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A Tutorial on MRI Reconstruction:
From Modern Methods to Clinical Implications
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Abstract—MRI is an indispensable clinical tool, offer-
ing a rich variety of tissue contrasts to support broad
diagnostic and research applications. Protocols can in-
corporate multiple structural, functional, diffusion, spec-
troscopic, or relaxometry sequences to provide comple-
mentary information for differential diagnosis, and to cap-
ture multidimensional insights into tissue structure and
composition. However, these capabilities come at the cost
of prolonged scan times, which reduce patient through-
put, increase susceptibility to motion artifacts, and may
require trade-offs in image quality or diagnostic scope.
Over the last two decades, advances in image recon-
struction algorithms—alongside improvements in hard-
ware and pulse sequence design—have made it possi-
ble to accelerate acquisitions while preserving diagnos-
tic quality. Central to this progress is the ability to in-
corporate prior information to regularize the solutions to
the reconstruction problem. In this tutorial, we overview
the basics of MRI reconstruction and highlight state-of-
the-art approaches, beginning with classical methods that
rely on explicit hand-crafted priors, and then turning to
deep learning methods that leverage a combination of
learned and crafted priors to further push the performance
envelope. We also explore the translational aspects and
eventual clinical implications of these methods. We con-
clude by discussing future directions to address remain-
ing challenges in MRI reconstruction. The tutorial is ac-
companied by a Python toolbox (https://github.com/
tutorial-MRI-recon/tutorial) to demonstrate select
methods discussed in the article.

Index Terms—MRI, accelerated imaging, image recon-
struction, deep learning, clinical, translation

[. INTRODUCTION

Magnetic Resonance Imaging (MRI) offers unparalleled
diversity in contrast mechanisms to examine tissue anatomy,
composition, and function [1]. Clinical MRI protocols rou-
tinely include sequences that generate anatomical images with
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e.g. Ty, To, T," and FLAIR weighting [2], [3]. These are
often complemented by diffusion-weighted imaging (DWI),
which plays a central role in stroke assessment [4] and cancer
imaging [5]. Given access to higher-end hardware, research
protocols further expand this repertoire using advanced se-
quences sensitive to magnetic susceptibility [6], [7], blood
oxygen-level-dependent (BOLD) responses [8], [9], high-b-
value diffusion [10], perfusion [11], or metabolite concentra-
tions [12]. Yet, despite this versatility, MRI remains limited
by characteristically long acquisition times, often forcing
undesirable trade-offs between spatial, temporal, or angular
resolution, signal-to-noise ratio (SNR), anatomical coverage,
and inclusion of specific contrast mechanisms [13], [14].

Over the past two decades, significant progress has been
made toward mitigating these limitations by combining devel-
opments in scanner hardware and pulse sequences with sophis-
ticated image reconstruction algorithms. Parallel imaging (PI)
[15]-[17], leveraging undersampling of k-space acquisitions
and high-channel count coil arrays [18], marked a pivotal
advance by enabling accelerated scans across a broad range
of applications. Yet, because MRI reconstruction from un-
dersampled acquisitions is fundamentally an ill-posed inverse
problem, recovering high-fidelity images often requires inte-
gration of external knowledge in the form of priors [19]-[21].
Building upon the foundation laid by PI, a first generation of
methods introduced hand-crafted priors designed by experts to
constrain the solution space for plausible reconstructions [13],
[20]. Prominent examples include compressed sensing (CS)
methods enforcing sparsity of MR images in linear transform
domains [22]-[27] and low-rank methods promoting structured
representations in spatiotemporal or spectral dimensions of
MRI data [28]-[31]. Although powerful, these approaches are
inherently limited by the simplifying assumptions underlying
their priors, which may fall short of fully capturing the rather
non-trivial distribution of MR images.

More recently, a second generation of methods has emerged
that leverages learned priors—implicit regularizers that are
directly inferred from exemplar data [14], [32], [33]. These
priors are typically implemented as mappings through neural
network architectures, which perform hierarchical (i.e., multi-
layered) nonlinear transformations on the data to extract
salient features and capture statistical dependencies present
in MR images [34]. Whether used standalone or in hybrid
formulations with classical methods [35]-[46], deep learning
(DL) approaches based on neural networks have driven sub-
stantial improvements in image quality and scan acceleration.
However, they also introduce potential challenges—including
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Fig. 1: A landscape of MRI reconstruction methods from classical approaches
to modern deep learning are surveyed, alongside discussions on clinical impact
and translation, as well as open challenges.

reliance on large-scale, high-quality training data, suboptimal
generalizability across scanners or anatomies, and implicit
nature of learned priors that can complicate clinical valida-
tion—all of which remain active topics of ongoing research.

Given the rapid pace of innovation, staying abreast of the
evolving landscape of reconstruction methodology can be chal-
lenging. This tutorial is intended as an accessible introduction
to MRI reconstruction—bridging foundational concepts, tech-
nical advances, and clinical implications (Fig. 1). To provide a
conceptual road map, we begin by revisiting core principles of
spatial encoding, k-space acquisition, and the inverse problem
that underlies reconstruction. We then survey both classical
methods based on hand-crafted priors, and DL approaches
based on learned priors. We pose a tripartite categorization
to group DL methods by (i) the overarching framework (e.g.,
data-driven vs. physics-guided vs. generative), (ii) architectural
elements (e.g., convolutional vs. attentional operator, image
vs. k-space domain, single- vs. multi-contrast configuration),
and (iii) learning paradigms (e.g., population-level vs. scan-
specific). We give special attention to the clinical implications
and translation of these reconstruction tools, including their
potential to reduce scan times, improve image quality, and
expand access to advanced imaging protocols. We conclude
the tutorial with a discussion of key open challenges and future
opportunities for continued innovation in the field.

Il. FOUNDATIONS OF MR IMAGE RECONSTRUCTION
A. Generation of Tissue Contrast

MRI relies on magnetization of spins in nuclei, most com-
monly hydrogen, under a large static field By. During imaging,
the net magnetic moment in the longitudinal direction of B

is tipped to the transverse plane via a radiofrequency (RF)
pulse. Magnetization then recovers to its equilibrium state
with tissue-specific relaxation time constants of T; in the
longitudinal axis, and T in the transverse plane. Hence, the
transverse magnetization, m(r) with r = (z,y, z) denoting
spatial location, depends on the proton density p, relaxation
time constants, and the amplitude and timing of RF excita-
tions and magnetic field gradients in the pulse sequence. For
common spin-echo (SE) sequences, the signal equation for a
single isochromat can be expressed as:
m(r) = Kp(r)[1 — e—TR/T1(1‘)]6—TE/T2(1‘)7 (1)
where TR is the repetition time, TE is the echo time and K
is a constant. Manipulating TR and TE can lead to selective
weightings of T and T5. For instance, moderate TR and short
TE can produce T;-weighted contrast, which is useful in e.g.
imaging fatty tissues with relatively low T; or white-, gray-
matter distinction in brain imaging:
m(r) ~ Kp(r)[1l — e TR/Ta()], ()
Long TR and moderate TE can produce T2-weighted contrast,
which can assist in e.g. detecting inflammation and edema:
m(r) ~ Kp(r)e TF/T2(), 3)
Meanwhile, long TR and short TE can produce PD-weighted
contrast, which can be useful in e.g. assessment of joints:
m(r) = Kp(r). 4
While SE sequences refocus magnetic field inhomogeneities
through a refocusing pulse, gradient-echo (GRE) sequences
lacking this mechanism are sensitive to additional signal
decay governed by T3, where T% = T% + T% with T/2
denoting the portion of signal decay that can be recovered
by a refocusing pulse, attributable to field inhomogeneities
across a voxel. T5-weighted contrast is more sensitive to local
field variations, which can be beneficial for functional and
susceptibility imaging.

Beyond manipulating TE and TR to gain sensitivity to
T, and Ty differences, diffusion of water molecules can also
be leveraged to provide a unique contrast. Because moving
spins experience different magnetic fields under the influence
of a matched pair of gradients surrounding a refocusing pulse,
they cannot be fully refocused at TE, thus attenuating the spin-
echo signal under diffusion as [47],

m(r) —_ Kp(r)[l o efTR/Tl(r)]efTE/Tg(r)efbD(r)7 (5)
where D(r) is the diffusion coefficient governing the attenu-
ation, and b = (yGA)?(A — §/3) depends on the amplitude
(G), duration (§) and time separation (A) of the gradients.
By collecting multiple images with different b values and
diffusion directions, clinicians can assess the integrity of
neural pathways. Note that MRI offers a diverse arsenal of
contrasts, which go well beyond these common sequences
(see [1] for further examples), to investigate the structure and
function of tissues, making it an indispensable diagnostic tool.

