM 1 FID |
pix2pix 25.16 + 2.08 87.33 + 2.09 4.38 25.65 + 2.22 84.18 + 2.90 9.54
SAGAN 27.21 + 1.89 90.58 + 2.00 6.15 26.77 + 2.20 91.00 + 2.35 8.32
DDPM 26.88 + 1.96 91.18 + 2.03 4.57 26.39 + 2.54 90.62 + 5.04 10.57
ControlNet 27.95 + 1.59 91.66 + 1.44 6.36 27.39 + 2.41 91.81 + 2.44 11.79
SynDiff 26.54 + 2.01 89.59 + 2.61 8.30 27.41 + 4.68 92.07 + 5.32 11.04
1?SB 26.54 + 1.80 85.94 + 2.47 3.71 25.21 + 2.59 84.82 + 7.40 13.35
DDIB 26.95 + 1.42 90.05 + 1.79 5.64 26.72 + 2.94 91.74 + 5.11 8.42
SelfRDB 29.46 + 2.15 93.62 + 1.72 3.48 27.55 + 3.32 92.29 + 6.32 8.20
Table 4
Challenging translation tasks. PSNR (dB) and SSIM (%) listed as mean + std across the test set, along with FID.
CT-T, (MRI-CT) T,..—~FLAIR (BRATS)
PSNR 1 SSIM 1t FID | PSNR 1 SSIM 1t FID |
pix2pix 20.23 + 1.06 71.17 + 4.70 2.55 24.15 + 2.07 85.23 + 3.76 3.52
SAGAN 20.59 + 1.28 81.74 + 2.45 1.92 24.76 + 1.94 85.70 + 3.96 2.93
DDPM 20.58 + 1.35 81.45 + 2.81 1.64 24.65 + 1.88 85.44 + 3.94 2.92
ControlNet 20.47 + 1.05 77.96 + 2.47 3.33 24.31 + 1.86 84.83 + 4.06 2.98
SynDiff 17.09 + 1.18 64.82 + 4.32 2.51 24.40 + 1.85 86.08 + 4.87 3.73
1’SB 16.29 + 1.68 66.88 + 4.11 5.80 24.38 + 2.44 83.55 + 5.26 3.00
DDIB 20.30 + 1.15 82.09 + 2.75 2.12 23.22 + 1.84 83.21 + 4.47 5.28
SelfRDB 21.12 + 1.49 82.50 + 2.77 1.16 25.29 + 2.24 87.46 + 3.60 2.86

5.2. Multi-modal MRI-CT translation

Next, we demonstrated SelfRDB in multi-modal MRI-CT transla-
tion tasks via comparisons against baselines on the pelvic MRI-CT
dataset that contains healthy subjects. Performance metrics in the
pelvic dataset are listed in Table 3. SelfRDB achieves the best per-
formance metrics in each individual task, significantly outperforming
baselines in PSNR/SSIM (p < 0.05). On average, SelfRDB outperforms
diffusion bridges by 2.15 dB PSNR, 4.82% SSIM, 1.94 FID; DDMs by
1.41 dB PSNR, 1.80% SSIM, 2.93 FID; and GANs by 2.31 dB PSNR,
4.68% SSIM, 1.26 FID. Representative target images synthesized by
competing methods are displayed in Fig. 6. Among diffusion-based
baselines, DDIB and DDPM manifest hallucinatory bright features that
resemble pelvic bone tissue, and DDIB also suffers from contrast losses
across muscle tissue. Meanwhile, I2SB and SynDiff show a degree
of geometric distortion particularly evident in hyper-intense signal
regions that cause deviation from the true structure of bone tissues,
and ControlNet manifests some hallucinatory dark features that alter
the tissue contrast. Among GAN-based baselines, SAGAN and pix2pix
suffer from a degree of spatial blurring and loss of structural details.
Compared against baselines, SelfRDB synthesizes target images with
lower artifacts/noise, depicting pelvic bone and muscle tissues with a
relatively high degree of anatomical accuracy.

