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Abstract
In magnetic particle imaging (MPI), system sensitivity can be enhanced by scanning the sample along a field free line
(FFL) instead of a field free point (FFP). FFL MPI data can then be processed via system-matrix or projection-based
reconstructions. Here, we compare the relative performance of these two approaches. We assume an ideal FFL
(straight and homogeneous), which is translated and rotated in a two-dimensional field-of-view. We simulate
the acquired data from a numerical vessel phantom for a broad range of noise levels. For the system-matrix
reconstruction, we propose Alternating Direction Method of Multipliers (ADMM) to solve a constrained convex
optimization problem. We also analyze the results of the nonnegative fused lasso (NFL) model to compare the
performance of ADMM with one of the state-of-the-art system-matrix-based methods. For the projection-based
reconstruction, we use the inverse Radon transform formulation with x-space reconstruction. System-matrix-based
methods resulted in a higher structural similarity index and contrast compared to the x-space reconstruction
method at the expense of longer reconstruction time. Artifacts occurred due to gridding errors for the x-space
reconstruction. As expected, ADMM and NFL reconstructions yielded similar image quality.

I. Introduction

Magnetic Particle Imaging (MPI) is a novel imaging
method that can be useful for various medical applica-
tions such as angiography, stem cell tracking, inflamma-
tion imaging, temperature mapping, and tumor detec-
tion [1–3]. The amplitude of the MPI signal increases
with the number of superparamagnetic nanoparticles
encapsulated within a field free region (FFR), where the
magnetization response of the nanoparticles is linear [1].
This FFR is generated via a magnetic selection field (SF),

and its volume is contracted for higher SF gradients. The
FFR in MPI systems typically spans a small spatial region
of ellipsoidal shape, referred to as the field free point
(FFP). This narrow FFP offers relatively increased spa-
tial resolution in MPI images. However, it also decreases
the overall system sensitivity, as fewer nanoparticles can
respond to the applied drive field (DF).

Creating a field free line (FFL) instead of an FFP sig-
nificantly increases the sensitivity of the MPI system
[4]. To image a three-dimensional (3D) volume with
this approach, the FFL needs to be rotated and trans-
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lated to sample the entire field-of-view (FOV). While this
spatial positioning can be implemented mechanically
[5, 6], electronic designs can be preferable in preclini-
cal/clinical imaging setups to avoid mechanical position-
ing of the imaging system relative to the imaged subject.
Recently, an electronically rotated FFL scanner was pre-
sented [7] based on an efficient coil design that enabled
electronic rotation and translation of the FFL [8].

The data acquired along each FFL is essentially a pro-
jection of the SPIO density along that line. This acquisi-
tion scheme bears close resemblance to that in Comput-
erized Tomography (CT), where the acquired projection
data can be written in the form of a Radon transform.
Thus, a common reconstruction method for FFL MPI
scans - known as x-space reconstruction - is based on
the well-known projection reconstruction technique for
CT images [7, 9, 10].

During x-space reconstruction, the MPI signal is first
compensated for line velocity and particle relaxation,
and deconvolved with the system’s transfer function. The
image can then be reconstructed using an inverse Radon
transform [7]. In this x-space-based method [9], the mag-
netic field gradient is assumed to be independent of scan
position and constant along the FFL. In addition, the FFL
is assumed to be a straight line, although deviations can
occur in practice [5, 11, 12].

An alternative reconstruction to process MPI data is
based on the system matrix [1, 13]. In this method, the
MPI signal from a small source object located at a sin-
gle voxel is recorded. Measurements are repeated as the
source object is swept across each voxel within the FOV.
These calibration measurements are used to construct
the system matrix. The main experiment is conducted
afterwards, and MPI signals are recorded from the actual
object of interest. MPI images are finally reconstructed
by solving a linear system of equations comprising the
system matrix and the signal measurements. The system-
matrix approach inherently accounts for field imperfec-
tions, and thus it has the potential to improve reconstruc-
tion accuracy. At the same time, it requires the solution
of regularized inverse problems either via direct or itera-
tive techniques, which are computationally demanding
relative to the projection-based method [14]. Algebraic
Reconstruction Technique (ART) is a direct technique
of common choice due to its rapid convergence behav-
ior [14, 15]. Recently, nonnegative fused lasso (NFL) has
been proposed as an improved method for edge preser-
vation [16].

In this study, we compare the projection-based and
system-matrix reconstruction techniques for an FFL-
MPI system, in terms of both reconstruction time and
quality. For the system-matrix reconstruction, we pro-
pose the use of an efficient Alternating Direction Method
of Multipliers (ADMM) algorithm, which is based on an
Augmented Lagrangian Method (ALM) [17]. ADMM is a
recently re-invented technique that solves a given prob-

lem by dividing it into smaller sub-problems using a
quasi-Newton approach. Moreover, the algorithm in-
cludes augmented Lagrangian terms that yield fast con-
vergence speed. We also implement the system-matrix-
based NFL algorithm [16], and compare the results with
the ADMM approach.

