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A B S T R A C T

Voxelwise modeling (VM) is a powerful framework to predict single voxel responses evoked by a rich set of
stimulus features present in complex natural stimuli. However, because VM disregards correlations across
neighboring voxels, its sensitivity in detecting functional selectivity can be diminished in the presence of high
levels of measurement noise. Here, we introduce spatially-informed voxelwise modeling (SPIN-VM) to take
advantage of response correlations in spatial neighborhoods of voxels. To optimally utilize shared information,
SPIN-VM performs regularization across spatial neighborhoods in addition to model features, while still gener-
ating single-voxel response predictions. We demonstrated the performance of SPIN-VM on a rich dataset from a
natural vision experiment. Compared to VM, SPIN-VM yields higher prediction accuracies and better capture
locally congruent information representations across cortex. These results suggest that SPIN-VM offers improved
performance in predicting single-voxel responses and recovering coherent information representations.
1. Introduction

Neural response correlations exist in multiple spatial scales across
cortex, ranging from cortical columns with hundreds of neurons (Erwin
et al., 1995) to neighborhoods of voxels in functional magnetic resonance
imaging (fMRI) studies with hundreds of thousands of neurons (Zarahn
et al., 1997). It is commonly hypothesized that these correlations reflect
clustering of neural populations that form modules with specific func-
tional selectivities, which leads to efficient information processing and
coherent representation of information across cortex (Pouget et al., 2000;
Schneidman et al., 2006). Consistent with this hypothesis, many fMRI
studies have reported similar functional selectivity across neighboring
voxels, suggesting coherent information representations. For instance,
vision studies have shown that angle and eccentricity values are repre-
sented topographically in early visual areas (Engel et al., 1997; Tootell
et al., 1998), and semantic information about object and action cate-
gories is represented in smooth gradients across higher-level visual areas
and non-visual cortex (Huth et al., 2012).

The existence of spatial correlations in blood oxygen level dependent
(BOLD) responses have often motivated traditional univariate analyses to
perform spatial smoothing as a preprocessing step to improve signal-to-
noise ratio (SNR). In the statistical parametric mapping (SPM)
approach (Friston et al., 1994), spatial smoothing enables the use of
and Electronics Engineering, Bil
ur).

2018

.

Random Field Theory (Adler and Firman, 1981) to locate clusters with
similar functional selectivity. In the functional localizer approach, spatial
smoothing is used to locate a spatially contiguous set of voxels that are
functionally selective to a certain stimulus class, such as faces (Kanwisher
et al., 1997) or body parts (Downing et al., 2001). Traditional univariate
analyses typically assume that functional selectivity is distributed ho-
mogeneously across neighborhoods, thereby ignoring differences in
selectivity across individual voxels. As a consequence, the sensitivity to
fine-grained information present in single voxels is reduced (Kriegeskorte
and Bandettini, 2007).

An alternative approach that does not require explicit spatial
smoothing is joint modeling of spatially contiguous voxels (Katanoda
et al., 2002; Penny et al., 2005). In standard general linear modeling
(GLM), a linear set of weights is estimated for each voxel that predicts the
measured responses based on the stimulus or task timecourse (Nelder and
Wedderburn, 1972). To improve sensitivity, the joint approach performs
GLM on responses aggregated across a spatial neighborhood of voxels.
One method is to estimate the model for the central voxel by uniformly
weighing data from all voxels within the neighborhood (Katanoda et al.,
2002). This uniform weighing renders joint modeling equivalent to
spatial smoothing with a boxcar function across the neighborhood, and
the interpretation of resulting models is difficult. A more recent method
instead penalizes differences in model weights of voxels within the
kent University, Ankara, Turkey.
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neighborhood (Penny et al., 2005). Because this previous method only
employs spatial regularization, it can yield suboptimal sensitivity in the
presence of a large number of model features or limited amount of
measurements. This can be particularly limiting in the analysis of BOLD
responses elicited by thousands of stimulus features during naturalistic
experiments.

Another popular approach that avoids spatial smoothing is multi-
variate pattern analysis (MVPA). Building direct decoding models, MVPA
analyzes the responses of multiple voxels in order to classify BOLD
response patterns into a limited number of discrete experimental con-
ditions (Haxby, 2012; Norman et al., 2006). While MVPA does not use
spatial smoothing, classifier weights may not accurately reflect the
contribution of individual voxels to the represented information because
they are estimated for multiple voxels at once to optimize classification
performance (Haufe et al., 2014). For example, a commonMVPAmethod
named searchlight analysis assumes that information is represented in
small, localized clusters of voxels (Kriegeskorte et al., 2006). In search-
light analysis, a voxel at the center of a searchlight volume can be
thought to represent significant stimulus information, merely because the
volume contains other highly informative voxels (Etzel et al., 2013).
Thus, similar to joint modeling approaches (Katanoda et al., 2002; Penny
et al., 2005), MVPA can be suboptimal in revealing information repre-
sentations in single voxels.

In contrast to traditional fMRI analyses, voxelwise modeling (VM) is a
powerful framework that offers improved sensitivity for fine-grained
assessment of cortical representations in naturalistic fMRI experiments
(Kay et al., 2008; Naselaris et al., 2009). Previous studies have demon-
strated the elevated sensitivity of VM in examining the representations of
diverse stimulus features in single voxels across cortex (Çukur et al.,
2013b; Huth et al., 2012; Lescroart et al., 2015; Nishimoto et al., 2011).
The goal of the VM framework is to assess functional selectivity at the
finest resolution available—single voxels—in fMRI data. To do this, VM
first constructs a model in the form of a dictionary of stimulus features
(e.g., a set of object categories or a bank of spatiotemporal Gabor
wavelets) that are hypothesized to elicit BOLD responses. For each voxel,
VM then estimates the linearly-weighted combination of model features
that best explain the measured BOLD responses (Naselaris et al., 2011).
The model weights for each voxel reflect its selectivity to hundreds to
thousands of model features that occur in natural stimuli. Note that VM
employs regularization across model weights to prevent over-fitting to
nuisance response variations. To increase sensitivity to single voxels,
regularization parameters are optimized separately for each voxel using a
cross-validation procedure performed on unsmoothed single-voxel re-
sponses. Once models are trained, model performance is evaluated on
independent test data to ensure model generalizability. Because VM
models each voxel independently without spatial smoothing, it enhances
sensitivity for detecting functional selectivity in single voxels compared
to traditional techniques (Dumoulin and Wandell, 2008; Mitchell et al.,
2008; Serences and Saproo, 2012; Thirion et al., 2006). However, VM
disregards potentially correlated information across neighboring voxels,
yielding suboptimal sensitivity in the presence of high levels of mea-
surement noise.

Here, we introduce spatially informed voxelwise modeling (SPIN-
VM) to better utilize response correlations in neighboring voxels. To
spatially inform the single-voxel models without smoothing, we utilize a
weighted graph Laplacian based on inter-voxel distances (Grosenick
et al., 2013; Penny et al., 2005). SPIN-VM performs regularization across
both model features and spatial neighborhoods. While SPIN-VM enforces
similar model weights across neighboring voxels, it still generates pre-
dictions of BOLD responses in single voxels. Therefore, it maintains high
sensitivity to selectivity differences across individual voxels. We
demonstrate SPIN-VM on an fMRI dataset collected in a natural vision
experiment. Models obtained using VM and SPIN-VM are compared in
terms of single-voxel prediction accuracy and local coherence of func-
tional selectivity.
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2. Materials and methods

In this section, we first describe the experimental paradigm, data
preprocessing and visualization techniques. We then introduce spatially
informed voxelwise modeling (SPIN-VM) and explain its relationship to
regular voxelwise modeling (VM). Finally, we describe local coherence
analyses, and how effects of spatial smoothing were investigated.

2.1. Subjects

Five healthy male human subjects volunteered to participate in the
study: S1 (age 25), S2 (age 25), S3 (age 25), S4 (age 32), and S5 (age 29).
Participants had normal or corrected-to-normal vision. The experimental
protocols were approved by the Institutional Review Board at the Uni-
versity of California, Berkeley (UCB). All participants gave written
informed consent prior to scanning.

2.2. MRI acquisition parameters

Functional and anatomical MRI data were collected using a 3T
Siemens Tim Trio scanner with a 32-channel head coil at the University
of California, Berkeley. A gradient-echo echo-planar imaging (GE-EPI)
sequence (TR¼ 2 s, TE¼ 34ms, flip angle¼ 74�, voxel
size¼ 2.24� 2.24� 3.5mm3, field-of-view¼ 224� 224mm2, 32 axial
slices covering the entire cortex) was used to acquire T*

2-weighted
functional data. To avoid contamination from fat signal, the sequence
was customized with a water-excitation radiofrequency (RF) pulse.
Anatomical data were collected using a T1-weighted magnetization-
prepared rapid-acquisition gradient-echo (MP-RAGE) sequence
(TR¼ 2.30 s, TE¼ 3.45ms, flip angle¼ 10�, voxel size¼ 1� 1� 1mm3,
field-of-view¼ 256� 256� 192mm3). The anatomical data were used
in order to reconstruct cortical surfaces for each subject. For two subjects,
anatomical and retinotopic mapping data were collected using a 1.5T
Philips Eclipse scanner.