5.3. Challenging translation tasks

Mapping between endogenous MRI contrasts and mapping MRI
contrasts onto CT images are relatively well posed translation tasks,
where the source modality carries substantial information regarding
the target modality (Chartsias et al., 2018; Nie et al., 2018). Our
results indicate that SelfRDB performs favorably against baselines and
synthesizes high-fidelity target images in these tasks. Yet, there can
be other imaging scenarios where the source modality carries weaker
information related to the target modality, elevating the difficulty of
the translation task. Accordingly, we performed demonstrations on
two challenging translation tasks: predicting MRI from CT images,
and predicting an endogenous MRI contrast from an exogenous MRI
contrast. Table 4 lists performance metrics for competing methods.
As expected, translation methods generally show relatively lower per-
formance under elevated task difficulty. Yet, we find that SelfRDB
still achieves the best performance metrics, significantly outperforming

baselines in PSNR/SSIM (p < 0.05). On average, SelfRDB outperforms
diffusion bridges by 2.16 dB PSNR, 6.05% SSIM, 2.04 FID; DDMs by
1.29 dB PSNR, 4.88% SSIM, 0.84 FID; and GAN models by 1.29 dB
PSNR, 4.02% SSIM, 0.72 FID. These findings suggest that SelfRDB
maintains its competitive performance against baselines even in tasks
where the source modality carries relatively weaker information on the
target modality.

5.4. Computational efficiency

A key consideration in medical image translation is the computa-
tional complexity of the translation models. Table 5 lists the training
time per cross-section, inference time per cross section, and memory
use of competing methods. As expected, GAN-based methods SAGAN
and pix2pix that synthesize target images in a single forward pass
through the generator network have notably low training/inference
times. Among diffusion-based methods, SynDiff that includes diffusive
and non-diffusive modules in its network architecture and I?SB that
employs a relatively more complex network architecture have the
highest training times, whereas ControlNet that fine-tunes the encoder
of a pre-trained latent DDM has the lowest training time overall.
Meanwhile, DDIB, DDPM, and SelfRDB have moderate training times
that are competitive with GAN methods. Note that the run time of
diffusion methods during inference depend not only on the complexity
of the network architecture but also on the number of sampling steps.
SynDiff that employs 4 steps and SelfRDB that employs 10 steps offer
more competitive run times to GAN-based methods, whereas remaining
diffusion-based methods that use relatively large number of steps elicit
prolonged inference times. In terms of memory use during inference,
GAN-based and diffusion-based methods are generally comparable, ex-
cept for I2SB that yields significantly higher memory load as it employs
a relatively large network architecture.

5.5. Ablation studies

We first conducted a set of ablation studies to examine the contri-
bution of main design elements in SelfRDB to translation performance.
For this purpose, variant models were formed by selectively ablating an
individual design element from SelfRDB, while the remaining elements
remained intact. To assess the importance of the soft prior on the source
modality, we formed a variant model with a hard prior on the source
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Table 5
Average training times per cross-section (sec), inference times per cross-section (sec) and memory load (gigabytes).
pix2pix SAGAN DDPM ControlNet SynDiff 1?SB DDIB SelfRDB
Training 0.033 0.081 0.134 0.039 1.824 0.790 0.065 0.170
Inference 0.003 0.007 43.484 76.198 0.135 55.203 19.575 0.372
Memory 0.64 1.34 1.52 2.06 2.15 10.26 2.10 2.22

Table 6

Performance of SelfRDB variants on representative medical image translation tasks. A variant ablated of a soft prior on the source modality, a variant ablated of self-consistent

target-image estimates, a variant that received stationary guidance from the noise-added source image (y.) instead of the original source image (y), and a variant that entirely

ablated stationary source-image guidance were considered.

T,—-T, (IXI) T,—T, (BRATS) T,—CT (MRI-CT)

PSNR 1 SSIM 1t FID | PSNR 1 SSIM 1 FID | PSNR 1 SSIM 1t FID
SelfRDB 31.28 + 1.56 95.03 + 1.27 1.62 28.85 + 1.48 93.70 + 1.87 0.43 29.46 + 2.15 93.62 + 1.72 3.48
w/o soft prior 30.64 + 1.42 94.33 + 1.27 1.77 26.98 + 1.54 92.00 + 2.20 0.52 28.54 + 1.91 92.72 + 1.73 4.18
w/o self-consistency 28.89 + 1.15 93.63 + 1.45 6.08 27.73 + 1.44 91.62 + 2.54 0.47 28.89 + 1.97 92.76 + 1.84 5.64
w y.-guidance 23.34 + 0.62 81.13 + 2.18 10.61 25.48 + 1.23 86.90 + 3.56 0.65 26.68 + 2.06 89.74 + 2.55 4.44
w/o source guidance 20.97 + 0.68 75.95 + 2.22 16.71 21.45 + 1.82 78.72 + 5.87 1.90 24.60 + 1.33 83.40 + 2.29 6.78

