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Abstract—Partially parallel imaging with localized sensitivities
is a fast parallel image reconstruction method for both Cartesian
and non-Cartesian trajectories, but suffers from aliasing artifacts
when there are deviations from the assumption of perfect local-
ization. Such reconstructions would normally crop the individual
coil images to remove the artifacts prior to combination. However,
the sampling densities in variable-density -space trajectories sup-
port different field-of-views for separate regions in -space. In fact,
the higher sampling density of low frequencies can be used to re-
construct a bigger field-of-view without introducing aliasing arti-
facts and the resulting image signal-to-noise ratio (SNR) can be
improved. A novel, fast variable-density parallel imaging method
is presented, which reconstructs different field-of-views from sepa-
rate frequencies according to the local sampling density in -space.
Aliasing-suppressed images can be produced with high SNR-effi-
ciency without the need for accurate estimation of coil sensitivities
and complex or iterative computations.

Index Terms—Aliasing artifact, image reconstruction, parallel
imaging, self calibration, variable density.

I. INTRODUCTION

P ARTIALLY parallel magnetic resonance imaging (MRI)
methods utilize the spatial sensitivity of radio-frequency

(RF) coils as an additional encoding mechanism to complement
gradient encoding [1]–[9]. These techniques can improve the
robustness of many MRI methods by reducing the number of
data samples and the acquisition times as well as the load on
the gradient hardware. Since the gradient performance is lim-
ited more by physiological factors than hardware issues, parallel
imaging opens the door to new applications that are not viable
with conventional gradient encoding. Nevertheless, the success
of all parallel imaging techniques inherently depends on the reli-
ability of the reconstruction algorithm that recovers the missing
data.

Image reconstruction methods for parallel imaging can be
grouped into three main categories: -space, image-domain, and
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hybrid methods. The missing samples are computed in -space
for methods such as the simultaneous acquisition of spatial har-
monics (SMASH) [4] and generalized autocalibrating partially
parallel acquisition (GRAPPA) [5]. On the other hand, the sensi-
tivity encoding (SENSE) [6] and partially parallel imaging with
localized sensitivities (PILS) [7] methods work in the image do-
main. There are also hybrid techniques such as sensitivity pro-
files from an array of coils for encoding and reconstruction in
parallel (SPACE RIP) [8].

An important step of the reconstruction is an accurate esti-
mation of the coil sensitivities for some of the aforementioned
methods. SMASH and SENSE are effective techniques; how-
ever, undesirable imaging conditions such as patient or coil
motion will compromise the accuracy of the sensitivity estima-
tion and reduce the image quality. In contrast, autocalibrating
approaches yield more reliable profile estimates by collecting
additional data in the central -space region [5], [10]–[14].
These methods employ variable-density -space trajectories,
which can increase imaging speed or resolution by undersam-
pling the high-spatial-frequency components [15].

Parallel imaging techniques have been tailored to handle
variable-density non-Cartesian acquisitions [5], [8], [16]–[19];
however, most -space and image-domain methods require
iterations of high computational complexity to render good
quality reconstructions. This computational burden hinders the
applicability of these methods to non-Cartesian trajectories.
While several modifications have been recently proposed for
reducing processing times [20]–[25], the PILS method can
readily perform very fast reconstructions for variable-density
non-Cartesian acquisitions [26]–[28].

PILS allows direct reconstruction of individual coil images
for arbitrary -space trajectories and does not require accurate
sensitivity estimates. The acquisition speed is increased by
performing Nyquist sampling for only a fraction of the entire
field-of-view (FOV), namely the local imaging FOV associated
with a particular coil. The localized sensitivity of each coil
suppresses the severe aliasing artifacts due to undersampling.
However, the artifact suppression is compromised when this
assumption of coil localization does not hold, i.e., the spatial
extent of the coil sensitivity allows signal reception from
outside the prescribed local imaging FOV.

In practice, the orientations and sensitivities of many coil ar-
rays do not fulfill the condition of perfect localization. There-
fore, significant aliasing artifacts might remain in the sum-of-
squares combination of the individual coil images. A simple so-
lution is to remove the pixels with artifacts from the individual
images; however, this approach does not make efficient use of
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Fig. 1. a: An interleaf of a variable-density spiral trajectory with normalized
�-space coordinates. b: The corresponding sampling density as a function of
�-space radius. The relative density falls off to one-fourth at the periphery of
�-space.

the data and reduces the SNR. Alternatively, artifact-free recon-
structions can be maintained within the spatial sensitivity extent
of the array elements, while the SNR is improved by effectively
utilizing the oversampled central -space data in variable-den-
sity acquisitions.