B. Spatial Encoding in k-Space

Following an RF excitation, the pulse sequence performs
spatial encoding to be able to resolve different spatial lo-
cations. Specifically, MRI data are acquired in k-space by
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encoding spatial frequencies via magnetic field gradients that
modulate the MR signal phase (Fig. 2a). For a gradient
waveform G(t) = (Gg,Gy,G;) that can be independently
controlled across spatial axes, the shift in the phase of the
MR signal is given as:

A¢ = —27k(t) - r; such that k(¢) = % / G(t)dt. (6)

In (6), k(t) = (ky,ky, k,) denotes the evolution of the k-
space trajectory across time, and 7 denotes the gyromagnetic
ratio. The phase modulation from gradients causes the received
signal s(t) to reflect the Fourier transform of the underlying
transverse magnetization m(r,t):

s(t) = M(k) = /R ) m(r, t)e 2 kT gy (7

Assuming that the magnetization is quasi-stationary across the
k-space trajectory (i.e., m(r,t) & m(r)), its spatial distribution
is hence related to M (k) via an inverse Fourier transformation:

m(r) = / M (k)el?™ T gk, ®)
R3

Conventional data acquisition is performed discretely across
a finite-extent Cartesian k-space grid, with sampling periods
Ak = A(ky, ky, k), and covered frequency ranges Wy =
Wik, k, k) across axes:

M(k) = M(k) - IlI(k @ Ak) - rect(k @ Wy),  (9)
where @ is Hadamard division, III is the Shah function, and
rect is the rectangle function. Based on (8), an image m(r)
can be obtained as the inverse discrete Fourier transform of
M (k), related to the actual magnetization as (Fig. 2b):

m(r) =m(r) ® III(Ak Or)
® Wy, Wi, Wi sinc(Wy, z)sinc(Wy, y)sinc(Wy, 2),
(10
where ® is convolution, and ® is Hadamard product. Con-
volution with ITI(-) causes m(r) to contain replicas of m(r),
yielding an aliasing-free field-of-view (FOV) of size 1/Ak
when the Nyquist sampling criterion is met, i.e., the spatial
extent of the object W, = W, , ., does not exceed 1/Ak.
Convolution with sinc(-) terms sets the spatial resolution as
Ar ~ 1/2Wy. Note that (10) describes 3D Fourier encoding
in z-y-z dimensions, though many MRI sequences can also use
2D encoding in x-y with slice-selective excitation along z [1].
For notational convenience, we denote the MR image obtained
through discrete k-space sampling of the magnetization as m
in the remainder of the manuscript.

C. Reconstruction: An Inverse Problem

In an MRI acquisition with an acceleration factor of R, a
1/R™ subset of samples on the k-space grid are collected,
as defined via a binary sampling pattern P (k). Furthermore,
multi-element coil arrays are used that induce spatial sensitiv-
ity profiles C(r) that multiply the magnetization distribution.
These influences can be captured via an imaging operator A,
linking the magnetization distribution to acquired data d(k):

d(k) = P(k)F{C(r)m(r)}, (1)
d(k) = Am(r). (12)
Image reconstruction, i.e., recovering m(r) from d(k), hence
can be cast as an inverse problem aiming to minimize the
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Fig. 2: (a) Ilustration of spatial encoding via magnetic field gradients
to localize signal origin. This encoding mechanism enables the systematic
sampling of the tissue magnetization in the Fourier domain (i.e., k-space). (b)
Visualization of the relationship between k-space where raw MRI data are
acquired, and the image domain depicting the spatial distribution of tissue
magnetization, linked through Fourier transformation.

discrepancy between acquired and reconstructed data, derived
via a complex Euclidean norm since noise in MRI data is
bivariate Gaussian (Fig. 3):

13)

whose analytical solution is given by m* = Afd =
(A AT AHd, with A® denoting the Hermitian adjoint of
A and f denoting Moore-Penrose pseudoinverse. Since the
Fourier transform is unitary (i.e., F -1 = FH) A becomes
relatively well-conditioned when the k-space grid is fully
sampled (i.e., P = 1). Under Cartesian k-space sampling,
the solution can then be efficiently approximated by applying
a coil-by-coil inverse Fast Fourier Transform (FFT) to the
acquired data, followed by coil combination using sensitivity
maps, yielding m* ~ AHJ[18]. In accelerated MRI, however,
undersampling may render the problem ill-posed, necessitat-
ing the use of regularization to incorporate additional prior
information:

m* = argmin ||d — Am||?,
m

m* = argmin ||[d — Am||* + \¥(m), (14)

where the first term enforces consistency to acquired data, and
W (m) weighted by A\ enforces prior information. In classical
methods, U(m) has an explicit formulation based on hand-
crafted regularizers that impose assumptions on the data. In
DL methods, ¥(m) has an implicit formulation based on data-
driven regularizers learned from a training dataset.
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[1. CLASSICAL RECONSTRUCTION METHODS

Classical methods integrate hand-crafted physical priors
(i.e., explicit signal models or assumptions on the data distri-
bution) to regularize the solution of the inverse problem in (14)
(see Fig. 4 for example reconstructions). Below, we review ma-
jor categories, including linear regression/interpolation, spar-
sity, low rank, and subspace models, each leveraging different
structural properties of MRI data.

Linear Regression/Interpolation Methods: Pl reduces the
FOV deliberately by omitting acquisition of k-space lines, and
attempts to resolve aliasing artifacts in image (e.g., SENSE
[16]) or k-space domain (e.g., GRAPPA [17]). In image-
domain techniques, coil sensitivity profiles are used explicitly
to unalias voxels by solving the linear regression problem in
(14). For the basic unregularized case (A = 0), this prob-
lem admits a closed-form, non-iterative least-squares solution
based on the Moore—Penrose pseudoinverse (i.e., m* = Afd)
[16]. While this non-iterative solution is commonly used
for the basic case, iterative solvers can provide improved
numerical stability and efficiency in higher-dimensional or
more complex reconstruction settings. For instance, a gradient
descent algorithm! can compute m* argmin fp;(m) =

m

argmin ||d — Am||?:
m

15)
where « is a step size that needs to be chosen appropriately,
and m; and m;;1 denote the image estimates at steps ¢ and
t + 1. Evaluating the gradient above leads to the update rule,

(16)

Myy1 = my — a - Ofpi(my),

H
Miy1 = My — Q- A (Amt — d),
which is run until a convergence criterion is satisfied.

Unlike SENSE, GRAPPA uses inter-coil relationships to in-
terpolate missing k-space data. This interpolation is performed
across coils and within a small k-space neighborhood:

M;(ks, ky) Z Z Zg] (4, b, v) M (kp+ulkg, ky+vAk
i uceUveV
(17)
with ¢ = 1,..., N. where N, is the number of coils. Here,

M (ky, ky) is the target missing k-space sample in the 5" coil
and g; is the k-space “kernel” used for interpolating the data
for the j*" coil. This kernel computes a linear combination of
the acquired points M;(k, +ulky, k, +vAk,) inside a small
neighborhood in k-space, denoted with U and V, across all
coils. The kernel weights g; are estimated from low-resolution,
fully-sampled calibration data, which is collected via a pre-
scan or formed from the central portion of undersampled data.

Note that the estimation of coil sensitivity profiles C' from
calibration data is critical to construct an accurate estimate
of the imaging operator in image-domain or analogously the
interpolation kernel in k-space techniques. While heuristic
approaches such as polynomial fitting can be used to estimate
smoothly-varying profiles, structured methods have become
prominent that estimate them as eigenvectors in the null space
of a calibration matrix formed using calibration data (e.g.,

! An implementation of SENSE is available at https://github.com/
tutorial-MRI-recon/tutorial/tree/main/basic_sense_
cs.
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Fig. 3: (a) Undersampling in k-space leads to aliasing artifacts in the image
domain following inverse Fourier transformation. (b) Multi-coil aliased images
are processed to invert the imaging operator A, which encapsulates the
effects of the sampling pattern, Fourier encoding, and coil sensitivities. A
reliable inversion can produce an artifact-reduced, coil-combined image that
approximates the fully-sampled reference.

ESPIRIT [48], PISCO [49]). Beyond such a priori estimation
strategies, it is also possible to formulate nonlinear optimiza-
tion problems that jointly estimate coil sensitivity profiles and
the underlying image (e.g., JSENSE [50], IRGNM [51]). These
nonlinear approaches can yield more accurate reconstructions,
albeit at the cost of increased computational complexity.
Sparsity Methods: ¥(m) in (14) can make use of a sparsity
prior as popularized by CS methods that recover images
from compressible measurements [22]. These priors are often
formulated as ¥(m) [|®m]|1, where ® performs linear
transformation to a domain (e.g. wavelet or gradient domain),
whose coefficients are assumed to be compressible. Such

y),sparsity priors can be incorporated into PI to perform a PICS

reconstruction? [23], [52], [53]:

m* = argmin fpes(m) = argmin ||d — Am||® + \||®m]|;.
When @ is orthogonal or a tight frame, (18) can be solved via
a proximal gradient descent algorithm [54],

vy = my — oA (Amy — d), (19)

mesr = O San(Pur), (20)

where « denotes step size, v, denotes an intermediate iterate,

and S, (-) denotes element-wise soft-thresholding with a

threshold of a\. Note that, unlike unregularized PI methods,

PICS algorithms can benefit from the noise-like aliasing inter-
ference elicited by randomized undersampling patterns [25].