modality attained by adopting noise scheduling from common diffusion
bridges, i.e., by prescribing zero noise variance at start- and end-points
and high noise variance at mid-point of the diffusion process (Liu
et al., 2023a). To assess the importance of self-consistent recursive
estimation procedure in deriving target-image estimates, we formed
a variant model that performed a one-shot estimation of x, in each
reverse step without performing any recursions (Ho et al., 2020). Lastly,
we formed two variant models to assess the importance of stationary
guidance from the original source image y. In a first variant, the
recovery network received stationary guidance from the noise-added
source image y, used to initiate the diffusion process at timestep T
instead of y. In a second variant, the recovery network did not re-
ceive any stationary source-image guidance. Table 6 lists performance
metrics for SelfRDB and ablated variants on representative translation
tasks. We find that SelfRDB achieves the best performance metrics in
all translation tasks, significantly outperforming ablated variants in
PSNR/SSIM (p < 0.05). The performance improvements that SelfRDB
demonstrates over variants that systematically remove source-image
guidance highlight the critical role of stationary anatomical guidance
from clean source images in synthesizing high-quality target images.
Taken together, these findings indicate that each proposed design
element in SelfRDB makes an important contribution to its performance
in multi-contrast MRI and multi-modal medical image translation.

The primary motivation in SelfRDB for leveraging a soft prior on the
source modality is to improve robustness against perturbations induced
by measurement noise on source images. Thus, we also performed
ablation studies to assess reliability against varying noise levels in
the source modality between training and test sets. SelfRDB with its
soft prior was compared against a variant model with a hard prior
built by adopting noise variance scheduling from common diffusion
bridges (Liu et al., 2023a). To control the noise level in source images,
zero-mean bivariate Gaussian white noise was added onto each cross-
section at std. values ranging in [0.04 0.1] (Chung et al., 2022a). Fig.
7 plots performance of models trained on original images without per-
turbations when tested on images subjected to additive measurement
noise at varying levels. Naturally, all models show a growing degree of
performance loss under increasing noise perturbation, compared with
their performance on the original source images without perturbations.
Yet, the average performance losses across noise levels are 4.72 dB
PSNR, 7.77% SSIM, 4.80 FID for the hard-prior variant, whereas a more
modest 3.08 dB PSNR, 4.30% SSIM, 3.79 FID for SelfRDB. The relatively
limited performance losses in SelfRDB suggest that the proposed soft
prior on the source modality helps maintain a degree of reliability
against measurement noise.

Lastly, we performed ablation studies to examine the influence of
the number of recursions (R) used to produce target-image estimates
in each reverse diffusion step. Fig. 8 displays performance metrics for
SelfRDB variants based on varying R € [1 7]. We find that R = 2

10

elicits a notable improvement in synthesized image quality over R = 1,
albeit further increases in R do not yield major improvements. Thus,
we deduce that the selected value of R =2 offers a favorable trade-off
between translation performance and computational complexity due to
additional recursions.

6. Discussion

SelfRDB is a novel diffusion bridge for medical image translation
that progressively transforms a source modality onto a target modal-
ity. Compared to GANs that are amenable to training instabilities,
it is a diffusion-based method that builds an explicit prior to im-
prove image fidelity. Compared to DDMs that are trained to learn
a task-irrelevant noise-to-target (i.e., denoising) transformation, it di-
rectly learns a source-to-target transformation of high task relevance.
Compared to regular diffusion bridges, it leverages enhanced noise
scheduling and estimation procedures to boost sampling accuracy. Our
demonstrations on multi-modal translation tasks clearly suggest that
these unique technical attributes help SelfRDB to significantly improve
performance over state-of-the-art baselines.

Several technical limitations could be addressed to further boost the
performance and efficiency of SelfRDB in medical image translation.
The first set of improvements concerns the reliability of translation
models. SelfRDB draws intermediate image samples from a normal
posterior probability similar to other diffusion-based methods, so it
produces stochastic target images. Corroborating recent reports (Ozbey
et al., 2023), here we observed that multiple target images indepen-
dently synthesized by SelfRDB show nominal variability (unreported).
While this might be attributed to the diminishing noise variance to-
wards the start-point of the diffusion process corresponding to the
target modality, future research is warranted to evaluate the uncer-
tainty of diffusion bridges in medical image translation. Note that,
although SelfRDB is inherently a diffusion-based method, it employs an
adversarial loss component that could induce susceptibility to training
instabilities (Lan et al., 2020). Here, we did not observe any notable
sign of instabilities such as mode collapse or poor convergence when
inspecting training and validation performance. Yet, when needed,
spectral normalization or feature matching techniques could be adopted
to improve training stability (Lan et al., 2020).