2.3. Main experiment

The main experiment was conducted in three separate sessions. Color
natural movies were shown to subjects and whole-brain BOLD responses
were recorded in each session. Movies were selected from a diverse set of
sources in order to avoid potential biases. High-definition movie frames
were cropped to a square aspect ratio and downsampled to 512� 512
pixels subtending 24� � 24�. Participants were instructed to fixate on a
centrally located color dot (0.16� 0.16�) superimposed onto the movies.
For continuous visibility, the color of the fixation dot changed at 3 Hz. An
MRI-compatible projector (Avotec), a custom-built mirror system, and
custom-designed presentation scripts were used for stimulus presenta-
tion. A total of 12 training runs and 9 testing runs were acquired across
the three sessions. Different sets of movies were used for training and test
runs, and the presentation order was interleaved in each session. Each
training run contained 10min of natural movies compiled by concate-
nating distinct 10–20 s movie clips without repetition. Each testing run
contained 10 separate 1min blocks in random order. Each block was
presented nine times across three sessions and acquired BOLD responses
were averaged across these repeats. Data collected during the first 10 s of
each run were not used to minimize the effects of hemodynamic tran-
sients. These three sessions resulted in 3600 data samples for training and
270 data samples for testing. Note that these same data were analyzed in
several recent studies (Çukur et al., 2016, 2013b; 2013a; Huth et al.,
2012).

2.4. Functional localizers

Functional localizer data were acquired in two separate sessions.
Category-selective brain areas were localized using six 4.5min runs of 16
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blocks, each lasting 16 s. Twenty static images were presented in each
block, randomly selected from one of the following categories: objects,
scenes, faces, body parts, animals, and spatially scrambled objects (Spi-
ridon et al., 2006). The presentation order was randomized across runs.
Each image was shown for 300ms, followed by a 500ms blank screen.
Participants performed a one-back task to ensure they maintained their
focus on the experiment. Retinotopic areas were localized using four
9min runs containing clockwise rotating polar wedges,
counter-clockwise rotating polar wedges, expanding rings, and con-
tracting rings (Hansen et al., 2007). Intraparietal sulcus was localized
using one 10min run of 30 blocks, each lasting 20 s and containing either
a self-generated saccade task (among a pattern of targets) or a resting task
(Connolly et al., 2000). Human motion processing complex (MT) was
localized using four 90 s runs of 6 blocks, each lasting 15 s and containing
either continuous or temporally scrambled natural movies (Tootell et al.,
1995). Auditory cortex was localized in a single 10min run consisting of
10 repeats of a 1min auditory stimulus, which consisted of 20 s segments
of speech, music, and natural sounds. Motor localizer data were collected
in a single 10min run during which subjects were cued to perform six
different motor actions (“hand”, “foot”, “mouth”, “saccade”, “speech”,
“rest”) in 20 s blocks in a random order.

2.5. Data preprocessing

FMRIB's Linear Image Registration Tool (FLIRT) (Jenkinson et al.,
2002) was used for motion correction and image realignment. For each
subject, functional brain volumes were aligned to the first image from the
first functional run. Functional brain volumes were refined by removing
non-brain tissue using Brain Extraction Tool (BET) (Smith, 2002).
Low-frequency drifts in BOLD responses of individual voxels were
removed using a median filter over a 120 s temporal window for each
run, separately. The resulting time courses were z-scored individually for
each voxel such that mean response across time points was 0 and stan-
dard deviation across time points was 1 for each voxel. No temporal or
spatial smoothing was applied to the functional data from the main
experiment. Motion correction and image realignment procedures were
also applied to the functional localizer data such that the volumes are
aligned to the first functional run from the main experiment. The local-
izer data were smoothed with a Gaussian kernel of full-width at
half-maximum equal to 4mm.

2.6. Visualization on cortical flatmaps

Cortical surfaces were reconstructed from T1-weighted anatomical
scans using FreeSurfer (Dale et al., 1999), separately for each hemisphere
of each subject. After gray-white matter segmentation, five relaxation
cuts were applied on the surface of each hemisphere and the surface
crossing the corpus callosum was removed. Finally, the surfaces were
flattened. Functional data were aligned to the anatomical data auto-
matically using the FLIRT boundary-based alignment tool in the FSL li-
brary (Greve and Fischl, 2009). A six degree-of-freedom affine
transformation was used in the three-dimensional voxel space. Regis-
tration accuracy was taken as the alignment error between the
white-matter boundaries of the functional and anatomical data. For this
procedure, the parameter “bbrtype” was set to “signed”. Pycortex was
used for surface projection (Gao et al., 2015). The resulting flatmaps were
used for data visualization. Note that positive prediction scores indicate
that a fit model explains meaningful variance in measured BOLD re-
sponses, whereas negative prediction scores indicate that the model does
not explain any meaningful variance. Because model weights in a voxel
with a negative prediction score do not accurately reflect its functional
selectivity, it would be misleading to interpret the model weights. To
prevent contamination from poorly modeled voxels, values of interest
(e.g., category coefficients for cortical maps of semantic representation)
were thresholded and scaled using a sigmoid function based on predic-
tion scores for each voxel. This ensured that the lower the prediction
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score, the closer toward gray the color of the voxel moved (baseline gray
level is 102 for Figs. 4, 6 and 7; and 51 for Figs. 8 and 9, range¼ 0–255).
As a result, model weights for voxels with positive prediction scores were
visualized on cortical flatmaps, whereas model weights for voxels with
negative prediction scores were masked. Note also that for all analyses
reported in the manuscript, voxels were selected from the volumetric
brain space. Cortical surfaces were used solely for visualization purposes.
2.7. Encoding models

2.7.1. Motion-energy model
We used a motion-energy model consisting of 2139 spatiotemporal

Gabor filters to infer selectivities of single voxels for low-level visual
features. The same motion-energy model was previously shown to
accurately predict BOLD responses to natural movies in retinotopically
organized early visual areas (Nishimoto et al., 2011). Each of the 2139
filters was a three-dimensional spatiotemporal sinusoid multiplied by a
spatiotemporal Gaussian envelope. Filters were computed at six spatial
frequencies (0, 1.5, 3, 6, 12, and 24 cycles/image), three temporal fre-
quencies (0, 2, and 4Hz), and eight directions (0, 45, 90, 135, 180, 225,
270, and 315�). Filters were positioned on a square grid that spanned
24� � 24�. Filters at each spatial frequency were placed on the grid such
that adjacent filters were separated by a distance of four standard de-
viations of the spatial Gaussian envelope. Then, to reduce dimensionality
and improve model fits, a principal components analysis (PCA) was
applied to the stimulus matrix. The first 400 PCs that explain 95.7% of
the variance in the stimulus were selected.

2.7.1.1. Representation of low-level visual features. PCA was used to
recover a group Gabor space from themotion-energy model weights of all
subjects. Only voxels with highest prediction scores (top 10,000 for both
VM and SPIN-VM) for each subject were included in estimating the group
Gabor space to ensure high quality. Then, individual-subject model
weights were projected onto the first three PCs of the group Gabor space
for each cortical voxel to enable comparison of cortical representation
across subjects. Subsequently, each voxel was assigned a color from RGB
color space such that Gabor coefficients obtained by model weight pro-
jections in first, second, and third PCs represent red, green, and blue
channels, respectively (see Fig. 7). We followed the in-silico simulation
procedure outlined in (Nishimoto et al., 2011) to estimate selectivity for
spatial frequency and eccentricity from the motion-energy model. In this
procedure, the responses of each voxel to a two-dimensional dynamic
Gaussian white noise pattern, presented at various positions across the
virtual display, were estimated based on model weights. These predicted
responses explain the sensitivity of each voxel to each position in space.
As a result, each voxel was assigned discrete spatial frequency and ec-
centricity values based on motion-energy model weights. Similar colors
imply selectivity for similar low-level visual features (e.g., magenta im-
plies selectivity for low eccentricity and high spatial frequency). We
identified four different colors that broadly correspond to distinct com-
binations of selectivity for spatial frequency and eccentricity.

2.7.2. Category model
We used a category model to infer selectivities of single voxels for

distinct object and action categories present in the natural movie stim-
ulus. The same category model was previously shown to accurately
predict BOLD responses in high-level visual cortex (Çukur et al., 2013b;
Huth et al., 2012). Object and action categories present in each 1 s
portion of the movies were labeled using the WordNet lexicon (Miller,
1995). Superordinate categories entailed by each labeled category were
also added to the list of features (i.e., categories) in accordance with the
WordNet hierarchy. For example, if a portion of the movie was labeled
with “car”, it would also be labeled with “machine”. After adding su-
perordinate categories, a feature list with 1705 distinct object and action
categories was formed. Time courses for all model features were obtained
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by aggregating the present/absent labels across the stimulus (see Fig. 1).
Temporal downsampling was then applied to each time course to match
the fMRI sampling rate. Then, to reduce dimensionality and improve
model fits, a PCA was applied to the stimulus matrix. The first 300 PCs
that explain 95.7% of the variance in the stimulus were selected. To
minimize spurious correlations between global motion-energy and visual
categories, a nuisance regressor was included that reflected the total
motion energy in the movie stimulus. The total motion energy was ob-
tained by summing the output of all spatiotemporal Gabor filters used in
the motion-energy model.