Low-Rank Methods: Low-rank methods typically extract
local patches from k-space data and stack them as rows
of a structured matrix [28]-[31], [55]. Linear dependencies
across coils, limited spatial support, phase smoothness, and
transform-domain sparsity properties confer this matrix with

2An implementation of PICS is available at https://github.com/
tutorial-MRI-recon/tutorial/tree/main/basic_sense_
cs.
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low-rankness, which can be exploited as prior information
[28], [30], [56]-[59]. Specifically, given d, local neighborhood
of k-space samples are arranged into #(k), forming a Hankel
or Toeplitz matrix that exhibits low-rank characteristics,

rank(H(k)) < p, suchthat d= Am, 21

However, directly enforcing this rank constraint results in a
non-convex, NP-hard problem, which is challenging to solve.
To make the problem tractable, a typical approach is to convert

the rank constraint into a minimization problem3 s

m* = argmin||d — Am/||*> + \U(H(k)), (22)

where U(-) is a surrogate rank penalty. Commonly used
formulations for ¥(-) include [30], [56]-[58],

= 1 — 2 = 2
U(X) = min XTI gpff (23)
or [31], [60],
U(X) = X[ =D o (24)

K3
where o; denotes the singular values of matrix X, and p is a
user-defined rank parameter.

Subspace Methods: Quantitative MRI (qMRI) reconstruc-
tions can leverage the knowledge of spin evolution by creating
a low-rank subspace I' for MR signals, where I' is formed
with singular value decomposition (SVD) of a dictionary
generated through Bloch signal simulations or learned from
sample image patches [61]. Subspace coefficients s in I can
be estimated from undersampled k-space data, such that I's
is an accurate approximation to the measured signal evolution
[62]. This estimation can be performed as,

s* = argmin ||d — AT's||? + X - U(s) (25)

where the regularizer ¥(s) could impose sparsity or low-
rank constraints on the subspace coefficients. Having obtained
the coefficients, images with various different contrasts can
then be synthesized. A similar approach is adopted in MR
Fingerprinting (MRF) [63], where Bloch simulations lend
themselves to creation of a dictionary that explains the behav-
ior of transverse signal as the flip angle and TRs are evolving
throughout the acquisition. Rather than using such a dictionary
only at the signal matching step after image reconstruction,
it can be incorporated into the reconstruction process itself,

3An implementation of LORAKS is available at https://github.
com/tutorial-MRI-recon/tutorial/tree/main/low_rank.
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Fig. 4: Reconstruction of an axial Tp-weighted brain image from undersampled k-space data using various methods. From left to right: fully-sampled reference,
parallel imaging (PI), parallel imaging with compressed sensing (PICS), low-rank reconstruction, scan-specific unrolled network, supervised unrolled network,
and the sampling pattern. Root-mean-squared error (RMSE) between reconstructed and reference images is reported below each method. PI and low-rank
reconstructions show higher noise and residual aliasing, while PICS reduces noise but introduces block-like artifacts. DL methods achieve lower RMSE values,
with visually reduced artifacts and improved sharpness relative to classical methods. The supervised model provides the strongest artifact suppression, albeit
with a few subtle synthetic features, whereas the scan-specific model offers higher fidelity at the expense of residual artifacts.

9.5% RMSE 8.6% RMSE

so that dictionary coefficients that approximate the acquired
data in a parsimonious manner can be directly estimated [64].
This subspace approach can help mitigate relaxation-related
blurring during the qMRI echo train, and boost SNR and
mitigate artifacts in MRF [65].

Note that the subspace formulation can be viewed as a
linear approximation of the underlying MR signal evolution.
Rather than projecting signals into a fixed low-rank basis,
an alternative is to explicitly enforce the nonlinear signal
equations during reconstruction, enabling direct estimation of
quantitative parameters (e.g., relaxation times) from under-
sampled data [66]. Such nonlinear formulations can improve
parameter accuracy by adhering more closely to MR physics,
but they lead to nonlinear inverse problems that are often
computationally more demanding to solve. These nonlinear
formulations are applicable to steady-state sequences that
admit a closed-form expression for their signal evolution, such
as those in (1-3).

V. DEEP-LEARNING RECONSTRUCTION METHODS

DL methods learn data-driven priors from exemplar MRI
datasets to help solve (14). To structure discussions on DL,
we dissect methods in the literature along three fundamental
axes: modeling framework, network architecture, and learning
paradigm. This tripartite view reflects the core design choices
that govern how DL reconstruction methods incorporate do-
main knowledge, compose their networks, and learn from data.

A. Modeling Frameworks

To avoid overlapping terminology and blurred boundaries
that may obscure complementary strengths and limitations,
here we categorize current DL methods under three distinct
frameworks: data-driven, physics-guided, and generative (Fig.
5; see Fig. 4 for example reconstructions). This taxonomy
is grounded in fundamental distinctions regarding how DL
methods leverage domain knowledge, i.e., how they incor-
porate data-driven and physical priors, to solve the inverse
problem. Accordingly, data-driven and physics-guided models
refer to conditional networks* trained to predict MR images

4Conditional networks generate outputs based on a measured input and a
learned mapping, effectively modeling the conditional distribution P (output |
input).
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Fig. 5: (a) A data-driven network Gy reconstructs an MR image 7 from a linear transformation of undersampled multi-coil data d. In thlS example, the
linear transformation is a zero-filled Fourier reconstruction m,, = A d, obtained by inverse Fourier transformation of d followed by coil combination based
on estimated profiles C. The reconstruction 7 is obtained via a forward pass of m,, through network layers. (b) A physics-guided network reconstructs
an MR image from a linear transformation of undersampled data. In this example, the zero-filled Fourier reconstruction m,, is forward passed iteratively
through interleaved network layers Gy and data-consistency (DC) layers. In DC layers, the input coil-combined image is first projected onto a multi-coil image
based on C, data consistency is enforced in k-space, and the resultant multi-coil image is coil-combined. (¢) A generative network Gy trained to capture the
distribution of high-quality MR images is combined with the imaging operator to reconstruct an MR image at inference. In this example, Gy synthesizes a
random MR image from a latent representation z—this may be a random code (GANs), Gaussian noise (diffusion), or a latent code produced by an encoder.

1]

G and z can be jointly optimized to ensure that reconstructed k-space data are consistent with acquired data d based on the imaging operator A.

that would resemble reconstructions of fully-sampled data,
using as input a linear transformation of undersampled data,
and differing in whether they exploit physical priors. By
contrast, generative models refer to unconditional networks>
trained to synthesize random MR images that are not tied
to undersampled data, integrating physical priors only during
inference. This classification partly diverges from the broader
machine learning convention, where ‘generative models’ can
encompass any architecture capable of producing stochastic
images. In MRI reconstruction, however, we argue that the
critical distinction lies not in output stochasticity, but in how
models fundamentally approach the inverse problem. Condi-
tional networks—even those with stochastic components like
adversarial or variational architectures—receive undersampled
data as explicit input and are thus more appropriately classified
within our data-driven or physics-guided categories based on
their treatment of physical priors.

A.1 Data-Driven Models: Instead of relying on predefined
priors, these methods learn data-driven priors directly from
available datasets [38], [46], [67], [68]. In a common formula-
tion, a network is trained to map from undersampled to fu%\lfy
sampled data, using a training dataset {(d**(?) mtr(ﬂ))}]_1
where j is the sample index, N, is the number of training
samples, d*(7) denotes acquired data for the jth sample, and
m'0U) is the ground-truth image. Note that the network in-
put/output can be expressed in image domain, k-space or both,
with image-domain networks often using the least-squares
solution m, = AHd (i.e., zero-filled Fourier reconstruction)
as input, and trying to recover the ground-truth image m. The
training objective for a data-driven (dd) network can then be

SUnconditional networks generate outputs without an explicit measured
input, often leveraging random latent variables, and model the marginal
distribution P (output).

expressed as:
ﬁdd(e) = ]E(dtr,mtr) [f(Gg(mzr), mtr)] (26)

where E denotes expectation, Gy is the network parameter-
ized by 6, and £(-,-) denotes a loss function that reflects
the discrepancy between network-predicted and ground-truth
reconstructions. Note that this discrepancy can be measured
in image domain as depicted in (26), in k-space, or both.
Furthermore, while the />-norm is a common choice for com-
paring network and ground-truth reconstructions—mirroring
its role in quantifying data consistency—alternative losses are
often employed to promote desired image attributes. Prominent
examples include ¢, hybrid ¢1—¢5, perceptual, adversarial, or
diffusion losses [69].