We propose a new variable-density parallel imaging method
that reconstructs images with reduced artifacts and high
SNR-efficiency, without the need for accurate estimation of
the coil sensitivities. This method combines the individual
coil images in a single step without complex or iterative com-
putations. As a result, fast and artifact-suppressed parallel
image reconstructions can be provided for both non-Cartesian
and Cartesian variable-density trajectories, easing the clinical
utilization of parallel MRI.

II. METHODS

For variable-density -space trajectories, the sampling den-
sities at low- and high-spatial-frequencies support different
acquisition FOVs ( ). Fig. 1 displays an interleaf of a
variable-density spiral trajectory and the corresponding varia-
tion in density as a function of -space radius. A higher sam-
pling density is observed around the -space origin compared
to the periphery. Therefore, low-spatial-frequency components
are oversampled when the sampling density for high-fre-
quency-components matches the Nyquist rate within the local
imaging FOV. When the reconstruction FOV ( ) is
tailored according to the highest sampling density, aliasing
artifacts are introduced. To avoid these artifacts, PILS normally
chooses the supported by the lowest density. In that
case, however, more-densely-sampled low-spatial-frequency
data are ineffectively utilized.

Alternatively, the lower-frequency samples can be used to re-
construct a larger FOV without introducing any aliasing arti-
facts. Fig. 2(a) shows the sensitivity of an array element in rela-
tion to the s for low and high frequencies. Aliasing ar-
tifacts can be avoided by determining separately for
these two sets of frequencies. Given and the spatial ex-
tent of the coil sensitivity ( ), should ideally
satisfy the following condition:

if

if
otherwise.

(1)

Fig. 2. a: The spatial extent of the coil sensitivity (��� ) is shown along
with ��� for low and high spatial frequencies. b: The worst-case for
aliasing artifacts arises from an object located at the edge of ��� (point
P). To completely suppress the resulting artifacts within ��� (centered
at point O), the condition expressed in (1) must be met.

Fig. 3. ��� s supported by low- and high-spatial-frequency data are dis-
played for individual coils in a 1-D array. While the Nyquist-sampled region for
high frequencies (��� ) is relatively limited, oversampled low-fre-
quency data can be reconstructed in a larger spatial extent ��� . As a
result, overlapping regions of low-frequency component images are generated
between adjacent coils, marked with different colors.

The above relations ensure complete removal of aliasing
artifacts by considering the worst-case scenario, i.e., an object
placed on the periphery of as shown in Fig. 2(b).
However, this condition is overly stringent in most cases, and
can lead to suboptimal utilization of collected data. First of
all, the coil sensitivity is substantially lower towards the edge
of . This dampens the image intensities of both the
object and the resulting artifacts. Furthermore, undersampling
is mostly performed for higher frequencies in variable-density
acquisitions, which creates well-behaved artifacts that appear
as random noise and reduce the image SNR [15]. Finally, the
expressed conditions for can significantly
limit spatial resolution. Therefore, in this work, we adopted a
weaker constraint, , to maintain a more
favorable trade-off between resolution and SNR.

Example s pertaining to low- and high-spatial-fre-
quency components are displayed in Fig. 3 for a sample 1-D
coil array. The higher sampling densities at lower frequencies
will cause to be larger than nominal. As a result, the
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low-frequency data will be averaged over a larger spatial extent
among array elements, improving the image SNR.

In the following sections, we will first describe a method for
variable-FOV reconstruction of single-coil data, followed by a
simple and efficient voxel-wise combination of the individual
coil images. Afterward, the noise characteristics of the resulting
image will be analyzed. Finally, we will outline the in vivo ex-
periments designed to demonstrate the reliability of the pro-
posed technique.

A. Individual Coil Images

The local distance between neighboring -space points de-
termines the spatial region in which a certain frequency com-
ponent is Nyquist sampled, namely . As a result, this
component will lead to aliasing artifacts when used to recon-
struct an FOV larger than that supported by the local sampling
density. On the other hand, if is limited to ,
the aliasing-artifact and noise contribution of the component can
be substantially reduced.