2.7.2.1. Representation of semantic categories. PCA was used to recover a
group semantic space from the category model weights of all subjects.
Only voxels with highest prediction scores (top 10,000 for both VM and
SPIN-VM) for each subject were included in estimating the group se-
mantic space to ensure high quality. The first PC was observed to be
highly correlated with the motion-energy in the movie stimulus (Huth
et al., 2012), and therefore we did not use it when visualizing semantic
representation across cortical surface. Due to the limitations of fMRI and
a finite stimulus set, only the first few PCs will approximate the true
underlying semantic space (Huth et al., 2012). Accordingly,
individual-subject model weights were projected onto second, third, and
Fig. 1. Experimental paradigm and model fitting. (a) Subjects viewed natural m
selectivity in single voxels was estimated in individual subjects using voxelwise mod
procedures for VM and SPIN-VM are illustrated here for a category model. Model wei
categories. (b) In VM, each voxel is modeled independently from its neighbors. Hig
estimated model weights (model weights for two distinct neighborhoods of voxels i
mation across neighborhoods of voxels to enhance sensitivity during model fits. As a r
the presence of high levels of noise.

744
fourth PCs of the group semantic space for each cortical voxel to enable
comparison of cortical representation across subjects. Subsequently, each
voxel was assigned a color from RGB color space such that category co-
efficients obtained by model weight projections in second, third, and
fourth PCs represent red, green, and blue channels, respectively (see
Fig. 6). Similar colors imply selectivity for similar semantic categories
(e.g., dark blue implies selectivity for buildings and furniture). Six sets of
broad categories (vehicles, buildings and furniture, animals, text and
groups, humans and body parts, and geography) are identified with six
different colors in Fig. 6 as examples. There are many other categories
represented across cortex, these six categories are chosen only for visu-
alization purposes.

2.8. Model fitting - VM

To fit category and motion-energy models, a voxelwise modeling
framework was used (Çukur et al., 2013b; Huth et al., 2012). VM per-
forms L2-regularized linear regression to find model weights that
describe how each model feature (e.g., object and action categories) in-
fluences measured BOLD responses (see Fig. 1). A category model was fit
to measure tuning for high-level object and action categories (Huth et al.,
2012). A separate motion-energy model was fit to measure tuning for
elementary visual features such as spatiotemporal frequency and
ovies and whole-brain BOLD responses were recorded using fMRI. Functional
eling (VM) and spatially informed voxelwise modeling (SPIN-VM). Model fitting
ghts reflect the selectivity of individual voxels for 1705 distinct object and action
h levels of noise in measured BOLD responses can cause nuisance variability in
llustrated). (c) In SPIN-VM, each voxel is modeled while utilizing shared infor-
esult, it can more accurately assess functional selectivity in single voxels even in
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orientation (Nishimoto et al., 2011). To account for hemodynamic delays
in BOLD responses, separate finite-impulse-response (FIR) filters were
appended to each model feature. Temporal delays of two, three, and four
samples (equivalently 4, 6, and 8 s) were applied by the FIR filters. To
maximize the quality of fits, FIR coefficients were fit together with the
model weights:

X �W ¼ Y (1)

½xd4 xd6 xd8� � ½wd4 wd6 wd8�T ¼ Y

where Y is the responsematrix of size (time points�Nvox), X is a stimulus
matrix of size (time points� (3�Nfeat)), and W is a matrix of size
((3�Nfeat)�Nvox) that represents selectivity for model features, where
Nvox is the number of voxels and Nfeat is the number of model features.
The subscripts d4, d6, and d8 denote the entries for each hemodynamic
delay. Final selectivities were computed by averaging over delays.

VM estimates model weights via ridge regression

min
wi

X
i

jj Xwi � yi jj 2
2 þ λfeat

X
i

jj wi jj 2
2 ; i ¼ 1; …; Nvox (2)

where wi is a vector of model weights, and yi is a vector of BOLD re-
sponses for voxel i. The optimization problem in Eq. (2) is solved sepa-
rately for each individual voxel. Eq. (2) is first compactly expressed in
matrix form as

min
W

TrðWTXTXWÞ þ λfeatTrðWWTÞ � 2TrðWTXTYÞ þ TrðYYTÞ (3)

Minimization can then be performed by setting the gradient of the
objective with respect to W to zero

�
Kþ λfeatI

�
W ¼ M (4)

where K ¼ XTX, and M ¼ XTY. K reflects the auto-covariance of model
features and M reflects the cross-covariance of model features and BOLD
responses. Finally, the solution to Eq. (4) can be obtained by a pseu-
doinverse operation

W� ¼ �
Kþ λfeatI

�yM (5)

A 10-fold cross-validation procedure was used to optimize the regu-
larization parameter across features (λfeat) for each voxel, and the regu-
larization parameter resulting in the highest prediction score across
cross-validation folds was selected. In each fold, 10% of the training
data were randomly held out, with the remaining 90% being used to fit
models. Prediction score was taken as the correlation coefficient (Pear-
son's r) between the measured and predicted BOLD responses. Raw cor-
relation coefficients are biased downward by noise in the measured
BOLD responses (David and Gallant, 2005). Therefore, correlation co-
efficients were corrected for noise bias following the procedure detailed
in (Huth et al., 2012). Finally, models were refit to the entire training
data using optimal regularization parameters in a single step. Note that
all model fitting, evaluation, and comparisons were done based on vox-
elwise model fits in individual subjects.

A 1000-fold jackknife resampling (at a rate of 80%) procedure was
used to calculate prediction scores on independent test data in order to
assess model performance. Average prediction score across jackknife it-
erations was calculated. Custom software written in Matlab (MathWorks)
was used for all model fitting procedures. Mean prediction scores across
ROIs were also calculated for each subject independently. Then, a single
mean prediction score (�std) was calculated for each ROI via boot-
strapping across subjects. By performing our calculations in each subject's
individual brain space and not transforming every subject's data onto a
common anatomical space, we avoided any bias or distortion that could
contaminate the results. On the other hand, we averaged ROI-wise pre-
diction scores from each subject to draw broader inferences about
745
statistical comparison of competing methods, following common pro-
cedure in voxelwise analyses (see Sprague and Serences, 2013). To test
for significant differences between two competing methods, prediction
scores were randomly sampled with replacement across subjects, and the
mean difference between the methods was computed. To determine the
significance level, 10,000 bootstrap samples were generated, and p-value
was taken as the fraction of bootstrap samples where the mean difference
is less than 0 (for right-sided tests) or greater than 0 (for left-sided tests).
An identical sampling procedure was used to assess the significance of
differences in local coherence values.

In addition, to test whether using L1-norm could be a viable alter-
native to dimensionality reduction based on PCA in conjunction with L2-
norm regularization across model features, we fit voxelwise models using
L1-norm (without applying PCA) and calculated prediction scores. For
this analysis, we used 14 regularization parameters spanning the range
½2�2; 211� for both the category and motion-energy models. A coordinate
descent algorithm was employed to solve the L1 minimization problem.
We found that the PCA-based approach yields significantly higher pre-
diction scores than the L1-norm approach across all functional ROIs
(p< 0.05; Supp. Fig. 16). For instance, mean prediction scores for FFA
were (0.7146� 0.0318) and (0.5243� 0.0556) for the PCA-based
approach and the L1-norm approach, respectively. Similarly, mean pre-
diction scores for the whole cortex were (0.1735� 0.0114) and
(0.1014� 0.0051) for the PCA-based approach and the L1-norm
approach, respectively. This finding is in line with a previous study
from our laboratory that reports that L2-norm regularization of model
weights yields superior performance to L1-norm regularization in FFA
(Çukur et al., 2013a). As a result, we did not consider L1-norm thereafter.

2.9. Model fitting – SPIN-VM

VM has been shown to produce powerful and informative results in
fine-grained assessment of cortical representations (Çukur et al., 2016,
2013b; 2013a; Huth et al., 2016, 2012; Nishimoto et al., 2011). Since the
VM framework does not perform any spatial smoothing across voxels or
subjects, it enhances sensitivity for detecting selectivity in single voxels
compared to standard analysis techniques such as SPM (Friston et al.,
1994). However, in the presence of high levels of measurement noise, VM
may yield suboptimal sensitivity as it disregards correlated responses
across neighboring voxels. To leverage shared information across
neighboring voxels, SPIN-VM implements regularization not only across
the feature dimension as in VM, but also across neighborhoods of voxels.
To obtain optimal solutions, we enforce constraints on both rows and
columns of the unknown weight matrix (Subbian and Banerjee, 2013).
Utilizing shared information across voxels naturally increases estimation
sensitivity of model weights and it also prevents unnecessary smoothing
across the feature dimension to beat noise.