During inference, the trained network with optimized pa-
rameters 6* processes undersampled data d to predict m
through a forward pass across the network architecture:

1 = Gox (my). 7)

Learning an end-to-end mapping from undersampled to
fully-sampled data, purely data-driven models are computa-
tionally efficient and can outperform traditional methods. Yet,
they may suffer performance losses due to the lack of an
explicit mechanism to enforce fidelity to the imaging operator
or acquired data [70]. As remedy, some approaches embed
data-driven networks—typically pretrained for denoising or
artifact suppression—within iterative optimization algorithms
[71], [72]. This keeps the network agnostic to the imaging
operator during training, while imposing physical priors ex-
ternally at inference—a middle ground between purely data-
driven and tightly integrated physics-guided designs.

A.2 Physics-Guided Models: To benefit from knowledge
of acquired k-space locations and coil sensitivities, physics-
guided models typically inject data-consistency blocks based
on the imaging operator within the network architecture [14],
[37], [40], [73]-[80]. A common motivation for this design
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is a composite objective that balances physics-driven data
consistency with data-driven regularization:

m* = argmin ||d — Am||* + X (Gg(m),m),  (28)

where GGy denotes the network module. In practice, unrolled
models do not directly solve (28), but instead alternate a
learned prior block with a quadratic data-consistency update as
described in (29-30). This iterative structure resembles fixed-
point iterations, and has close connections to proximal splitting
methods [81]-[84]:
L+ Ga(m(i)),

(29)
m+D) — argmin ||d — Am||2 + )\E(z(i+1),m), (30)
m

where I is the total number of iterations, and 0 < ¢ < I. The
training objective for a physics-guided (pg) network can be
formulated as:

Lpg(0) = Egor ppiry {£(m D m')} 31)
Image-domain unrolled networks typically set the input as
m = m,,, and given a trained network, the reconstructed
image during inference is taken as 7 = m(9,

Traditional methods for quantitative MRI often rely on an-
alytical models that describe how tissue parameters affect the
measured signals based on the physics of spin dynamics (e.g.,
mono-exponential decay in multi-echo spin-echo sequences
for To mapping). Recent physics-guided DL methods also
integrate such analytical priors to estimate quantitative maps
of tissue parameters g from undersampled data [85], [86]:

¢* = argmin ||d — Ah(q)||> + M(Go(q),q),  (32)
q

where h(-) is the analytical signal model. By jointly optimizing
over parameter and data fidelity, such unrolled networks can
mitigate errors that arise from treating image reconstruction
and parameter mapping disjointly.

Physics-guided models incorporate the imaging operator to
improve reconstruction performance, but they may face gener-
alization issues when tested out-of-domain—e.g. with different
undersampling patterns or rates—and become computationally
expensive when using a large number of cascades.

A.3 Generative Models: Unlike models subject to task-
specific training involving undersampled and fully-sampled
data, generative priors agnostic to the imaging operator (i.e.,
the k-space sampling patterns and coil sensitivity maps) have
come forth as a promising alternative to boost generalization
by learning the distribution of fully-sampled data alone [41],
[87]. For inference, a generative prior that synthesizes MR
images can be combined with the imaging operator, typically
through a conventional optimization problem. A variety of
machine learning approaches from autoencoding to flow-
matching models are available for building generative priors
[88], yet arguably adversarial and diffusion models have
gained particularly widespread adoption.

Earlier works utilized Generative Adversarial Networks
(GANSs) [89], [90] comprising a generator network Gy that
synthesizes images from latent variables, and a discriminator

%An implementation of an unrolled model based on hybrid ¢1-f2
loss is available at https://github.com/tutorial-MRI-recon/
tutorial/tree/main/supervised_dl.

network Dy that distinguishes between actual and synthetic
images, trained via the following objective:
Lcan(0) =Epome [log Dg(m)]

FE.up. () [log (1 - Dy(Go(2)))],  (33)
where p, (z) denotes the distribution of latent variables. During
inference, the latent code and, sometimes, the generator itself
are optimized so as to satisfy fidelity with the imaging operator
and acquired data:

(2,0)* = argmin £(AGy(z),d) (34)
z,0

where z denotes a vector of random latent variables, and ¢ is a
loss function that measures discrepancy between reconstructed
and acquired k-space data (e.g., {3-norm, ¢1-norm, or hybrid
{1-f5 norm). The final reconstruction can be computed via the
generator network as:
m = G- (2") (35)
More recent approaches have leveraged diffusion-based
priors that operate through two complementary processes:
a forward process that progressively adds noise to training
images, and a reverse process that learns to denoise images
step-by-step [91]-[93]. During training, the forward process
systematically corrupts clean images by adding Gaussian noise
over T timesteps, while the reverse process trains a neural
network Gy to predict and remove this added noise. The
training objective can be expressed as:
Lt (0) = Egoi1,1),mir e [lle—
Gy (@mgr ++/1— dte,t) ||2] ,
(36)
where m{' refers to ground-truth images from the training set,
e ~ N (0, ) is Gaussian noise, Gy(-,t) is the neural network
that predicts the added noise at timestep ¢, and oy = Hle Q;
defines the cumulative noise schedule that controls the amount
of noise added during the forward process. During inference,
only the reverse process is used to reconstruct the MR image
corresponding to an undersampled acquisition, starting from a
pure Gaussian noise image. To do this, the denoising process is
guided between successive steps to ensure that the synthesized
images remain faithful to acquired data [94], analogously to an
unrolled network operating with T iterations. At each step ¢,
the sampling procedure for a diffusion model can be expressed
as:
ﬁlt_l = Gg(mt,t),t € [T, O), (37)
me—1 = i1 + A% (d — A(iy-1)), (38)
where ;1 is the image at step (¢t — 1) that can be predicted
using Gy, m;_1 is the corrected data-consistent version, and
mp = € represents the starting point of pure Gaussian noise.
The final reconstructed image is taken as m = mg. Image
quality can be further enhanced by adapting the generative
prior itself to acquired data, as in (34) [95].

Generative methods decouple the imaging operator from the
training of the network to arrive at a formulation that improves
generalization. However, they often suffer from prolonged
inference times, and determining appropriate stopping criteria
for test-time adaptation can be challenging.
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Fig. 6: Receptive fields for fully-connected, convolutional, attentional, and recurrent (e.g., state-space) operators, illustrating differences in filtering primitives.
Fully-connected operators perform static global filtering across the image. Convolutional operators perform static local filtering constrained to a compact
neighborhood. Attentional operators perform input-adaptive global filtering by computing pair-wise similarities of image tokens (e.g., patches). Recurrent
operators perform input-adaptive global filtering by aggregating high-order dependencies across image pixels through sequence modeling.

B. Network Architectures

Although the modeling framework dictates the overarching
network structure for reconstruction models, a range of archi-
tectural decisions from operator type to contrast configuration
must be made when composing individual layers.

B.1 Operator Type: Each layer applies mathematical opera-
tors that capture spatial dependencies in the input—in conjunc-
tion with normalization and non-linear activation functions—
enabling the extraction of task-relevant features that are prop-
agated through the network (Fig. 6). These operators define
distinct filtering primitives, imparting varying degrees of rep-
resentational power and computational efficiency.

Fully-connected operators establish an explicit relation-
ship between each pair of elements in the input feature map
versus the output feature map:

mout[j] = Zw[ivj]vmin[i]a

where m;, € CM denotes the vectorized input map, mey €
CM is the output map, and w € CM*M js the static filter
weights of the operator. As complex-valued operators are
relatively uncommon in DL programming libraries, practical
implementations often map real/imaginary or magnitude/phase
components across the channel dimension of feature maps
and prescribe real-valued operators [44]. Commonly found
in implicit generative methods that synthesize images as a
function of spatial coordinates [96], fully-connected operators
enable modeling of all pairwise interactions between input
and output elements [97], yet they are parameter-intensive and
often computationally prohibitive for many network designs.

(39)

Convolutional operators use a translation-invariant kernel
to filter the input feature map:

Mow[t, 0] = > > wlu—i,v — jlmuli,j],  (40)
i g

where Min ou € CU*V and w € C™*7 denotes the static
filter weights with » < U, V. Convolutional operators are
parameter-efficient due to their localized receptive fields and
hence easier to train on compact datasets [40], [98], which
have contributed significantly to their widespread use in DL
models for MRI reconstruction. However, these benefits come
at the cost of a bias toward localized dependencies between
neighboring elements, which limits sensitivity to long-range
interactions across the input map.

Attentional operators compute interactions across the in-
put feature map m;, € CV*Y by partitioning it into N = ¢

patches {m¥}IV_ | each of size P x P. Each patch is flattened
and linearly projected into a vector zj, € CP. The output patch
representations {z; }j-vzl are derived as [90], [99]:

N
2= ajr(zWy), 41)
k=1
exp ((Z]WQ)(ZkWK)T/\/E>
a5k = (42)

S exp (W) (2 W) T/VD)

where Wq, Wi, Wy € CP*P are learnable query, key, and
value projection matrices, and the attentional filter weights «
are input adaptive. The output feature map 1oy € CYXV is
reconstructed by reshaping and aggregating the output patches
{#}}. Attention enables modeling of long-range interactions
across the input map, but it incurs higher computational and
memory costs compared to convolutional operators, particu-
larly for high-resolution images with many patches [100]-
[102].