A variable-FOV reconstruction is a spatially-variant system
by nature, which cannot be implemented with a single convolu-
tion operation in the image domain. In contrast, if the data are
partitioned into distinct regions of space (in the image domain)
or frequency (in -space), then each partition can be treated
with a spatially-invariant system. While we would ideally like
to vary continually, the computational complexity
scales with the number of partitions. Assuming this number is
gradually increased, the initial steps yield the highest levels of
improvement in artifact suppression [29]. In practice, efficient
and high-quality reconstructions can be maintained using a lim-
ited degree of discretization.

In previous work, the extent of the gridding kernel was varied
over -space to implement the aforementioned reconstruction
[29]. Although this strategy offered an intuitive link between
the kernel extent and the distance between -space samples, we
adopted an image-domain approach to reduce the computational
load for parallel imaging. The proposed algorithm starts with a
conventional gridding reconstruction

(2)

where is the spatial coordinate, is the reconstructed
image, is the Fourier transform of the density-compen-
sated -space data, and is the Fourier transform of the
gridding kernel . The Shah sampling function is denoted
with , where is the oversampling factor and is

supported by the highest sampling density.
Afterward, the data are partitioned into slabs in -space for

Cartesian trajectories, and annuli for spiral and radial trajecto-
ries as shown in Fig. 4. For each partition, the mean distance
between adjacent -space samples can be used to determine

, and the elements in each partition can then be used to
reconstruct the corresponding . The effective output
can be expressed as

(3)

Fig. 4. An example partitioning of �-space samples into several annuli. Each
partition is reconstructed within ��� supported by the corresponding
mean sampling density.

where is an ideal band-pass filter that suppresses all spatial
frequencies except those in the corresponding -space partition

, and is an ideal apodization function that only supports
assigned to . The resultant image has a full-

resolution central region, and the resolution gradually decreases
toward the edges of the image. Fig. 5 demonstrates an example
where the object is a superposition of two sinusoids and -space
is partitioned into two subsets, namely the low- and high-spatial-
frequency components.

Although for a given coil has reduced peripheral res-
olution, the remaining array elements can provide the missing
high-frequency data at those spatial locations. The final com-
bined image will then not suffer from any resolution loss. On
the other hand, if high spatial frequencies are very heavily un-
dersampled, the combined of all coils may not cover
the entire region-of-interest (ROI). In such cases, the minimum

should be limited to avoid blurring and maintain com-
plete coverage, at the possible expense of additional noise-like
aliasing from high-frequency data.

B. Combination of Coil Images

Once the individual coil images are reconstructed with the
variable-FOV method, we perform an optimal linear combina-
tion to assemble the entire image FOV. Nevertheless, the combi-
nation weights should be carefully tailored to yield high-quality
reconstructions. When sample noise data are collected, noise
decorrelation can be performed as a first step to generate a new
set of coil sensitivities and -space data through a linear map-
ping [16]. Although this helps minimize the image noise, the re-
sulting SNR improvements reported in literature are relatively
small, e.g., an approximate maximum of 7% [30], even with
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Fig. 5. a: Example �-space partitions (� ) and apodization functions (� ���)
for the variable-FOV reconstruction of an object, which is the superposition of
two sinusoids varying in the �-direction. The impulses within the inner parti-
tion � represent the low-frequency sinusoid (� ), while the high-frequency
components (� ) fall into the outer subset � . In the image domain, � ���
are represented with circular disks bounded by the outer and inner dashed cir-
cles, respectively. While � ��� for low spatial frequencies is relatively broader,
� ��� applies a tighter apodization to reduce ��� for high frequencies.
b: Cross-sections from regular and variable-FOV reconstructions of the compo-
nent images (� ) are shown along with the combination (� ). For the
variable-FOV image, � is maintained within the entire FOV while the spatial
extent of� is limited by that of � ���. Therefore, the central part of the image
has full resolution, whereas only the low-frequency components are retained in
the outer part.

considerable levels of correlation among the array elements.
Furthermore, the obtained estimates may not be accurate enough
to sufficiently reduce these correlation levels [31]. In such cases,
the decorrelation step can be omitted to reduce the computa-
tional load and avoid potential reconstruction errors.