In SPIN-VM, a spatial regularization term is used to take into account
spatial neighborhood information across voxels

X
ði;jÞ2Nnei

cij
��wi �wj

��2

2
(6)

where Nnei is the set of voxels in a neighborhood. By selecting an
appropriate set of filter weights, cij, that are large for voxels in close
proximity and small for voxels that are far apart from each other, this
term enforces neighboring voxels to have relatively similar weights. The
spatial regularization term is added to the original optimization problem
for VM in Eq. (2). The objective function that leverages information
across neighboring voxels then becomes

min
wi

X
i

kXwi � yik22 þ λfeat
X
i

kwik22 þ λnei
X

ði;jÞ2Nnei

cij
��wi �wj

��2

2
; i

¼ 1; …; Nvox (7)

where the third term is the spatial regularizer and λnei is the
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corresponding regularization parameter. It can be shown that the spatial
regularizer in Eq. (7) can be compactly expressed in terms of a graph
Laplacian matrix L such that

λnei
X

ði;jÞ2Nnei

cij
��wi �wj

��2

2
¼ λneiTrðWLWTÞ (8)

Following the transition from Eq. (2) to Eq. (3), the entire objective
function can then be written as

min
W

TrðWTXTXWÞ þ λfeatTrðWWTÞ þ λneiTrðWLWTÞ � 2TrðWTXTYÞ
þ TrðYYTÞ (9)

Finally, minimization can be achieved by setting the gradient of the
objective with respect to W to zero

�
Kþ λfeatI

�
Wþ λneiWL ¼ M (10)

The expression in Eq. (10) can be simplified by defining A ¼ ðKþ
λfeatIÞ, and B ¼ λneiL such that AWþ WB ¼ M. Regularization over rows
ofW is performed byA, which reflects auto-covariance of model features.
Regularization over columns ofW is performed by B, which is based on a
graph Laplacian containing spatial proximity information across neigh-
borhoods of voxels. Unlike VM where Eq. (4) can be solved via a simple
pseudoinverse, the solution of Eq. (10) in SPIN-VM requires a more

elaborate algorithm outlined in Pseudocode for SPIN-VM below. In steps,
the eigenvalue decomposition of A is calculated for each λfeat separately
and the eigenvalues D, and the eigenvectors Q are stored. Schur
decomposition of L is computed, where L ¼ USUT, prior to solving Eq.
(10). This enables an efficient solution because Schur decomposition of a
symmetric matrix gives a diagonal matrix S that simplifies subsequent
calculations. This decomposition is then used to calculate P for each λnei
separately, such that P ¼ 1:=ðDr þ λneiSrÞ, where Dr is a matrix con-
structed by repeating Dd and Sr is a matrix constructed by repeating Sd

(see Pseudocode for SPIN-VM below). Dd is a column vector that contains
the diagonal elements of D, Sd is a row vector that contains the diagonal
elements of S, and ./ denotes elementwise division. Finally, the solution
for each (λfeat, λnei) pair is obtained
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W� ¼ �Q
�
P:*ðQTMUÞ�UT (11)
where :* denotes elementwise multiplication. Here, W was separately
estimated for each (λfeat, λnei) pair. To compare the cortical distribution of
regularization parameters between VM and SPIN-VM, we employed the
same range of λfeat for both techniques. λnei also spanned the same range
as λfeat. We used 10 regularization parameters spanning the range ½25;
214� for the category model, and 13 regularization parameters spanning
the range 100� ½25; 217� for the motion-energy model. The same 10-fold
cross-validation procedure as in VM was used for SPIN-VM to select the
optimal (λfeat, λnei) pair independently during model fitting. The pair of
regularization parameters that resulted in the highest prediction scores
across cross-validation folds were recorded as optimal regularization
parameters for each voxel separately. Models were refit using the (λfeat,
λnei) pair that gives the highest prediction scores (see Model fitting - VM).
Prediction scores were assessed using the same jackknifing procedure as
in VM.

2.9.1. Pseudocode for SPIN-VM
2.9.2. Hyperparameters
The hyperparameters of SPIN-VM include the regularization param-

eters λfeat and λnei. In addition, there are two hyperparameters that shape
the Laplacian matrix: window size and filter type. The Laplacian matrix L
is of size Nvox�Nvox, where Nvox is the number of cortical voxels. L ¼ T�
C, where cij (entries of matrix C) corresponds to the proximity of voxels i
and j in three-dimensional space (high for immediate neighbors, low or
zero for voxels far away), and T is a diagonal matrix with Tii ¼ P

j
cij.

Both window size and filter type determine cij.
Window size relates to the selection of voxel neighborhoods across

which spatial regularization is performed. One possibility is to select
voxels that are in close spatial proximity to each other (“spatial neigh-
borhood”); another possibility is to select voxels that are functionally
similar to each other (“functional neighborhood”). We investigated both.
To optimize the extent of spatial neighborhood for SPIN-VM, we tested
seven different window sizes (extending 3, 5, 7, 9, 11, 13, or 15 voxels).
Note that a window size of 3 voxels is the smallest size we can test
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without breaking symmetry as it indicates only a single voxel on each
side of the central voxel whereby a neighborhood of 27 voxels is con-
structed. For example, a window size of 1 would simply indicate a single
voxel with no neighbors—a case that is equivalent to VM. Only voxels
within the specified window were considered neighbors, and thus
included in the construction of the graph Laplacian. Specifically, a cubic
window was prescribed in which zero weights were assigned to voxels
outside the window. When part of the cube was outside the cortex, the
voxels outside were assigned zero weights regardless of their proximity
to the central voxel. We set the filter type to Gaussian for this analysis
whereby selected voxels in the neighborhood were weighted based on a
Gaussian function. Separate Laplacian matrices based on a Gaussian filter
were formed using each window size. We determined the optimal win-
dow size by comparing prediction scores across functional ROIs (see
Supp. Tables 1 and 2).

Similarly, to optimize the extent of functional neighborhood for SPIN-
VM, we tested the same seven window sizes (extending 3, 5, 7, 9, 11, 13,
or 15 voxels). To measure functional similarity between voxels, we
computed pairwise correlations in BOLD responses. The functional
neighborhood of each voxel was formed from voxels that show the
highest correlations with the given voxel (e.g., 125 voxels for window
size 5). Similar to spatial neighborhood analysis, we set the filter type to
Gaussian for this analysis whereby selected voxels in the neighborhood
were weighted based on a Gaussian function. Separate Laplacian
matrices based on a Gaussian filter were formed using each window size.
We determined the optimal window size for functional neighborhoods by
comparing prediction scores across functional ROIs.

The primary difference between spatial and functional neighborhood
analyses is the difference in calculation of inter-voxel distances, ac-
cording to which a set of neighboring voxels is selected. For spatial
neighborhoods, selection is based on Euclidean distance between voxels
in three-dimensional volumetric space. For functional neighborhoods,
selection is based on (1-R), where R is the correlation coefficient between
response vectors of voxels.

In this study, filter type determines the distribution of entries of C
within a specified neighborhood. We tested three types of filters:
Gaussian filter, average (or boxcar) filter, and LoG (Laplacian of
Gaussian) filter. As an alternative, we also investigated the case where
weights are assigned based on functional correlations between voxel
responses rather than the abovementioned filters. The Gaussian filter was
centered on the voxel of interest and had a FWHM equal to half the
window size. The tails of the Gaussian function stretched towards the
edges of the cube and dropped to zero outside the edges:

cij ¼
exp

�� ���xi � xj
��2 þ ��yi � yj

��2 þ ��zi � zj
��2��ð2σ2Þ�

P
ði;jÞ2Nnei

exp
�� ���xi � xj

��2 þ ��yi � yj
��2 þ ��zi � zj

��2��ð2σ2Þ�
(12)

where xi; yi; zi are the coordinates of voxel i in the three-dimensional
grid of voxels. The average filter assigned uniform weights to all voxels
in the neighborhood such that the sum of weights equaled 1:

cij ¼ 1
jNneij (13)

where Nnei is the set of cortical voxels in the neighborhood. The LoG filter
was a rotationally symmetric filter with identical standard deviation to
the Gaussian filter:
cij ¼
exp

�� ���xi � xj
��2 þ ��yi � yj

��2 þ ��zi � zj
��2��ð2σ2Þ� ����xi � xj

��2 þ ��yi � yj
��2 þ

σ4
P

ði;jÞ2Nnei
exp

�� ���xi � xj
��2 þ ��yi � yj

��2 þ ��zi � zj
��2��ð2σ2Þ�
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We determined the optimal filter type by comparing prediction scores
across functional ROIs (see Supp. Tables 3 and 4).

2.10. Effects of spatial smoothing

In VM, shared information across neighboring voxels is ignored,
therefore VM might have suboptimal sensitivity in assessment of func-
tional selectivity. To increase sensitivity in the presence of high levels of
noise, one alternative approach would be to smooth BOLD responses
prior to model fitting. While smoothing may help reduce noise by aver-
aging across multiple voxels, it can decrease sensitivity in detecting
selectivity in single voxels. Thus, it can lead to undesirable loss of spatial
precision (Kamitani and Sawahata, 2010). In contrast, SPIN-VM uses
spatial regularization to leverage shared information across neighboring
voxels without any averaging. SPIN-VM still estimates model weights for
individual voxels and generates predictions for raw unsmoothed
single-voxel BOLD responses. Therefore, SPIN-VM improves model per-
formance while maintaining sensitivity in detecting functional selectivity
in individual voxels.