Recurrent operators propagate information sequentially
across the spatial dimensions, providing an alternative to
attention primitives for capturing global context [103]-[105].
A representative example is the state-space model (SSM)
operator that describes the dynamics of hidden states h[i] €
C¥ in response to an input sequence of pixels mj,[i] € CM
indexed by ¢ through a linear system [106]:

hli + 1] = Agm h[i] + Bssm Minli], (43)

Mout [1] = Cssm h[Z] + Dssm Min [Z]v (44)
where Agn € CVXN, B, € CVXM Oy, € CMXN,
Dy € CM*M gre learnable matrices for adaptive filtering.
Here, flattening the input feature map m;, into a 1D sequence
via a specific pixel ordering across the spatial grid con-
strains the inherently multidimensional spatial relationships
to a single traversal path. Yet, this sequentialization enables
SSMs to summarize long-range spatial dependencies at lower
computational cost compared to attentional operators [107]-
[109]. Ongoing works explore alternative sequentialization
approaches (e.g., raster scan, spiral, space-filling curves) to
balance fidelity to image structure with efficiency [106], [110].

B.2 Input Domain: Architectures vary in the domain in
which they operate on MRI data, with each domain offering
distinct advantages for capturing structural, frequency-specific,
or semantic features essential to the reconstruction task.

Image-domain networks typically operate on aliased im-
ages, obtained via zero-filled inverse Fourier transformation of
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undersampled data [37]. Within physics-guided or generative
frameworks, image-domain feature maps are often propagated
between the image and Fourier domains to enforce data
consistency based on the imaging operator [40].

Fourier-domain networks directly process undersampled
k-space data, offering an intrinsic advantage for enforcing
data-consistency, as the data remain in the Fourier domain
[45], [111], [112]. However, special care is often required
when handling k-space inputs, as the energy distribution varies
significantly across spatial frequencies.

Hybrid-domain networks employ separate branches or in-
terleaved cascades to process both image- and Fourier-domain
representations [73], [113], [114]. By combining spatially
localized image features with globally distributed spectral fea-
tures, these architectures can achieve enhanced reconstruction
performance compared to single-domain counterparts.

Latent-domain networks abstract away from image or k-
space representations by operating in a learned latent space.
Such networks encode MRI data onto a lower-dimensional
semantic representation, and decode the processed semantic
representation back onto MRI data [43], [87], [115], [116].
This strategy enables the more efficient processing of high-
dimensional and multi-contrast MRI datasets.

B.3 Contrast Configuration: Architectures can also differ in
whether they process different tissue contrasts in an MRI
protocol independently or jointly. This typically shapes the
branching strategies within the network and directly impacts
the network’s performance.

Independent reconstruction refers to the most common
formulation adopted in MRI, where each contrast (e.g., Ty,
T,) is reconstructed separately using contrast-specific inputs
[117]. This approach simplifies modeling, and generally low-
ers model complexity. However, it also ignores potential
redundancies and synergies across contrasts, which may limit
reconstruction quality towards higher acceleration factors.

Joint reconstruction aims to reconstruct multiple contrasts
acquired from the same subject simultaneously by leveraging
shared structural features arising from the underlying common
anatomy [118], [119]. Such networks typically receive multi-
contrast inputs, either as multi-channel tensors or separate
inputs fused through cross-modal attention or shared encoding
[75], [771, [120], [121]. Joint reconstruction can significantly
improve performance, particularly under high accelerations,
albeit requires careful registration of contrasts to avoid artifacts
due to spatial misalignment and feature leakage [122].

Prior-conditioned reconstruction refers to setups where
the reconstruction of a target contrast is guided by one or
more auxiliary contrasts [123], [124]. This formulation is
particularly relevant in settings where one contrast carries a
fully-sampled acquisition, and another has a heavily undersam-
pled acquisition. Prior-conditioning mechanisms may include
concatenation, attention, or learned cross-contrast priors [125].
Prior-conditioned reconstruction offers similar benefits to joint
reconstruction, albeit proper alignment between contrasts is
often key to model performance [126]. Note that prior-
conditioning does not have to be restricted to distinct contrasts;

it can also be employed to process repeated scans of a given
contrast. For instance, patient-specific conditioning can be
realized to improve reconstruction performance using prior
scans of the same contrast for a subject, even when acquired
on different MRI systems (e.g., high-field versus low-field)
[127].

C. Learning Paradigms

The choice of training strategy for DL methods is closely
tied to the availability and structure of training data. De-
pending on whether fully-sampled acquisitions are available
to serve as ground truth, or whether a training set exists at
all, different paradigms become suitable. Below, we review
the three main paradigms commonly adopted in the literature
that aim for population-level, scan-specific or hybrid training.

C.1 Population-Level Training: Population-level training
aims to learn a reconstruction network from a cohort of
training subjects, assuming access to multiple independent
acquisitions. Depending on whether paired (fully-sampled and
undersampled) data are available, supervised or self-supervised
learning might be adopted.

Supervised learning assumes access to paired datasets
{(m,(f),m(i))}ﬁ\]:l, where i is sample index, N is the num-
ber of samples in the training set, m, is the zero-filled
Fourier reconstruction of an undersampled acquisition (or its
corresponding k-space data), m is the ground-truth image
Fourier reconstructed from a fully-sampled acquisition. The
reconstruction network is trained to minimize the discrepancy
between its prediction () = Gy(m!/’) and the ground truth
(Fig. 7a). general objective can be expressed as:

Csup(e) = E(mu,m) [Z (GG(mu)7 m)] ) (45)
where [E denotes expectation typically estimated via Monte
Carlo sampling over training samples. Supervised methods
yield high reconstruction accuracy when the distributions of
training versus test samples are reasonably well aligned. How-
ever, they require large datasets of fully-sampled acquisitions,
which are costly to collect in clinical settings [34], [128].

Note that generative networks are typically trained to syn-
thesize MR images derived from fully-sampled data, without
considering the imaging operator. At inference time, they are
combined with an inverse sampling technique (see Section
IV-A.3) to reconstruct undersampled data from test subjects.
Formally, this setup aligns with the definition of unsupervised
learning, as networks are trained without paired input-output
examples, learning solely from the target distribution [90].

Self-supervised learning. With MRI protocols that require
significantly high spatial-temporal resolution and coverage,
it may be infeasible to perform fully-sampled acquisitions
to curate training sets in clinically acceptable scan times
[34], [117]. In such scenarios, reconstruction models can be
trained solely on undersampled acquisitions by adopting self-
supervised learning [129], [130]. A common strategy partitions
available measurements into training and supervision sets [72],
[76], [131], where acquired k-space indices {2 are split into two
disjoint sets © and A such that © U A = 2. The network is
trained to reconstruct the signal over A using predictions based
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Fig. 7: Different learning paradigms depending on availability and structure of training data. (a) Supervised learning performs population-level training of a
reconstruction network using paired sets of undersampled and fully-sampled data, where training loss is expressed using ground-truth images derived from
fully-sampled data. (b) Self-supervised learning performs population-level training using only undersampled data, in cases where it is not feasible to collect
fully-sampled acquisitions. Training loss is expressed using a masked portion of undersampled data. (¢) Scan-specific learning performs test-time training
using undersampled data from an individual test subject. Reconstruction can be achieved via either an unconditional network that maps a noise vector z onto
an image as in deep image prior (DIP) methods, or a conditional network that maps a zero-filled Fourier reconstruction of undersampled data m,, onto an
image as in zero-shot (ZS) methods. In both cases, training loss is expressed using single-scan undersampled data.

on data from O, as inspired by masked modeling techniques domain reconstruction [136]—[139]. The network is optimized
in computer vision [99] (Fig. 7b): to satisfy data consistency in k-space based on the available

Lsspu(0) = E,p,, [ (PA (FCGo(myle)),dla)], (46) undersampled acquisition, as inspired by deep image prior

where P, is a projection onto the supervision set in k- (PIP) techniques [140] (Fig. 7¢.1):

space. This technique enables network training without ever Lpip(0) = £ (Pa (FCGe(2)) ,d), 47)
accessing fully-sampled ground truth, making it particularly where Pq denotes the sampling mask.
appealing in real-world clinical scenarios [132], [133]. Another approach uses a randomly-initialized conditional

C.2 Scan-Specific Training: When training data are entirely ~nhetwork Gy to map a linear transformation of a subset © of
absent due to limited scanning resources, network models undersampled data (e.g., the zero-filled Fourier reconstruction
must be learned exclusively on test data during inference [98], Mule of d|e onto a reconstruction [135], [141]. In this case,
[134], [135]. Note that such scan-specific learning can be the network is optimized to satisfy consistency to another
categorized as a subclass of self-supervised techniques that
learn from a single test sample (i.e., a single test subject). A
prominent approach uses a randomly-initialized unconditional
network Gy to map a fixed noise input z onto an image-
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subset A of undersampled data (Fig. 7c.2):’
ﬁzs(e) = é(’PA (fCGg(mu|@)),d|A) . (48)

Test-time trained networks can adapt to the unique char-
acteristics of each scan, albeit running optimization during
inference is computationally expensive. Moreover, when the
entire set of acquired data is used during training, the network
might suffer from overfitting to noise if not early stopped
[142]. A promising strategy to alleviate this issue is to hold out
an independent subset of k-space samples as validation data
to guide early stopping [141]. For instance, a third disjoint set
of k-space data V (i.e., O U AUV = ) can be reserved to
assess the validation performance of the conditional network
described in (48).