To maximize SNR, the weight for each coil should equal the
complex conjugate of its sensitivity normalized by the sum-of-
squares (SOS) combination of all sensitivities [32]. The sensi-
tivity for a given coil is estimated by first obtaining a lower-res-
olution image from oversampled central -space data, extracted
through Fourier domain truncation. Afterward, the sensitivity
profile is computed as the ratio of this image to the SOS combi-
nation of such images from all coils [32].

It is also essential to determine the weights separately for
low- and high-spatial-frequency component images. Extending

increases the probability of overlap between different
array elements (Fig. 3). Hence, at a given pixel, more coils con-
tribute to low-frequency data than that for high frequencies, re-
sulting in an overweighting of low frequencies accompanied

by image blurring. To restore the balance among different sub-
sets of frequencies, the weighted average for each subset should
be separately computed among the coils with signal contribu-
tion. Although the analysis can be easily generalized, we will
assume only two subsets for simplicity. The resultant image
( ) can then be expressed as a linear combination of the low-
and high-frequency images ( and ) reconstructed with the
variable-FOV method

(4)

where and are null outside the corresponding .
The combination weights for the low- and high-fre-
quency images are

(5)

(6)

Here, is the low-resolution image from the th coil recon-
structed after Fourier domain truncation. The indicator func-
tions determine which set of coils will be used for com-
puting the weights at each pixel

if
otherwise.

(7)

In other words, the indicator functions are set to zero for pixels
outside the corresponding .

C. SNR Analysis

To characterize the image SNR, we can first derive the auto-
correlation function of the image and determine the noise vari-
ance with respect to spatial location. If is the image intensity
at location and is the conjugate intensity at , the
autocorrelation can be expressed as

(8)

Following a series of reasonable assumptions, this function can
be simplified and the variance of at a given pixel can be com-
puted as shown in the Appendix

(9)

Here, , and are constants propor-
tional to the net area under the filters as expressed in (20)
and (21). For the case of a priori noise decorrelation, the vari-
ance follows the relation derived in (23), where
is the variance of the underlying Gaussian noise process. Note
that the proposed reconstruction produces colored noise when

and are not equal.
Meanwhile, the signal can be expressed as the expected value

of the image ( )

(10)
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The low- and high-spatial-frequency component images are the
sensitivity-weighted versions of the imaged object, ,
namely and . Using these ex-
pressions in (10)

(11)

Finally, the SNR of the reconstruction can be computed as

(12)

Because is larger for low frequencies, the proposed
reconstruction broadens the spatial extent over which is
unity. As a result, the image SNR is enhanced through increased
averaging of low-spatial-frequency data compared with regular
PILS.

D. Experiments

For in vivo demonstrations, coronary angiography was per-
formed in a single breath-hold with cardiac-gated gradient-echo
sequences and spiral -space trajectories [33]. The data were
collected using a custom real-time system [34] and an 8-channel
cardiac array, on a 1.5 T GE Signa Excite scanner with CV/i gra-
dients (40 mT/m maximum strength and 150 T/m/s maximum
slew rate). Following interactive real-time localization, the sub-
jects were asked to hold their breath. When necessary, final ad-
justments to the imaging FOV were accomplished immediately
prior to data acquisition. The common set of parameters for all
experiments were a 4.5-mm slice thickness and spectral-spatial
fat saturation [35].

For the proposed reconstruction, the data were first den-
sity-compensated using Voronoi-diagram-based estimates
of the sampling density [36], [37]. The gridding recon-
structions were then performed on a 512 512 grid with a
three-pixel-wide Kaiser-Bessel kernel and an oversampling
factor of 2 [38]. The noise correlation was estimated from
signal-free background regions of these initial images by av-
eraging over approximately 1000 pixels. The coils were found
to be weakly correlated, and the decorrelation step yielded a
maximum SNR gain of 3.5% in all datasets. Because the overall
improvement was rather small, this additional step was omitted
for simplicity and efficiency.

Afterward, was determined as a function of
-space radius using the distance between adjacent samples.

For computational efficiency, the data were partitioned ac-
cording to , and a discretization step size of 4 cm
was found sufficient for obtaining high-quality reconstructions.
Smaller step sizes did not yield noticeable differences in artifact

suppression or image resolution. Considering an ROI diameter
of approximately 34 cm for the chest, the minimum
was limited to 17 cm. For values below this limit,
the corresponding partitions were combined.