To test the effects of spatial smoothing, we performed response
smoothing via a centered Gaussian low-pass filter of size 3� 3� 3 with
FWHM equal to half the window size, the same filter that was used to
form graph Laplacians. We then implemented the standard model fitting
procedures as in VM on these smoothed BOLD responses. We calculated
prediction scores and local coherence values for both the category and
motion-energy models. To demonstrate that SPIN-VM is fundamentally
different than smooth-VM, we compared the prediction scores and local
coherence values of models obtained using these two different proced-
ures. Note that while training and validation takes place on smoothed
responses, prediction scores are still calculated on unsmoothed responses
for smooth-VM. For SPIN-VM, however, no smoothing was applied on
training, validation, or test data.

Smoothing inherently suppresses nuisance variations in BOLD re-
sponses including physiological and measurement noise. As a result,
smoothing test data is likely to cause an upward bias in prediction score
measurements. To examine this issue, we first measured the prediction
scores of models obtained via VM, smooth-VM and SPIN-VM on
smoothed test data. Training and validation data for VM and SPIN-VM
were unsmoothed, and training and validation data for smooth-VM
were smoothed for this analysis. Furthermore, we measured the predic-
tion scores of models obtained via VM, smooth-VM and SPIN-VM when
both test and validation data were smoothed. Training data for VM and
SPIN-VM were unsmoothed, and training data for smooth-VM were
smoothed for this analysis.

2.11. Effect of training data size

Since SPIN-VM uses spatial information across multiple voxels unlike
VM, we expected that it would yield higher prediction performance for
single voxels compared to VM. This improved performance can be
particularly valuable when the size of training data is limited. To inves-
tigate this issue, we fit separate models using both VM and SPIN-VM
using training samples of three different sizes; we used the full set
(3600 samples), a half set (1800 samples), and a quarter set (900 sam-
ples). For each size, model prediction scores were calculated on the in-
dependent test data. Percentage improvement compared to VM for all
functional ROIs was calculated as
��zi � zj
��2 � 2σ2

�
(14)
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improvementð%Þ ¼ rx � rVM
1�minðrx; rVMÞ � 100 (15)
where rx denotes the mean prediction score obtained by method x, where
x is either SPIN-VM or smooth-VM and rVM denotes the mean prediction
score obtained by VM. This measure normalizes the raw improvement
against the maximum possible improvement. Note that this measure is
bias-free as it is possible to obtain a negative “improvement” in cases
where rVM is larger than rx.

2.12. Local coherence analysis

It is commonly thought that the human brain encodes similar infor-
mation across spatially clustered groups of neural populations (Pouget
et al., 2000). Studies on low-level vision suggest that retinotopic features
such as spatiotemporal frequency and orientation are represented
coherently in early-visual areas (Tootell et al., 1998). A recent study
further suggests that semantic information is represented in smooth
gradients across much of cerebral cortex (Huth et al., 2012). These pre-
vious studies imply that neighboring cortical voxels typically represent
correlated information. If such correlation exists, the implication is that
these voxels have similar feature selectivity and thus they should have
coherent model weights. Because VM fits an independent model to each
voxel, it might be less sensitive in capturing this coherence. SPIN-VM, on
the other hand, explicitly leverages correlated information rendering it
more sensitive in capturing coherent functional selectivity. Thus, we
expect that selectivity maps obtained via SPIN-VM will be more coherent
on the cortical surface compared to those obtained via VM.

To test this prediction, we computed local coherence values for each
cortical voxel. Spatial variability of each model feature was taken as the
standard deviation of feature weights across voxels in a 3� 3� 3
neighborhood:

σweights ¼
XF

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N� 1

XN
j¼1

�����wij � 1
N

XN
j¼1

wij

�����
2

vuut (16)

where N is the number of cortical voxels in the neighborhood, F is the
number of features retained after PCA (300 for the category model, 400
for the motion-energy model), and wij is the selectivity of voxel j for
feature i. The spatial variability values given by VM, SPIN-VM, and
smooth-VM were then normalized by the maximum value across the
three methods, and then inverted to obtain local coherence values. We
calculated local coherence of an ROI by averaging across voxels within
the ROI.

3. Results

SPIN-VM utilizes three additional hyperparameters during model
fitting compared to VM. The first one is λnei, the spatial regularization
parameter across neighborhoods of voxels. λnei is selected for each voxel
independently during model fitting to control the relative degree of
regularization in feature vs. spatial dimensions. The other two are win-
dow size and filter type, which determine the characteristics of spatial
regularization. Although neighboring cortical voxels typically represent
correlated information, the extent and distribution of these correlations
can vary across cortical areas. To account for potential variability, we
performed spatial regularization by utilizing a graph Laplacian matrix
that stores proximity information among voxels. To keep the number of
variables to a minimum, we selected the optimal window size and filter
type through a rigorous optimization procedure and used these optimal
parameters thereafter.

3.1. Parameter optimization for SPIN-VM

An important concern for SPIN-VM is the selection of voxel
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neighborhoods. One possibility is to select voxels that are in close spatial
proximity (“spatial neighborhood”); another possibility is to select voxels
that are functionally similar (“functional neighborhood”). We investi-
gated both possibilities. To optimize the extent of spatial neighborhood
for SPIN-VM, we tested seven different window sizes (extending 3, 5, 7,
9, 11, 13, or 15 voxels). Two different encoding models were used. The
first one was a category model that measured selectivity for object and
action categories. The second one was a motion-energy model that
measured selectivity for low-level visual features including spatiotem-
poral frequency and orientation. We fit separate category and motion-
energy models independently for each window size. Prediction scores
across well-known functional ROIs are listed in Supp. Table 1 for the
category model, and in Supp. Table 2 for the motion-energy model. A
window size of 3 yields the highest prediction scores for the category
model across the majority of the ROIs (p< 0.05, Bootstrap test). For the
motion-energy model, a window size of 3 yields the highest prediction
scores across all ROIs (p< 0.05, Bootstrap test).

Similarly, to optimize the extent of functional neighborhood for SPIN-
VM, we tested the same seven window sizes (3, 5, 7, 9, 11, 13, or 15
voxels). To measure functional similarity between voxels, we computed
pairwise correlations in BOLD responses. The functional neighborhood of
each voxel was formed from voxels that show the highest correlations
with the given voxel (e.g., 125 voxels for window size 5). When these
functional neighborhoods are used, a window size of 9 yields the highest
prediction scores for the category model across the majority of the ROIs
(p< 0.05; see Supp. Fig. 14 that shows the improvement in prediction
scores with a window size of 9 over a window size of 15). However,
prediction scores based on spatial neighborhoods are still higher than
those based on functional neighborhoods for the category model across
the majority of the ROIs (56.2% of voxels across ROIs prefer a spatial
window of 3 over a functional window of 9, the remaining voxels have
similar prediction scores for both cases; Supp. Fig. 11). Thus, we used a
spatial neighborhood with a window size of 3 voxels for subsequent
analyses to ensure high model performance and low model complexity.

Another important design parameter for SPIN-VM is how information
from neighboring voxels is weighted. Within a given neighborhood, it is
expected that correlations among neurons will diminish with increasing
distance (Lee et al., 1998; Smith and Kohn, 2008). However, the precise
dependence between response correlation and spatial distance is un-
known. In SPIN-VM, responses from neighboring voxels are used to
improve the accuracy of the central voxel's model. To optimize the
relative weighting of these responses we tested three different types of
filters: Gaussian, average, and Laplacian of Gaussian (LoG). As an alter-
native, we also investigated the case where weights are assigned based on
functional correlations between voxel responses rather than the above-
mentioned filters. We fit separate category and motion-energy models
independently for each filter type. Prediction scores across well-known
functional ROIs are listed in Supp. Table 3 for the category model, and
in Supp. Table 4 for the motion-energy model. Gaussian filter yields the
highest prediction scores for both the category and motion-energy
models across the majority of the ROIs (45.6% and 42.1% of voxels
across ROIs prefer Gaussian filter for the category and motion-energy
models, respectively. The remaining voxels have similar prediction
scores for all filter types). Gaussian filter also yields higher prediction
scores for the categorymodel across the majority of the ROIs compared to
the alternative approach of using functional correlations between voxel
responses (52.2% of voxels across ROIs prefer Gaussian filters over
functional correlations, the remaining voxels have similar prediction
scores for both cases; Supp. Fig. 12). Based on these results, we deter-
mined the optimal hyperparameters to be a Gaussian filter with a win-
dow size of 3 for both the category and motion-energy models.