C.3 Hybrid Training: A network learned on a training dataset
collected at a particular imaging site or with a specific protocol
might later be deployed in different settings, yielding shifts in
the data distribution. These shifts can in turn cause poor gener-
alization in learned networks, necessitating domain alignment.
Hybrid training combines the strengths of population-level and
scan-specific paradigms to enhance generalization on out-of-
distribution test data [43], [87], [90], [143]. In this framework,
a network G, initially trained on a cohort of training subjects
is later adapted on the undersampled test data from a specific
subject (Fig. 7¢.2):

Liybria(0) = £ (P (FCGy(2)) ,d)  with 0« 6o, (49)
where z is a noise variable or an aliased image, 6 is initialized
from 6y. Hybrid training leverages population priors while
retaining the adaptability of scan-specific optimization.

V. CLINICAL IMPLICATIONS AND TRANSLATION
A. General Implications

A.1 Improved Image Quality for Visual Assessment: Techni-
cal advances in MRI encoding and reconstruction have enabled
recovery of high-fidelity images from heavily undersampled
data, which is particularly impactful in clinical settings where
scan time is limited but the need for diagnostic accuracy is
paramount [144]. In essence, improvements in image qual-
ity—such as enhanced contrast, reduced noise, and clearer de-
lineation of anatomical structures—enable radiologists to make
more accurate and confident interpretations, particularly in
complex or borderline cases. For instance, high tissue contrast
and structure preservation contribute to improved detection and
delineation of pathological findings such as ischemic lesions,
demyelinating plaques, or small tumors [145]. The extent of
the lesion delineation is also important [146]. In addition,
improved consistency in image texture and sharpness across
slices and contrasts contributes to a more coherent visual
impression [147]. This uniformity reduces cognitive load on
the reader, minimizes interpretation time, and decreases intra-
reader and inter-reader variability [146].

A.2 Enhanced Patient Compliance and Comfort: Acceler-
ated MRI reconstruction techniques offer benefits not only

7An implementation of a scan-specific model is available at
https://github.com/tutorial-MRI-recon/tutorial/tree/
main/scan_specific_dl.

for image quality but also for patient compliance and comfort
[22], [148]. One of the most direct advantages is the reduction
of scan duration. Shorter scans can minimize the time patients
are required to remain still inside the scanner, thereby reducing
physical discomfort, especially for populations such as chil-
dren, elderly individuals, or critically ill patients [149], [150].

Increased efficiency in MRI scanning schedules improves
throughput and access to imaging services. Shortened scan du-
rations also decrease the likelihood of motion-related artifacts,
which are one of the most common sources of non-diagnostic
or inconclusive scans [151]. In high-demand clinical settings,
minimizing the need for repeat acquisitions and completing
exam protocols within limited time windows help alleviate
scheduling bottlenecks, reduce patient wait times, lower oper-
ational costs, and enhance the overall patient experience [152].

These safety and comfort gains, while sometimes considered
secondary to diagnostic efficacy, are in fact essential to patient-
centered care. They contribute to higher compliance rates,
fewer aborted scans, and an overall improvement in the quality
of care delivered in the imaging suite.

A.3 Expanded Access to Advanced Imaging Protocols: The
integration of advanced MRI reconstruction techniques, par-
ticularly those enabling high acceleration factors, has the
potential to allow for the incorporation of additional or more
complex pulse sequences that would otherwise be excluded
due to time constraints. This is particularly significant for
multi-parametric, multi-contrast, or dynamic imaging proto-
cols that can provide more comprehensive diagnostic infor-
mation. For instance, advanced reconstructions can facilitate
the routine inclusion of diffusion, perfusion, spectroscopy, or
relaxometry—all of which are often omitted in time-limited
clinical workflows despite their diagnostic value [153]. In
neuroimaging, this may enable broader application of multi-
shell diffusion protocols or resting-state functional MRI, while
in body imaging, time-resolved sequences (e.g., GRASP) may
become more feasible [154].

From a practical perspective, this expansion can contribute
to earlier detection of disease, improved lesion characteri-
zation, and more precise treatment planning. Furthermore,
it can help bring research-grade imaging techniques into
standard clinical practice, thereby narrowing the translational
gap between academic innovation and real-world diagnostics
[155]. Additionally, advanced protocols supported by fast
acquisitions are particularly valuable in longitudinal studies or
follow-up examinations, where consistent but fast imaging is
critical to monitor disease progression or treatment response.
Ultimately, the capacity to deliver richer imaging datasets
within standard clinical time slots represents a major step
toward personalized and precision medicine [156].

A.4 Facilitation of Data-Demanding Analysis Pipelines: As
modern radiology increasingly relies on computational tools
for image processing and decision support, the role of im-
age reconstruction extends beyond generating visually inter-
pretable images. It now serves as the foundational step in a
data pipeline that feeds into downstream applications such as
automated segmentation, radiomics, disease classification, and
predictive modeling [157], [158].
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Fig. 8: Stages of translational development for MRI reconstruction techniques, alongside the critical milestones and involved stakeholders.

In addition, accelerated reconstruction techniques facilitate
the acquisition of large volumes of imaging data without ex-
ceeding clinically acceptable scan durations. This is especially
relevant for 3D or 4D protocols, multi-contrast studies, or
high-resolution imaging where large data throughput is needed
for training and inference with DL models. For example,
in radiomic workflows, the variability in input quality due
to undersampled acquisitions can be mitigated by advanced
reconstruction algorithms, thereby enhancing the reproducibil-
ity and robustness of the extracted features [159], [160]. In
this context, the synergy between advanced reconstruction and
data-centric analysis tools forms a critical axis for the future
of precision radiology [161].

B. Application-Specific Implications

Although many current clinical MRI protocols employ mod-
est acceleration supported by classical reconstruction methods,
e.g. R=2-4 using PI, substantial opportunities remain to further
improve scan efficiency via adoption of advanced reconstruc-
tion techniques. Benefits of additional acceleration would be
particularly evident in longer protocols, where reduced scan
times can significantly improve workflow, enhance patient
comfort, and lower the risk of motion-related artifacts [162].
The clinical value of MRI reconstruction should therefore
be evaluated in relation to exam durations and diagnostic
requirements across anatomical regions and applications.

Neuro MRI. In neuroimaging, standard clinical protocols
are designed to acquire multiple image contrasts, such as T-
weighted, T,-weighted, FLAIR, diffusion, and susceptibility-
weighted imaging, typically taking 20 to 30 minutes [128].
Advanced reconstruction techniques can enable higher accel-
eration rates to be used, reducing the scan time to as little
as 5 to 10 minutes. Protocols that involve high-resolution
volumetric imaging across multiple contrasts, such as those
used in epilepsy evaluation (usually 30 to 40 minutes [163]),
stand to benefit significantly. In addition to improving patient
compliance, especially among pediatric or neurologically im-
paired populations, the time saved can be reinvested to increase
spatial resolution or to include additional contrasts, thereby
enhancing lesion conspicuity and anatomical detail without
prolonging the overall exam duration.

MSK MRI. In musculoskeletal imaging, fine anatomical
delineation is required for assessing small structures such as
ligaments, tendons, cartilage, or subchondral bone [164]. Due
to the requirement for high spatial resolution and multiple
oblique imaging planes aligned with complex joint anatomy,
musculoskeletal imaging typically takes 15 to 30 minutes
[165]. The time saved with higher acceleration using advanced
reconstruction techniques can be reinvested to improve SNR
or further enhance spatial resolution, thereby facilitating de-
tection of subtle findings such as partial tendon tears, cartilage
defects, and marrow lesions.

Abdominal MRI. In abdominal imaging, challenges related
to respiratory motion and contrast timing often necessitate
extended protocols over multiple breath-holds, lasting 3045
minutes [27]. Free-breathing acquisitions combined with ad-
vanced reconstruction methods can reduce scan times to 10-15
minutes. This can enable more consistent image quality across
patients, mitigate motion artifacts, and preserve key contrasts
such as lesion enhancement. For prostate exams, high quality
T,-weighted images in multiple planes and DWI are often
required, while contrast enhanced scans are also used in
subpopulations [166]. Reconstruction techniques can enable
shorter and/or higher-resolution scans, improving lesion detec-
tion while streamlining screening and diagnostic workflows.