The -space data in each partition were then transformed
into the image domain. To avoid abrupt variations in signal in-
tensity, the apodization functions ( ) were chosen as Fermi
windows with a full-width at half-maximum (FWHM) equal to
the corresponding and a transition width of 6 pixels.
Meanwhile, the coil sensitivities were estimated from the central

-space samples within a diameter of 0.06, assuming a normal-
ized maximum of 1. Finally, separate sets of spatial-frequency
component images were combined using the weights calculated
from the estimated sensitivities.

All data were processed using custom-written MATLAB
code (Version 7, The MathWorks, Natick, MA) on a personal
computer (PC) with a 2 GHz AMD CPU.

1) Comparison With SENSE: To demonstrate the differences
between the proposed reconstruction and SENSE, one set of uni-
form- and three sets of variable-density spiral data were col-
lected with 1-mm in-plane resolution. The following sets of
parameters were prescribed for these acquisitions: acceleration
factors (1.1, 2.3, 3.4, 4.5), (19, 13, 9, 7) interleaves, and
(15, 11, 11, 11)-ms readouts. was designed to be 30
cm for the uniform-density trajectory, whereas it linearly de-
creased from 30 to (16, 8 ,4) for the three variable-density spi-
rals, respectively. Even for the uniform-density acquisition, the
central part of the spiral trajectory was inherently oversampled
due to gradient limitations. While the uniform-density data were
reconstructed with 34, 30 cm in two partitions,
the remaining acquisitions were partitioned into five sets with

34, 30, 26, 22, 18 cm.
The datasets were also reconstructed with SENSE, using an

iterative conjugate-gradient solution as detailed in [16]. Be-
cause the overall SNR improvement due to noise decorrelation
was limited to 3.5%, this step was again omitted. To enhance
the accuracy of the aforementioned sensitivity estimates, a re-
stricted ROI was manually selected to only contain the imaged
object, and the estimates in this region were further processed
with fourth-order polynomial fitting. For all acceleration fac-
tors, a total of approximately 10–14 iterations was observed
to yield a sufficient level of artifact suppression. Therefore,
the reconstruction was manually stopped to avoid further noise
amplification.

2) Comparison With PILS: To compare the performance of
the proposed method with PILS, uniform- and variable-density
spiral data were collected with 0.8-mm in-plane resolution. The
following parameters were prescribed for the uniform-density
trajectory: a 20-cm FOV, 1.7, 18 interleaves, and 16-ms
readouts. The data were partitioned into three sets, which were
reconstructed with 28, 24, 20 cm. For the vari-
able-density acquisition, on the other hand, the parameters were
an FOV linearly decreasing from 20 to 8 cm, 4.5, 18 in-
terleaves, and 6-ms readouts. In this case, three partitions were
used with 24, 20, 17 cm.

Separate PILS reconstructions of the same data were also
computed assuming either the largest or the smallest
among all partitions. While the former was used to display the
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Fig. 6. The variable-FOV reconstructions of data from a single coil at various
acceleration factors, � � 1.1, 2.3, 3.4, 4.5. While the top row represents the
combined image for each factor, the remaining rows display the component im-
ages of different �-space partitions reconstructed with ��� � 34, 30, 26,
22, 18 cm. The combined images have a central full-resolution region of size
equal to the minimum ��� . For higher �, the increased fall-off rate in
sampling density lowers the amount of high-frequency samples contained in all
partitions (except for the outermost). This shrinks the central �-space partition,
reducing the resolution of the corresponding image (��� � 34 cm). Sim-
ilarly, the structure of the object becomes more visible in smaller-FOV images
due to increased low-frequency content.

differences between the two techniques in terms of artifact sup-
pression, the latter was used in comparative SNR measurements.
These measurements were performed in identical locations of
the reconstructed images. A total of five regions containing ho-
mogeneous blood or muscle signal were selected in the vicinity
of the coronary vessels. To minimize measurement errors due
to the spatially-variant nature of noise, the standard deviation
of noise was also estimated within the corresponding signal re-
gions. A minimum of 150 pixels were contained in each region.