3.2. Prediction performance of SPIN-VM

Because SPIN-VM utilizes correlated information across neighboring
voxels, we expect that it will improve model performance compared to
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VM. To examine this issue, we fit separate category and motion-energy
models in single voxels using VM and SPIN-VM. Prediction scores ob-
tained using the full set of training data for each functional ROI are listed
in Supp. Table 5 for the category model and in Supp. Table 6 for the
motion-energy model. We calculated the improvement in prediction
scores (“SPIN-VM vs. VM” and “SPIN-VM vs. smooth-VM”) across twelve
ROIs for the category and motion-energy models (Figs. 2 and 3, respec-
tively). For both models, SPIN-VM outperforms VM in all ROIs (p< 0.05,
Bootstrap test). For the category model, improvements up to 10% are
Fig. 2. Prediction score improvements with SPIN-VM over VM. Improve-
ment in prediction scores with SPIN-VM over VM, displayed in twelve functional
ROIs. Prediction scores were estimated separately while the size of training data
was varied: Full set (light gray), half (gray), quarter (dark gray). Prediction
scores are shown as mean percentage improvement across five subjects. Error
bars indicate standard error of the mean (SEM). Brackets indicate significant
differences across conditions corresponding to different sizes of training data
(p< 0.05, Bootstrap test). (a) Improvements for the category model. (b) Im-
provements for the motion-energy model. For both models and regardless of the
size of training data, SPIN-VM significantly improves prediction scores in all
functional ROIs compared to VM (p< 0.05). For the category model, the largest
improvements are observed in high-level visual areas across lateral occipito-
temporal cortex and ventral temporal cortex, including FFA, EBA, PPA, MT, and
LOC. As expected, these improvements become significantly larger as the size of
training data is reduced (p< 0.05). For the motion-energy model, improvements
in prediction scores are relatively more uniform across early- and high-level
visual areas. Similar to the category model, the improvements in prediction
scores with the motion-energy model become significantly larger as the size of
training data is reduced (p< 0.05). Abbreviations: EBA, extrastriate body area;
FEF, frontal eye fields; FFA, fusiform face area; IPS, intraparietal sulcus; LOC,
lateral occipital complex; MT, human middle temporal area; PPA, para-
hippocampal place area; RET, early visual areas V1-3; RSC, retrosplenial cortex;
TOS, transverse occipital sulcus.

Fig. 3. Prediction score improvements with SPIN-VM over smooth-VM.
Improvement in prediction scores with SPIN-VM over smooth-VM, displayed in
twelve functional ROIs. Prediction scores were estimated separately while the
size of training data was varied: Full set (light gray), half (gray), quarter (dark
gray). Prediction scores are shown as mean percentage improvement across five
subjects. Error bars indicate standard error of the mean (SEM). Brackets indicate
significant differences across conditions corresponding to different sizes of
training data (p< 0.05, Bootstrap test). (a) Improvements for the category
model. (b) Improvements for the motion-energy model. For both models and
regardless of the size of training data, SPIN-VM significantly improves predic-
tion scores in all functional ROIs compared to smooth-VM (p< 0.05). The only
exception is TOS, where SPIN-VM and smooth-VM perform similarly for the
category model (p¼ 0.1424). For the category model, the largest improvements
are observed in high-level visual areas across lateral occipitotemporal cortex and
ventral temporal cortex, including FFA, EBA, PPA, MT, and LOC. As expected,
these improvements become significantly larger as the size of training data is
reduced (p< 0.05). For the motion-energy model, improvements in prediction
scores are relatively more uniform across early- and high-level visual areas.
Similar to the category model, the improvements in prediction scores with the
motion-energy model become significantly larger as the size of training data is
reduced (p< 0.05).
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observed in high-level visual areas across lateral occipitotemporal cortex
and ventral temporal cortex, including FFA, EBA, PPA, MT, and LOC. For
the motion-energy model, the improvements are relatively more uniform
(up to 7%) across early- and high-level visual areas.

We further expect that these improvements in prediction accuracy
will grow as the size of the training data becomes limited. With fewer
training data, models are likely to overfit and thus poorly generalize to
test data. Since SPIN-VM utilizes shared information across neighboring
voxels, it can alleviate the performance loss that VM and smooth-VM can
experience. To test this prediction, we fit separate models using the half



Fig. 4. Cortical distribution of regularization parameters. Cortical flatmaps
of optimal regularization parameters across model features (λfeat) for (a) VM and
(b) SPIN-VM displayed in subject S1 for the category model. Optimal λfeat values
were determined separately for each voxel during model fitting. Color bar shows
the range of λfeat [25-212] in logarithmic scale (pink¼ low, yellow¼ high).
Prescribing higher λfeat enforces increased smoothing across the feature weights
in the model. Therefore, it reduces sensitivity in capturing potential selectivity
for distinct features. In contrast, prescribing lower λfeat improves sensitivity.
Optimal λfeat values are much lower with SPIN-VM compared to VM, especially
across early- and high-level visual areas in occipital and ventral temporal
cortices. Therefore, SPIN-VM is more sensitive in capturing potential selectivity
for individual features. White labels and outlines denote brain regions identified
using conventional functional localizers. Dark gray denotes brain regions with
fMRI signal dropout. RH, right hemisphere. AC, auditory cortex; ATFP, anterior
temporal face patch; Broca, Broca's area; FO, frontal opercular eye movement
area; IFSFP, inferior frontal sulcus face patch; M1F, M1H, M1M, primary motor
areas for feet, hands, and mouth; OFA, occipital face area; S1F, S1H, S1M,
primary somatosensory areas for feet, hands, and mouth; S2F, secondary so-
matosensory area for feet; SEF, supplementary eye fields; SMFA, supplementary
motor foot area; SMHA, supplementary motor hand area; sPMv, superior pre-
motor ventral speech area.
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set (1800 samples), and quarter set (900 samples) of training data. We
calculated the improvement in prediction scores (SPIN-VM vs. VM)
across twelve ROIs for both the category and motion-energy models
based on each set (Fig. 2). With both half and quarter sets, SPIN-VM
outperforms VM in all ROIs for the category and motion-energy models
(p< 0.05). As expected, when moving from the full set to the quarter set,
the improvements with SPIN-VM significantly increase (up to 17%) in the
category-selective areas in ventral temporal cortex for the category
model (p< 0.05). Similarly, the improvements with SPIN-VM signifi-
cantly increase (up to 11%) in all ROIs for the motion-energy model
(p< 0.05). Taken together, these results indicate that SPIN-VM improves
the performance of single-voxel models, and that these improvements
become more prominent for smaller sets of training data.

Broad improvements in prediction scores with SPIN-VM imply the
existence of correlated information across many regions of cortex. In the
presence of such correlations, one could argue that an alternative
approach would be to apply a simple smoothing across BOLD responses
prior to VM. Spatial smoothing can help alleviate measurement noise,
however it will inadvertently decrease sensitivity to functional selectivity
differences across voxels as it inherently suppresses nuisance variations
in BOLD responses. An important advantage of spatial regularization over
smoothing is that regularization parameters can be optimized separately
for each voxel in each subject. An equally important advantage is that
cross-validation procedures used to select regularization parameters
(thereby model weights) and assess model performance can be per-
formed on unsmoothed data, in order to retain maximal sensitivity to
information represented in single voxels. In contrast, cross-validation on
smoothed responses optimizes parameters and measures performance
inherently for a population of voxels, and so it can yield suboptimal
sensitivity to single voxels. Thus, we expect that SPIN-VM will outper-
form naive spatial smoothing in terms of model performance. To examine
this issue, we calculated prediction score improvements with SPIN-VM
over smooth-VM for three different sizes of training data (full, half,
quarter) and for both the category and motion-energy models (Fig. 3).
Note that smooth-VM was trained and validated on smoothed BOLD re-
sponses but tested on unsmoothed responses. The resulting prediction
scores are listed in Supp. Table 5 for the category model and in Supp.
Table 6 for the motion-energy model. SPIN-VM performs significantly
better in all ROIs for both the category and motion-energy models
(p< 0.05). The only exception is TOS, where SPIN-VM and smooth-VM
perform similarly for the category model (p¼ 0.1424). This result in-
dicates that spatial regularization of model weights is more effective than
spatial smoothing in utilizing shared information across neighboring
voxels.

Next, we investigated the effect of testing on smoothed responses. We
found that prediction scores for all three methods are elevated when
smoothed test data were used, even though VM and SPIN-VM models
were fit to and validated on unsmoothed data (Supp. Fig. 17, Supp. Ta-
bles 9-10). Compared to measurements on unsmoothed test data, mean
prediction scores across whole cortex increase by 12% for VM, 15% for
SPIN-VM, and 24% for smooth-VM (naturally smooth-VM benefits rela-
tively more from smoothed test data). We also measured the prediction
scores of models obtained via VM, smooth-VM and SPIN-VM when both
test and validation data were smoothed. In this case, we find that SPIN-
VM yields nearly identical performance to smooth-VM (Supp. Fig. 18,
Supp. Tables 11-12). Taken together, these results suggest that higher
prediction scores for voxelwise models measured on smoothed responses
do not necessarily indicate improved model performance, but they can
rather reflect a statistical bias.

3.3. Sensitivity in measuring selectivity for model features

VM performs regularization across model features during model
fitting. As a result, heavier regularization parameters will be prescribed
in the presence of high measurement noise, reducing sensitivity to inter-
voxel selectivity differences. In contrast, the additional spatial
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regularization in SPIN-VM can help subdue unnecessary regularization
across model features. Therefore, we expect that SPIN-VM will be more
sensitive in detecting selectivity for distinct model features compared to
VM.
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To investigate this issue, we compared the optimal λfeat values when
using the category model for VM and SPIN-VM by visualizing them on
cortical flatmaps. SPIN-VM exhibits more conservative regularization
across model features compared to VM, especially across early- and high-
level visual areas in occipital and ventral temporal cortices (Fig. 4). To
illustrate the effect of λfeat on estimated model weights, we illustrate
functional selectivity differences between VM and SPIN-VM for a repre-
sentative voxel in intraparietal sulcus (IPS) (Fig. 5). A substantially lower
regularization parameter is used across features for this voxel with SPIN-
VM (λfeat¼ 25) compared to VM (λfeat¼ 214). Importantly, the response of
this voxel is well-estimated with SPIN-VM (r¼ 0.73), but not with VM
(r¼ 0.05). IPS has been implicated in the representation of actions and
locomotion of animate objects (Grefkes and Fink, 2005). While the model
obtained via VM fails to capture selectivity for these features, SPIN-VM
successfully captures selectivity for categories related to animals such
as ‘rodent’ and ‘carnivore’, as well as categories related to movement
such as ‘move’ and ‘jump’. This result suggests that SPIN-VM prevents
unnecessary overpenalization across model features and improves
sensitivity in estimating functional selectivity for individual features.