A second set of improvements concerns the selection of source—
target modalities for the translation models. Here, we primarily exam-
ined mappings between different endogenous MRI contrasts (e.g., Ty,
T,), and prediction of CT from MRI contrasts. SelfRDB showed reliable
translation performance in these tasks, suggesting that tissue informa-
tion required to synthesize target modalities is present to a high degree
in source modalities. Yet, we found that all competing methods yielded
relatively lower performance when mapping between exogenous MRI
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contrasts based on injection of external contrast agents and endogenous
MRI contrasts (Lee et al., 2019), and when predicting MR images
with enhanced soft-tissue differentiation from CT images with primarily
bone and soft-tissue differentiation (Ozbey et al., 2023). These results
suggest that when the information needed to synthesize the target
modality is present to a weaker degree in the source modality, elevated
difficulty of the translation task can hamper model performance. In
such scenarios, translation performance might be improved by conduct-
ing many-to-one mappings that include additional source modalities
to increase the degree of correlated tissue information with the target
modality (Sharma and Hamarneh, 2020; Yurt et al., 2021), by employ-
ing test-time adaptation procedures or learned regularization terms to
refine the synthetic target images (Nie et al., 2018; Ge et al., 2019;
Elmas et al., 2023), or by acquiring a limited amount of target-modality
data for improved guidance during target-image synthesis (Yurt et al.,
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2022). It remains important future work to assess the reliability of
SelfRDB in a greater variety of challenging translation tasks, and the
utility of the abovementioned approaches for mitigating performance
losses in such conditions. This includes extending validation to addi-
tional datasets with varying distributions and characteristics to further
corroborate the generalizability of the proposed method.

Lastly, a third set of improvements concerns the learning proce-
dures, representational capacity and efficiency of translation models.
Here, models were trained via supervised learning on paired source—
target images within individual subjects. However, it may not always
be feasible to curate paired training sets of sufficient size for adequate
model training. In such cases, unsupervised model training on unpaired
data can be performed by employing cycle-consistent (Ozbey et al.,
2023) or contrastive (Kim et al., 2024a) learning frameworks. Alter-
natively, models pre-trained for general medical image synthesis tasks
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can be adapted to conduct specific translation tasks via zero-shot or
few-shot learning frameworks on compact training sets (Pinaya et al.,
2022b, 2023; Giingor et al., 2023), which can also facilitate practical
implementations. Here, we employed a recovery network based on
a convolutional backbone. Recent studies on medical imaging tasks
report that transformer backbones can elevate sensitivity to long-range
interactions (Nezhad et al., 2025; Luo et al., 2021; Gungor et al., 2022)
and enhance generalization performance to atypical anatomy (Korkmaz
et al., 2022, 2023). Adoption of a backbone that allows enhanced
contextual sensitivity in SelfRDB could thus improve the representation
of long-range context during source-to-target mapping (Atli et al., 2024;
Kabas et al., 2024). Future work could also expand comparative anal-
yses to architectures that leverage adaptive normalization mechanisms
for refined control over stylistic attributes, which may be valuable for
modulating tissue contrast in medical image translation (Fetty et al.,
2020; Kim et al., 2023; Liu et al., 2023b). Building on such insights, it
may be worthwhile to explore incorporating similar mechanisms into
the proposed architecture. Note that SelfRDB prescribes a lower number
of timesteps in its diffusion process and thereby offers significantly
higher efficiency than conventional DDMs. Yet, it still has longer in-
ference times than GAN models that generate target images in a single
forward pass. For efficiency improvements, acceleration approaches
such as initiating sampling with an intermediate image derived from
a secondary translation method (Chung et al., 2022b), or distillation
of trained models onto fewer diffusion steps (Bedel and Cukur, 2024)
could be considered.

7. Conclusion

In this study, we introduced a novel diffusion bridge, SelfRDB,
for multi-modal medical image translation tasks. SelfRDB learns a
task-relevant progressive transformation between source- and target-
modality distributions. In reverse diffusion steps, it improves image
fidelity via a self-consistent recursive estimation procedure and sta-
tionary guidance from the acquired source image. It further employs
a monotonically-increasing scheduling for the noise variance towards
the source image in order to facilitate information transfer between
the modalities, and to build a soft prior on the source modality that
enhances noise robustness. With these technical advances, SelfRDB
achieves state-of-the-art image quality compared to leading GAN and
diffusion methods, so it holds great promise for medical image transla-
tion applications.
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