III. RESULTS

To demonstrate the algorithm of the proposed method, com-
ponent images reconstructed from separate -space partitions
are displayed in Fig. 6 along with the combined image for a
single coil and acceleration factors of 1.1, 2.3, 3.4, 4.5.
For higher accelerations, the frequencies of samples in each
partition are lowered, including the central segment but ex-
cluding the outermost. Although this reduces the resolution of
the component images reconstructed from the inner segments,

Fig. 7. Sum-of-squares (SOS), SENSE, and variable-FOV reconstructions of
coronary angiograms collected at various acceleration factors, � � 1.1, 2.3,
3.4, 4.5. While severe aliasing artifacts are observed in the SOS images, both
the SENSE and variable-FOV images demonstrate effective artifact suppression.
At higher accelerations, SENSE suffers increasingly from the poor conditioning
of the encoding matrix (equivalently, increased �-factor).

the aliasing artifacts are suppressed. Furthermore, the final
image does not suffer from any resolution loss, as long as the
remaining coils provide the missing high-frequency data at the
edge of .

Fig. 7 shows the SOS, SENSE, and variable-FOV recon-
structions of the aforementioned data collected with 1.1,
2.3, 3.4, 4.5. Although the SOS images have severe aliasing,
both SENSE and the variable-FOV method effectively suppress
these artifacts. Meanwhile, SENSE suffers from -factor-re-
lated noise amplification at higher accelerations due to poor
conditioning of the encoding matrix [6]. It is important to note
that the variable-FOV method provides much shorter recon-
struction times than the iterative SENSE method, as expected.
Table I lists the reconstruction times at each acceleration factor,
demonstrating up to an order of magnitude improvement with
the proposed technique.

Fig. 8 validates the improved artifact-suppression capability
of the variable-FOV method compared with PILS at two accel-
eration factors, 1.7, 4.5. While the PILS images suffer
from residual aliasing artifacts, the variable-FOV method re-
liably suppresses both the more structured and the noise-like
aliasing from low and high frequencies, respectively. Further-
more, this method achieves improved SNR compared with a
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TABLE I
TOTAL RECONSTRUCTION TIMES FOR SENSE AND THE

VARIABLE-FOV METHOD.

Fig. 8. Spiral coronary angiograms reconstructed with SOS, PILS, and the vari-
able-FOV method at two different acceleration factors,� � 1.7 (a) and 4.5 (b).
PILS reconstructions were performed with ��� supported by the highest
sampling density. A moderately strong display windowing was applied to em-
phasize differences in the level of aliasing artifacts. In both a and b, the ar-
rows pinpoint regions of residual artifacts in the PILS images. In contrast, the
variable-FOV method reliably suppresses these artifacts. Because this method
reduces noise-like aliasing from high-frequency data and uses optimal combi-
nation weights, it yields reduced noise appearance compared with PILS.

TABLE II
SNR IMPROVEMENT WITH THE VARIABLE-FOV

METHOD OVER PILS

PILS image using supported by the lowest sampling
density, due to the optimal combination weights and the ex-
tended for low frequencies. Table II lists the level of
improvement at each value of , and 31.1% higher SNR was
measured on average in the variable-FOV images at 4.5.

IV. DISCUSSION

In a variable-density acquisition, the denser sampling at low
frequencies results in larger s compared with the pe-
riphery of -space. The proposed technique suppresses aliasing
artifacts by reconstructing undersampled high-frequency data
within a smaller region, . Meanwhile, the SNR
efficiency is improved by retaining the low-frequency images
in a larger extent, . Finally, individual coil im-
ages are SNR-optimally combined with weights computed from
data-driven sensitivity estimates.

The PILS method utilizes the same for all data,
and provides relatively faster and simpler reconstructions com-
pared with the variable-FOV technique. The PILS images can
be cropped to either or to remove
aliasing artifacts or make more efficient use of the data, re-
spectively. In contrast, the proposed method offers a favorable
trade-off, and makes optimal use of the data in each -space
partition without creating artifacts. As a result, it is also more
robust against suboptimally localized sensitivities.