We also visualized the optimal λnei values on cortical flatmaps (Supp.
Fig. 13). As expected, we find that optimal λnei values are relatively
higher in both low-level retinotopic and high-level category selective
visual areas that are more engaged during viewing of natural movies than
non-visual areas such as frontotemporal, motor, and somatosensory
cortices. These high λnei values likely compensate for the relatively lower
λfeat values in SPIN-VM compared to VM.

Finally, we inspected the functional selectivity profiles of individual
voxels as measured by SPIN-VM and smooth-VM. A representative voxel
in posterior superior temporal sulcus (pSTS) is illustrated (Supp. Fig. 15;
similar to Fig. 5). pSTS has been implicated in the representation of facial
identities and visually observed social interactions (Srinivasan et al.,
Fig. 5. Functional selectivity in a single voxel. Functional selectivity for object an
#35890) in intraparietal sulcus (IPS) of subject S1. Functional selectivity obtained by
distinct object or action organized according to the hierarchical relations in the Wor
correspond to categories that evoke above-mean responses, whereas blue nodes cor
reflects the magnitude of the category response. The response of voxel #35890 is we
Note that in VM, a substantially larger regularization parameter (λfeat) was used acro
VM. In contrast, SPIN-VM applies a relatively lenient regularization across features, a
categories. IPS has been implicated in the representation of actions and locomotion of
to capture these representations, SPIN-VM successfully captures selectivity for categ
related to movement such as ‘move’ and ‘jump’.
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2016; Walbrin et al., 2018). While the model obtained via smooth-VM
largely fails to capture these representations, SPIN-VM successfully
captures selectivity for categories related to individuals such as ‘person’
and ‘man’, as well as categories related to social communication such as
‘talk’ and ‘text’. This simple example clearly demonstrates that smooth-
ing reduces sensitivity to functional selectivity in individual voxels.

3.4. Local coherence of cortical representations

It is commonly assumed that the human brain encodes information
coherently across spatially clustered groups of neural populations (Pou-
get et al., 2000). Consistent with this view, studies on low-level vision
suggest that visual space is represented topographically in early-visual
areas where nearby voxels represent similar angle and eccentricity
values (Engel et al., 1997; Tootell et al., 1998). A recent study on natural
vision further suggests that semantic information is also represented in
smoothly organized gradients across much of cerebral cortex (Huth et al.,
2012). These results indicate that both high-level category and low-level
motion-energy representations in cortex exhibit a substantial degree of
spatial coherence.

Because SPIN-VM explicitly leverages correlated information across
neighboring voxels, it can offer increased sensitivity to unravel spatially
coherent cortical representations compared to VM. To examine this issue,
we compared the high-level category and low-level motion-energy rep-
resentations recovered using VM and SPIN-VM. We first formed separate
lower-dimensional spaces (a semantic space for the category model and a
Gabor space for the motion-energy model) by applying PCA on fit model
weights. We then projected individual-subject model weights onto these
lower-dimensional spaces (see Methods for details). For a representative
subject, Fig. 6 displays the semantic maps (see Supp. Figs. 1-5 for all
subjects) and Fig. 7 displays the Gabor maps (see Supp. Figs. 6–10 for all
d action categories as measured by the category model for a single voxel (voxel
VM (left) and SPIN-VM (right) is shown. Each node in these graphs represents a
dNet lexicon. Some important nodes are labeled to orient the reader. Red nodes
respond to categories that evoke below-mean responses. The size of each node
ll-predicted by SPIN-VM (r¼ 0.73), and only poorly-predicted by VM (r¼ 0.05).
ss features. This reduces sensitivity and predictive power of models obtained via
nd it has greater sensitivity in capturing selectivity for a broader distribution of
animate beings (Grefkes and Fink, 2005). While the model obtained via VM fails
ories related to animals such as ‘rodent’ and ‘carnivore’, as well as categories



Fig. 6. Cortical flatmaps of semantic representation. Cortical flatmaps of semantic representation as measured by (a) VM and (b) SPIN-VM for subject S1. The
flatmaps on the left are generated based on the model weights estimated using the full training data, whereas the flatmaps on the right are generated based on the
model weights estimated using one quarter of the training data. To obtain consistent principal components (PCs) across both VM and SPIN-VM models, model weights
obtained by both techniques were pooled and PCA was applied. Category model weights for each voxel were then projected onto the second, third, and fourth PCs of
the group semantic space. Each voxel was assigned a color by representing projections on the second, third, and fourth PCs with red, green, and blue channels,
respectively. Similar colors imply selectivity for similar semantic categories (e.g., dark blue implies selectivity for buildings and furniture, whereas magenta implies
selectivity for vehicles). Insets show zoomed-in views of a cortical region in and around LOC. Compared to VM, estimated selectivities of neighboring voxels are more
congruent (i.e., they have more similar colors) for SPIN-VM regardless of whether models are trained on a full or a quarter set. The difference, however, is more
pronounced when they are trained on a quarter set. Therefore, SPIN-VM produces more coherent semantic maps across many high-level visual areas. Formatting is
identical to Fig. 4.
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subjects). The figures include cortical flatmaps of semantic and low-level
visual representation based on model weights estimated using the full
(left) and a quarter (right) set of the training data. We observe that SPIN-
VM yields more coherent semantic and Gabor maps compared to VM. The
difference between the two methods is clearer when only a quarter of the
training data is used. The improved coherence in semantic maps is clearly
seen across high-level visual areas in lateral occipitotemporal cortex and
ventral temporal cortex that are implicated in semantic representation
during natural vision (Huth et al., 2012). Similarly, the improved
752
coherence in Gabor maps is particularly noticeable across early visual
areas that are implicated in representation of low-level visual informa-
tion (Engel et al., 1997; Tootell et al., 1998). Taken together, these results
indicate that SPIN-VM is more powerful in recovering coherent repre-
sentations compared to VM.

Next, a voxelwise metric was used to quantitatively evaluate the
improvement in coherence of model weights. Spatial variability of each
model feature was taken as the standard deviation of feature weights
across a neighborhood and then inverted to obtain local coherence



(caption on next column)

Fig. 7. Cortical flatmaps of low-level visual representation. Cortical flat-
maps of low-level visual representation as measured by VM (top) and SPIN-VM
(bottom) for subject S5. The flatmaps on the left are generated based on the
model weights estimated using the full training data, whereas the flatmaps on
the right are generated based on the model weights estimated using one quarter
of the training data. To obtain consistent principal components (PCs) across both
VM and SPIN-VM models, model weights obtained by both techniques were
pooled and PCA was applied. Motion-energy model weights for each voxel were
then projected onto the first three PCs of the group Gabor space. Each voxel was
assigned a color by representing projections on the first, second, and third PCs
with red, green, and blue channels, respectively. Similar colors imply selectivity
for similar low-level properties (e.g., yellow signifies medium eccentricity and
lower spatial frequency, whereas magenta signifies low eccentricity and higher
spatial frequency). Compared to VM, estimated selectivities of neighboring
voxels are more congruent (i.e., they have more similar colors) for SPIN-VM
regardless of whether models are trained on a full or a quarter set. The differ-
ence, however, is more pronounced when they are trained on a quarter set.
Therefore, SPIN-VM produces more coherent Gabor maps across early visual
areas. Formatting is identical to Fig. 4.
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values. Local coherence was calculated in single voxels for both the
category and motion-energy models. These coherence values were pro-
jected onto the cortical surface to illustrate differences in local coherence
(category model, Fig. 8; motion-energy model, Fig. 9). Mean local co-
herences within functional ROIs were also calculated to draw statistical
inferences on competingmethods, the same procedure as the one used for
calculating mean prediction scores across ROIs was employed (Fig. 10;
listed in Supp. Table 7 for the category model; listed in Supp. Table 8 for
the motion-energy model).

As expected, SPIN-VM consistently results in significantly higher local
coherence than VM in all ROIs for both the category and motion-energy
models (p< 0.05, Bootstrap test). SPIN-VM also yields significantly
higher local coherence than smooth-VM in V7, FFA, EBA, MT, LOC, PPA,
and RSC for the category model (p< 0.05). No significant difference was
observed in V4, TOS, IPS, and FEF (p> 0.19). For the motion-energy
model, SPIN-VM yields significantly higher local coherence than
smooth-VM in all ROIs (p< 0.05), except IPS and FEF for which no sig-
nificant difference was observed (p> 0.88). These results confirm that
both semantic and Gabor maps produced by SPIN-VM are significantly
more coherent compared to those given by VM and smooth-VM.