Cardiac MRI. Used pervasively in evaluation of cardio-
vascular diseases, cardiac MRI involves detailed assessments
across multiple domains, such as cardiac morphology and
function, myocardial tissue characterization, perfusion imag-
ing, flow and hemodynamics, or coronary artery evaluation
[167]. These assessments are encoding-intensive due to the
need for dynamic, multi-phase, and multi-contrast data ac-
quisitions. Additionally, respiratory and cardiac motion often
necessitate multiple breath-holds during scanning. The average
scan duration ranges from 30 to 60 minutes, depending on
protocol complexity (e.g., inclusion of perfusion, late gadolin-
ium enhancement, or mapping sequences) and patient-related
factors such as breath-holding capacity and the presence
of arrhythmias [168], [169]. Reconstruction techniques can
facilitate the use of higher acceleration and reduce scan time
to 10-20 minutes, enabling higher temporal resolution or
more effective motion correction. These improvements can
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enhance the visualization of wall motion, myocardial strain,
and perfusion dynamics.

Whole-body MRI. In whole-body imaging, increasingly
adopted in oncology for metastatic screening and treatment
monitoring, protocols often extend to 45-90 minutes [170].
Advanced acquisition/reconstruction, coupled with motion-
compensation techniques, can reduce exam times to 15-30
minutes without compromising diagnostic accuracy.

MR-guided Radiotherapy. MR-guided radiotherapy lever-
ages MRUI’s superior soft-tissue contrast and real-time imaging
for precise tumor targeting and on-table adaptive planning
without ionizing radiation [171], [172]. Yet, cine MR se-
quences for gating and intrafraction tracking require high
temporal resolution, minimal latency, and robustness to motion
[173]. Advanced reconstruction methods can provide low-
latency image formation with improved artifact suppression,
supporting reliable margin definition in abdominal and tho-
racic sites and enhancing treatment precision.

Interventional MRI. Guiding procedures such as biopsies,
ablations, and catheter-based therapies [174], interventional
MRI requires rapid, high-temporal-resolution visualization of
a limited field of view to track instruments and target tissues in
real time. Frequent presence of needles, wires, and ablation de-
vices further necessitates robust artifact mitigation [175]. Ad-
vanced reconstructions that accelerate imaging with minimal
latency while preserving spatial fidelity can support contin-
uous procedural monitoring, faster intra-procedural decision-
making, and safer, more effective interventions overall.

Low-field MRI. Low-field MRI (<0.5T) offers reduced
equipment cost, portability, and improved safety for patients
with implants, pediatric populations, or those in resource-
limited or bedside settings [176]. However, lower SNR and
reduced spatial resolution are common limitations at these field
strengths that can compromise diagnostic utility. Advanced
reconstruction methods can mitigate these challenges by im-
proving scan efficiency, lowering image noise, and improving
spatial resolution.

Others. Finally, emerging applications such as lung, breast,
and fetal MRI stand to benefit substantially from advanced re-
construction. These techniques can help address longstanding
barriers including low signal, motion artifacts, and time con-
straints. As such methods continue to mature, they may drive
broader clinical adoption and enable more accessible, efficient
MRI workflows for screening and point-of-care evaluations.

C. Stages of Translational Development

The translation of MRI reconstruction technologies into
clinical practice generally follows a multi-stage pipeline. Al-
though several definitions of translational research phases
have been proposed in the biomedical sciences, especially in
genomics, they may not fully capture the specific challenges
associated with imaging technologies [177], [178]. As summa-
rized in Fig. 8, the key stages include conceptual development,
clinical validation, regulatory approval, commercialization,
and post-market monitoring.

In the early conceptual stage, reconstruction methods are

developed and tested on simulated or phantom data to establish
feasibility. Subsequent clinical validation involves retrospec-
tive evaluation on patient datasets and prospective pilot studies,
aiming to demonstrate diagnostic efficacy, reproducibility, and
robustness in real-world settings. Most studies leverage image
fidelity metrics such as MSE, PSNR, and SSIM, which are
widely used in computer vision, to provide a quantitative
benchmark of reconstruction performance. While valuable for
assessing basic image similarity, these conventional metrics
can have limited correspondence to clinical utility and should
be interpreted with caution when used as indicators of diagnos-
tic value. Ideally, metrics that better align with human percep-
tion of image quality can be incorporated to improve fidelity
of metric-based evaluations [179], [180]. More importantly,
clinical validation should not rely solely on quality metrics
but rather on demonstrated clinical value, that is, whether
the reconstruction supports accurate diagnosis and appropriate
patient management [181].

A particularly challenging step in this pipeline is regulatory
approval. MRI reconstruction techniques, especially those in-
volving machine learning, may be subject to rigorous review
by agencies such as the U.S. Food and Drug Administration
(FDA) or European CE marking authorities. Demonstrating
safety, interpretability, and generalizability is essential.

Following regulatory clearance, commercialization and de-
ployment require integration into clinical workflows and imag-
ing platforms. This involves not only technical compatibility
with PACS (picture archiving and communication systems)
and scanner software, but also attention to computational
demands, user training, and support infrastructure as scalable
deployment demands efficient algorithms.

Finally, post-market surveillance is critical to ensure con-
tinued safety and efficacy, identify performance issues across
diverse populations or institutions, and guide iterative updates
[182]. Collaborative efforts between industry, regulatory bod-
ies, and clinical users are essential to support this continuous
improvement process. Overall, the successful translation of ad-
vanced MRI reconstruction techniques depends on coordinated
progress across technical innovation, regulatory navigation,
and system-level implementation.

D. Clinical Workflow Integration

Despite their diagnostic potential, advanced reconstruction
techniques face several challenges in clinical implementation.
Each technique has its own strengths and limitations as briefly
summarized in Table I, and it is important to understand these
characteristics to select the most appropriate method for the
task at hand. Beyond implications directly related to the level
of acceleration, artifact suppression, and image quality, an
important challenge in clinical implementation is the computa-
tional demand of advanced reconstruction methods. Integration
of these methods into routine workflows inevitably depends
on infrastructure readiness. High-performance computing re-
sources, often including GPUs (graphical processing units), are
typically required—posing constraints for on-scanner deploy-
ment. Off-scanner solutions, such as PACS-integrated servers
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TABLE [: Categorization of MRI reconstruction methods and considerations for their clinical translation.
Category Methods Key Characteristics Pros Cons Current Trans-
lational Stage
Classical Linear Exploits coil-sensitivity encod-  Computationally efficient imple-  Limited acceleration (R),  Post-market
Methods Regression  ing; straightforward implemen- mentation; clinically accepted; residual artifacts/noise towards Monitoring and

/ Interpo- tation; clinically established. minimal regulatory hurdles. higher R. Improvement

lation

Sparsity Exploits transform-domain spar-  Moderate R, strong artifact re- High computational cost due to ~ Commercialization
sity; iterative optimization-based  duction, clinically validated. iterative optimization; requires and Deployment
implementation; broad applica- careful parameter tuning. Stage
bility across MRI sequences.

Low-Rank  Exploits structured low- Decent artifact suppression; Computationally intensive; rel- Mainly Concept
rankness; especially beneficial ~ well-suited for data with atively complex, non-standard and Basic Re-
on dynamic MRI data. significant spatial/temporal  implementation. search

correlations.
Subspace Utilizes Bloch-simulated signal  Quantitative imaging capability; ~ Complexity of dictionary cali- Some are
models; beneficial in parameter  high flexibility in post-hoc con-  bration; longer development cy- FDA/CE
mapping applications. trast generation. cles. approved
Deep- Data- Leverages priors learned from  High reconstruction quality; Limited out-of-domain general- Commercialization
Learning Driven exemplar data; reconstruction  rapid inference; minimal  ization; regulatory complexities and Deployment
Methods cast as a single forward pass  parameter tuning. due to black-box nature. Stage

through the network.

Physics- Combines data- and physics- Better  physical  grounding; Higher computational burden  Mainly Clinical

Guided driven priors; reconstruction cast ~ higher wuser trust; improved than data-driven methods; lim-  Validation, some
as iterations through the two  generalization under changes to  ited structural details in recon- are FDA/CE
types of priors. the imaging operator. structed images. approved

Generative  Leverages task-agnostic genera-  High visual quality; excellent  Susceptibility to hallucinations;  Mainly Concept

tive priors to synthesize MR im-
ages; enhances structural details.

detail preservation.

reduced user trust; typically
heavy computational burden.

and Basic Re-
search

or secure local clusters, provide a feasible alternative, but may
introduce latency and complicate data routing.

Seamless adoption also demands interoperability with hos-
pital IT (information technology) systems and compliance with
DICOM (digital imaging and communications in medicine)
standards. Deployment must be planned with attention to
institutional regulations, particularly in regions with strict data
governance policies. These operational factors underscore the
importance of aligning algorithm development with practical
implementation pathways. Effective integration requires not
only technical compatibility, but also organizational adaptation
and clinician engagement. Technologists and radiologists must
be trained to understand both the capabilities and limitations of
novel reconstruction methods. Trust in these systems is rein-
forced through transparent validation, consistent performance,
and the ability to recognize artifacts or failure modes.