Because both PILS and the variable-FOV method utilize coil
sensitivities as anti-aliasing filters, the acceleration limits are
more heavily dependent on the coil configuration than for other
techniques such as SENSE or GRAPPA, particularly for uni-
formly undersampled trajectories. Although these techniques
can offer improved artifact-suppression at higher accelerations,
they also suffer from noise amplification due to the corre-
sponding -factors. It is important to note that regularization
techniques can help improve the conditioning and the SNR
of the SENSE reconstructions [39]. Nevertheless, because the
proposed method does not embody a matrix inversion, it is
more robust against suboptimal conditioning. For variable-FOV
reconstructions, the SNR loss varies spatially depending on the
portion of coils that contribute to the data reconstructed at each
pixel.

While SENSE yields residual errors and artifacts in the ab-
sence of accurate sensitivity estimates, the proposed method is
less sensitive to these inaccuracies. Although overweighting of
low- or high-frequency data may cause localized blurring or in-
creased noise respectively, such problems were not apparent for
the reconstructions in this work. The autocalibrating SENSE
and GRAPPA methods are also more tolerant to estimation er-
rors, but the reconstructions normally incur considerable com-
putational burden for non-Cartesian data. Contrarily, the pro-
posed method assembles the final image with a pixel-wise linear
combination following the simple gridding reconstruction and
apodization steps. Therefore, the processing times are substan-
tially reduced compared to the computationally-intensive ap-
proaches.

Potential Improvements

The proposed method has been successfully demonstrated
with acceleration factors up to 4.5 for spiral trajectories, and
its extensions to different trajectories and higher factors are
straightforward. Nevertheless, the robustness of the technique
against higher accelerations is yet to be investigated. More
specialized coil designs with smaller element sizes might be
essential in maintaining further accelerations.
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Although the sensitivity to coil-profile errors is low, a number
of approaches can help improve the estimates when necessary.
The sum-of-squares normalization in the sensitivity estimates
can be replaced by other factors such as weighted or nonlinear
combinations [32], [40]. In addition, the obtained estimates can
be further processed with polynomial fitting [6].

V. CONCLUSION

The proposed method delivers fast, noniterative, and
high-SNR autocalibrating parallel image reconstructions
without introducing significant artifacts. While the image
SNR is improved by utilizing larger s for low spa-
tial frequencies, aliasing artifacts from high frequencies are
suppressed by reducing this FOV. Furthermore, the gridding re-
construction and the subsequent combination of the individual
images are straightforward processes with low computational
complexity. The reconstruction speed of the proposed method
will particularly benefit applications based on non-Cartesian
acquisitions.

APPENDIX

Derivation of the Autocorrelation Function: Assuming
denotes the image intensity at spatial location , and
is the conjugate intensity at location , the autocorrelation
function is given by (13), shown at the bottom of the page. To
simplify the analysis, the low- and high-frequency component
images ( and ) can be considered as zero-mean processes
without loss of generality. Since and are reconstructed
from separate sets of -space samples, these images are uncor-
related and the corresponding cross terms are eliminated

(14)

The autocorrelation can then be expressed as a weighted combi-
nation of the cross-correlation functions for the individual com-
ponent images

(15)

In this work, we adopt a bivariate white Gaussian noise
model for the acquired MR data, and only consider the noise
correlation among coils that collect samples at identical -space
locations [16]. With these assumptions, the cross-correlation
for the full-resolution image, , is equal to

the corresponding entry of the noise correlation matrix, . It
is important to note that , where and
are band-pass filtered versions of . Therefore, the cross-cor-
relation functions and are proportional to the inverse

Fourier transforms of the corresponding magnitude-squared
filter responses

(16)

(17)

where stands for the inverse Fourier transform and is
the Fourier domain representation of an ideal low-pass filter. Be-
cause the underlying noise process is stationary, the cross-cor-
relation depends only on the given coil pair and the separation
between the spatial coordinates and .

Derivation of the Variance: The variance of image P at
spatial location can be calculated directly from (15)

(18)
where . Substituting the previously de-
rived relations from (16) and (17) into (18)

(19)

In the above equation, are constants proportional to the
net area under the corresponding filters in the frequency
domain [41]

(20)

(21)

Finally, if noise decorrelation is incorporated into the recon-
struction as proposed in [16], then the noise correlation matrix
becomes diagonal

for
otherwise.

(22)

This eliminates the cross-coil terms in (19). We can further ob-
serve that the squared-sums of the coil weights, , are
unity with straightforward algebra. With these two additional
steps, the variance can be shown to equal the variance of the un-
derlying noise process

(23)

using the fact that for the considered
ideal low-pass filter.

(13)
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