4. Discussion

Voxelwise modeling (VM) is a powerful framework that can accu-
rately predict single voxel responses evoked by complex natural stimuli,
and that can provide an explicit description of how information is rep-
resented in individual voxels (Naselaris et al., 2011). However, VM dis-
regards response correlations across neighboring voxels as single-voxel
models are fit independently. With high measurement noise, this can
diminish sensitivity in assessment of functional selectivity. Here, we
proposed a spatially-informed voxelwise modeling (SPIN-VM) technique
to address this limitation. SPIN-VM uses regularization across neigh-
boring voxels in addition to regularization across model features. As a
result, it improves model performance and yields improved sensitivity in
assessment of fine-grained cortical representations.

We optimized the regularization parameters in SPIN-VM across the
feature dimension (λfeat) and spatial dimension (λnei) for each individual
voxel separately. In addition, a weighted graph Laplacian is utilized to
characterize the extent and distribution of shared information across
neighboring voxels. This helps improve sensitivity in detecting functional
selectivity of individual voxels. We tested various window sizes and
weighting functions to optimize the Laplacian. A Gaussian weighting
function with a window size of 3 was observed to yield near-optimal
performance broadly across cortical voxels. However, further perfor-
mance improvements might be possible by optimizing these hyper-
parameters for each individual voxel separately at the expense of added
computational burden.



(caption on next column)

Fig. 8. Cortical flatmaps of local coherence in functional selectivity for the
category model. Cortical flatmaps of local coherence for the category model
based on model weights estimated by (a) VM, (b) smooth-VM, and (c) SPIN-VM
for subject S1. Local coherence was calculated for each voxel based on the
standard deviation of model weights across neighboring voxels (see Local
coherence analysis for details). Yellow indicates higher local coherence compared
to red. As expected, spatially smoothing the BOLD responses before imple-
menting VM improves local coherence. However, even though SPIN-VM does
not use any spatial smoothing, it yields the most coherent map among all
techniques. Improved coherence is observed with SPIN-VM in many voxels
distributed across the cortex. The most prominent improvements are observed in
high-level visual areas including EBA, MT, and LOC. Formatting is identical
to Fig. 4.
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SPIN-VM has several important advantages over conventional fMRI
analyses. Traditional univariate techniques including SPM and functional
localizers typically assume smoothness of BOLD responses across
contiguous voxels and apply explicit spatial smoothing to increase SNR.
This reduces spatial precision as functional selectivity differences across
individual voxels are blurred. To increase sensitivity, MVPA was pro-
posed that analyzes the responses of multiple voxels to classify BOLD
response patterns into discrete experimental conditions (Haxby, 2012;
Norman et al., 2006). While MVPA does not use spatial smoothing,
classifier weights are estimated for multiple voxels at once, so they may
not accurately reflect the contribution of individual voxels to the repre-
sented information. This in turn renders the interpretation of classifier
weights difficult (Haufe et al., 2014). In contrast, SPIN-VM utilizes in-
formation across neighboring voxels while still optimizing performance
for single-voxel response prediction. Thus, SPIN-VM is more powerful in
examining fine-grained representations in single voxels compared to
both standard univariate and multivariate techniques.

Several methods were previously introduced to leverage shared in-
formation across contiguous voxels in order to improve model perfor-
mance (Grosenick et al., 2013; Katanoda et al., 2002; Penny et al., 2005;
Wen and Li, 2016). A joint modeling approach was proposed (Katanoda
et al., 2002) that models pooled voxel responses to estimate the weights
for the central voxel within a neighborhood. A related approach esti-
mates model weights for voxels within a searchlight separately, and then
averages model weights for a given voxel across the multiple distinct
searchlights in which it appears (Wen and Li, 2016). In this latter
method, the averaging of model weights and prediction scores across
searchlights may lead to suboptimal selection of regularization parame-
ters and excessive smoothing of functional selectivity. Moreover, itera-
tive model estimation is performed that can be computationally
demanding. Thus, although no spatial smoothing is used, joint-modeling
approaches commonly average information contained within the neigh-
borhood during model fitting. This can reduce spatial precision and
introduce difficulty in interpreting single-voxel model weights. While
SPIN-VM also pools information across a neighborhood, model weights
are estimated based on the prediction accuracy of unaveraged
single-voxel responses. Therefore, SPIN-VM retains higher sensitivity to
functional selectivity in individual voxels.

An alternative approach for utilizing shared information across
spatially contiguous voxels is to use spatial priors (Grosenick et al., 2013;
Penny et al., 2005). A previous study proposed a Laplacian operator to
penalize differences across model weights of neighboring voxels as in
SPIN-VM (Penny et al., 2005). However, in that previous study, no reg-
ularization was performed across model features, potentially reducing
sensitivity to functional selectivity and limiting utility in analysis of
naturalistic fMRI experiments that contain thousands of stimulus fea-
tures. Another study proposed a graph-constrained operator to imple-
ment spatial priors (Grosenick et al., 2013). Graph-constrained operators
were demonstrated to improve classification performance for discrete
experimental task conditions based on BOLD responses. However, the
utility of this approach for fitting encoding models was not considered.
Note that both previous methods incorporating spatial priors involve



Fig. 9. Cortical flatmaps of local coherence in functional selectivity for the
motion-energy model. Cortical flatmaps of local coherence for the motion-
energy model based on model weights estimated by (a) VM, (b) smooth-VM,
and (c) SPIN-VM for subject S1. Local coherence was calculated for each
voxel based on the standard deviation of model weights across neighboring
voxels (see Local coherence analysis for details). Yellow indicates higher local
coherence compared to red. Although SPIN-VM does not use any spatial
smoothing, it yields the most coherent map among all techniques. Formatting is
identical to Fig. 4.

Fig. 10. Local coherence values across functional ROIs. Local coherence
values (mean� SEM) across five subjects in twelve functional ROIs, based on
model weights estimated by VM, smooth-VM, and SPIN-VM for (a) the category
model and (b) the motion-energy model. Brackets indicate significant differ-
ences in local coherence (p< 0.05, Bootstrap test). (Mean local coherence values
for each functional ROI are listed in Supp. Tables 7 and 8 for the category and
the motion-energy models, respectively.) For the category model, SPIN-VM re-
sults in significantly higher local coherence compared to the other two ap-
proaches, especially in lateral occipitotemporal areas including EBA, MT, and
LOC (p< 0.05), but not in retinotopically organized early visual areas (RET). On
the other hand, for the motion-energy model, SPIN-VM results in significantly
higher local coherence in retinotopically organized early visual areas (RET and
V4), in addition to high-level visual areas in ventral temporal cortex and lateral
occipitotemporal cortex including FFA, EBA, MT, LOC, PPA, and RSC (p< 0.05).
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Monte Carlo sampling, so they are computationally more demanding
than SPIN-VM.

Response correlations across neighboring voxels can partly be
attributed to correlations in stimulus-driven portion of BOLD responses,
and partly due to intrinsic noise correlations in BOLD responses (Hen-
riksson et al., 2015). Note that while SPIN-VM utilizes shared informa-
tion across neighboring voxels, it still aims to fit models that best explain
single-voxel BOLD responses in terms of stimulus features. Therefore, if
the noise correlations are the dominant factor in driving the response
correlations, this will render SPIN-VM less effective in improving model
performance. In the natural movie dataset examined here, we observe
that SPIN-VM yields higher prediction scores compared to VM across
many early- and high-level visual areas, as well as broadly across
non-visual cortex. This suggests that a substantial portion of response
correlations is stimulus-driven.

In the current study, we find that regularization of model weights
across spatial neighborhoods outperforms that based on functional
neighborhoods. Because the Laplacian matrix that governs the regulari-
zation of model weights is based on inter-voxel distances, this result may
be partly attributed to the way that inter-voxel distances are calculated. It
is possible that functional distance measurements on inherently noisy
BOLD responses might be biased in a way that limits model performance.
That said, combining regularization terms across both spatial and func-
tional neighborhoods can potentially be an effective approach to further
improve model performance. Our initial empirical observations suggest
that a trivial combination of the two approaches—where a spatial
neighborhood is selected but voxels within the neighborhood are
weighted according to their functional similarity to the central vox-
el—does not offer any notable improvement (Supp. Fig. 12). However,
enhanced performance may be viable by solving a multi-objective opti-
mization problem where both spatial and functional Laplacian matrices
are included. This remains an important topic for future investigation.

Here spatial regularization of model weights is performed via L2-
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norm regularization based on Laplacian matrices of size (Nvox)� (Nvox),
imposing a heavy computational burden. One way to circumvent this
would be to truncate the Schur decomposition such that the dimensions
of U and S corresponding to the smallest eigenvalues are selected (i.e.,
the lowest frequency components of the Laplacian). A systematic com-
parison of alternative regularization approaches remains important
future work.

In conclusion, we introduced a spatially-informed VM framework that
incorporates correlated information across contiguous voxels. Compared
to VM, the proposed technique offers improved performance in
measuring category and motion-energy selectivity during natural vision.
Overall, SPIN-VM yields higher prediction scores in single voxels,
increased sensitivity to functional selectivity differences across voxels,
and improved utility in assessment of coherent information representa-
tions. Therefore, SPIN-VM is a promising tool for analyzing fMRI data
collected during naturalistic experiments.
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