VI. FUTURE DIRECTIONS

Learning-based MRI reconstruction has achieved impres-
sive gains in scan acceleration and image quality in recent
years. However, as modern methods transition from research
to widespread clinical use, new challenges emerge that go
beyond reconstruction performance. Future progress must also
prioritize reliability and adaptability across diverse patient
populations and clinical settings. Key areas of focus include
mitigating the risk of hallucinations and bias, designing learn-
ing paradigms that scale with limited or heterogeneous data,
and ensuring that methods are computationally efficient and

infrastructure-compatible for real-world deployment.

A. Enhancing Reliability Against Hallucinations

Advances in MRI reconstruction have enabled the recovery
of high-fidelity images from heavily undersampled acquisi-
tions, significantly improving scan efficiency. To suppress
aliasing artifacts in such acquisitions, reconstruction methods
balance the support of acquired data with that of the imposed
prior. As acceleration rates increase and fewer data are col-
lected, reconstructions become more susceptible to hallucina-
tions—manifesting as either loss or leakage of tissue features
[183]. Loss occurs when true features cannot be recovered due
to aliasing, while leakage refers to the appearance of features
not present in the actual anatomy. Since hallucinatory features
can closely resemble realistic anatomy, they pose serious risks
for diagnostic reliability [184].

Classical methods and some scan-specific DL methods rely
on hand-crafted priors, which may lead to visible losses
such as over-smoothing or signal attenuation in fine struc-
tures—potentially alleviated by tuning down the regulariza-
tion strength at the expense of weaker artifact suppression.
In contrast, non-scan-specific DL methods often learn from
population data, risking leakage of features commonly seen in
the pool of training subjects but absent in the test subject. A
promising direction to mitigate hallucinations is the integration
of priors grounded in physical signal models, resulting in
hybrid approaches that combine classical and DL methods
[185]-[187]. Ensemble approaches that aggregate predictions
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from diverse DL methods (e.g., physics-guided and generative
networks) might also offer a level of safeguard by blending
complementary strengths [94], [188]. Additionally, joint re-
construction strategies for multiple MRI contrasts can help
enhance anatomical consistency across sequences, reducing
the likelihood of hallucinated features appearing in any single
contrast when proper measures are taken to avoid cross-
contrast leakages [74], [189]. Incorporating explicit anatomical
constraints such as shape-aware priors might further regularize
the solution space to favor plausible reconstructions [190].

While hallucinations may not be entirely avoidable, provid-
ing uncertainty or hallucination maps alongside reconstructed
images [191], [192] or using quantitative metrics that may be
sensitive to presence of hallucinatory features [193] can guide
interpretation. Moreover, explainability tools—such as layer-
wise relevance propagation [194], counterfactual generation
[195], or network gradients [196]—can help identify which
components of the network are responsible for hallucina-
tions. Such retrospective analyses may support decisions about
whether clinically relevant features are real or hallucinated.

B. Mitigating Biases from Data and Methodology

As DL methods become increasingly prevalent in medical
imaging, concerns about algorithmic bias have gained grow-
ing attention [197]. One major source of bias arises when
reconstruction models, often trained on datasets that overrep-
resent certain populations or anatomical characteristics, sys-
tematically underperform on underrepresented groups [198].
DL-based reconstruction models may inadvertently encode
population-level priors that favor the majority distributions in
the training data—at the expense of generalizability. Unlike
hallucinations, which typically manifest as localized errors
such as feature leakage or loss, bias often presents more
subtly as systematic degradations in SNR, resolution, or con-
trast. It should be recognized that biases are not exclusive
to DL methods—classical reconstructions can also produce
characteristic artifacts due to over-emphasis of image features
compatible with selected hand-crafted priors, such as block
artifacts in total variation regularization. These biases can lead
to inequities in image quality, diagnostic accuracy, and clinical
decision-making.

Another important source of bias affecting the fidelity of
model evaluation arises from shortcomings in methodological
practices [184]. Common issues include assessing reconstruc-
tion models on MRI data that have been preprocessed in ways
that simplify the underlying inverse problem—for example,
using magnitude-only, coil-combined, or compressed images
during modeling. Such simplifications can lead to overly
optimistic performance metrics and poor generalization when
models are eventually deployed on real-world MRI data, which
are inherently complex and multi-coil.

Addressing bias in MRI reconstruction therefore requires a
multifaceted strategy that combines data-centric and model-
centric solutions. On the data side, curating diverse and
representative datasets across demographics that contain raw,
multi-coil, complex MRI data with minimal processing is fun-
damental. Collaborative learning frameworks offer a promising

avenue to enhance training diversity while preserving patient
privacy [116], [199]. On the model side, advances in do-
main adaptation and model personalization can help mitigate
performance degradations under domain shifts [200], [201].
Evaluating reconstruction performance across predefined sub-
groups—by demographic attributes or clinical conditions—is
equally critical to reveal hidden disparities. Fairness-aware
evaluation frameworks may provide systematic tools to quan-
tify and address potential biases [202]. Ultimately, transparent
reporting of dataset composition, preprocessing steps, and
model development/evaluation settings will be essential for
equitable adoption of DL-based MRI reconstruction.

C. Learning Under Data Constraints

By learning task-specific data representations, DL archi-
tectures can surpass classical methods in capturing complex
signal structure during MRI reconstruction. However, many
supervised DL methods require large training datasets con-
sisting of paired undersampled and fully-sampled acquisitions,
and are typically trained for specific anatomies, contrasts,
or undersampling patterns [37]-[40]. Unfortunately, even for
a given anatomy, MRI scanners operate with a number of
distinct protocols that vary widely in contrast, resolution, and
other acquisition parameters. As a result, these models can suf-
fer from degraded generalization performance when inevitably
applied to new settings that differ from their training distribu-
tion [203], [204]. Curating diverse and representative training
datasets is particularly challenging in clinical environments,
and even more so for multi-contrast protocols [205]. This
data dependency raises a significant barrier for deployment
of supervised DL in general-purpose MRI reconstruction.

To address these challenges, several alternative learning
strategies can be considered. Common approaches include un-
supervised paradigms where generative models learn the distri-
bution of fully-sampled data without requiring paired examples
[206]-[208], and self-supervised methods that exploit inherent
redundancies in the undersampled data to guide training [76].
More broadly, federated learning provides a framework for de-
centralized training across institutions, enabling collaborative
model development without the need to share any MRI data
[209], [210]. In scenarios where collaboration is impractical,
synthetic datasets generated using physically-informed signal
models can help alleviate data scarcity [211].

In resource-constrained settings, adaptation of foundation
models on limited fine-tuning sets, or the development of
scan-specific models without separate training data might also
prove effective. Foundation models, pre-trained on large-scale,
diverse datasets, can offer improved generalization through
fine-tuning with smaller domain-specific datasets or few-shot
learning techniques [212], [213]. In contrast, scan-specific
approaches typically perform reconstruction modeling on a
single undersampled scan using the acquired data and the
imaging operator [135]. While this approach enhances gen-
eralization to the individual scan’s characteristics and avoids
distribution shifts, it often requires longer reconstruction times
compared to pre-trained models, which can be a trade-off in
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time-sensitive clinical workflows.

D. Resource-Aware Computational Design

A critical consideration for deploying MRI reconstruction
methods in practice is their computational cost. MRI techni-
cians often need to assess scan quality in real-time to deter-
mine whether a scan is diagnostically adequate or needs to
be repeated due to motion artifacts, improper slice placement,
or other issues [25]. Providing timely feedback is especially
important in busy clinical environments or for motion-sensitive
populations such as pediatric or elderly patients. Furthermore,
MRI protocols frequently involve multi-contrast imaging with
high-channel receiver arrays, resulting in large data volumes
that pose significant computational burden—particularly when
real-time or near-real-time reconstruction is desired [214].

Several strategies can help mitigate these challenges. Coil
compression techniques can reduce channel dimensionality,
for instance by projecting 32-channel data to 16 virtual coils,
thereby accelerating subsequent processing [214]. Similarly,
compression along contrast dimensions can reduce redundancy
in multi-contrast acquisitions [63]. Parallelized implementa-
tions leveraging multiple GPUs or distributed compute nodes
can further accelerate workflows [215]. Alternatively, sequen-
tial reconstruction pipelines may be employed, wherein an
initial reference contrast is reconstructed with light undersam-
pling and then used as a prior to guide joint reconstruction
of the remaining contrasts [118]. While this approach may
not fully exploit inter-contrast correlations, it offers a practical
trade-off between computational efficiency and image quality.

VII. CONCLUSION

We reviewed a broad range of MRI reconstruction methods
that incorporate prior knowledge to improve quality of images
recovered from accelerated acquisitions. Modern DL methods
show strong potential to shorten scan times, expand access
to advanced imaging protocols previously limited to research
settings, and provide higher-quality inputs for downstream
analysis. However, their clinical translation depends on rigor-
ous validation, clear regulatory frameworks, scalable compu-
tational designs, and ongoing collaboration with technologists
and radiologists to identify failure modes and sustain user trust.
Ultimately, realizing the full potential of these methods in
routine patient care will require interdisciplinary efforts among
researchers, clinicians, vendors, and regulators.
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