II. Methods
An ideal FFL with an SF of 2 T/m was generated and
scanned in a 48 mm × 48 mm FOV with a 25 kHz DF fre-
quency (see Fig. 1). The pixel size used in the simulation
was 300µm × 300µm. The FFL was rotated in 3-degree
angular steps. A particle diameter of 25 nm was assumed.
The transmit pulse width was 280µs. A DF was applied
to translate the FFL in the direction orthogonal to it. For
simplicity, the DF was chosen as 60 mT, large enough to
cover the entire FOV in a single cycle, releasing the need
to adjust the amplitude offsets of the partial FOV images
[2].

Figure 1: Selection field (dB) used in the simulations shown for
(a) 0, (b) 45, (c) 90 and (d) 135 degrees FFL angles. Horizontal
axis: x (m), vertical axis: y (m).

The MPI signal at each rotation angle θk (k : 1, . . . , K )
was calculated using the MPI signal equation [10]:

s (θk , t ) =−
∂

∂ t
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µ0c (x , y ) . . .
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β
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�

�H (x , y , t )
�

�

·qr dx dy ,

(1)

where c (x , y ) is the magnetic particle distribution inside
the FOV.L is the Langevin function. β =Msat/kB T , with
Msat: saturation magnetization (0.6/µ0), V : magnetic
particle volume, kB : Boltzmann constant (1.38 ·10−23), T :
particle temperature (305 K). qr denotes the sensitivity
of the receiving coils, which are assumed to be homoge-
neous. H (x , y , t ) is the total magnetic field at position
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(x , y ) and time t .
To mimic realistic imaging conditions, the signal was

convolved with an exponential relaxation kernel r (t )
with τ= 1µs [7, 18], and additive white Gaussian noise,
n (t ), was added to the time domain signal with awgn
function of MATLAB (The MathWorks, Inc., MA, USA):

Sr (θk , t ) = S (θk , t ) ∗ r (t ) +n (t ) , (2)

where

r (t ) =
1

τ
exp−t /τh (t ) , (3)

with τ> 0 as a relaxation time, h (t ) is the unit step func-
tion.

The received signal Sr (θk , t )was sampled at 10 MHz
rate. A numerical binary vascular tree phantom (160×
160 pixels) including three stenosis regions (see Fig. 2)
was imaged using the presented FFL MPI configuration
(see Fig. 1) with three different reconstruction methods.

Figure 2: Numerical vessel phantom used in the simulations.
Arrows show the regions with stenosis.

Images of the vessel phantom were reconstructed us-
ing frequency components up to 1.25 MHz (i.e., using 50
harmonics). As required in practice, to remove the direct
feedthrough signal from the transmit coil, the frequency
components up to and including the first harmonic were
filtered out prior to reconstruction. All algorithms and
the simulator were implemented on MATLAB running on
an Intel R© Xeon R© 2.4 GHz CPU 2620v3 12 cores, worksta-
tion (2 processors) with 64 GB RAM. The reconstructed
images were compared with the reference image in terms
of structural similarity index measure (SSIM), and nor-
malized root-mean-square error (nRMSE) for various
SNR values (noise-free, 30 dB, 20 dB, and 10 dB), where
noise power was calculated relative to the norm of the
raw received time domain signal before filtering.

II.I. Image Reconstruction with the
System-Matrix Method

For system calibration, the received signal’s Fourier trans-
form data were stored for a known particle concentration
at each pixel position for each rotation angle θk . These

calibration data form the system matrix, A. The system
matrix was divided to its Frobenius norm to increase the
convergence probability for both ADMM and NFL mod-
els. The Fourier transform of the received signal in the
imaging experiment was stored in vector b . Then, the
linear system of equations Ac =b was solved to recon-
struct the vectorized particle distribution c . Instead of
using complex values in the equation system, the real
and imaginary parts of A and b were separated and row-
wise appended. Compared to complex operations that
would yield 4-fold increased computational load, this
real-valued formulation only poses a 2-fold increase.

For ADMM reconstruction, the problem was for-
mulated as a constrained optimization minimizing the
weighted sum of the total variation (TV) and the l1 norm
of the image. Furthermore, a constraint on positivity of
all elements of c was added. This constraint was imple-
mented in the ADMM algorithm using an objective func-
tion Ipos(c ), which is the indicator function of all-positive
elements such that its value is zero if all elements of c ≥ 0,
and infinite if any element is negative. The problem can
therefore be expressed as:

argmincα1‖c ‖1+α2TV(c ) + Ipos(c )

subject to ‖Ac −b ‖2 ≤ ε ,
(4)

where ε is the Euclidian norm of the presented noise, b
is the received signal and TV is defined as:

TV(c ) =
∑

i , j

r

�

ci+1, j − ci , j

�2
+
�

ci , j+1− ci , j

�2
. (5)

Unlike [16], here we used an isotropic TV definition [19].
The data fidelity constraint in (4) was also cast as a cost
function such that the value of the indicator function is
zero if the constraint is satisfied, and infinity otherwise.
The resulting optimization problem was solved with the
hybrid cost function presented in (4), using ADMM [17].

ADMM solves a given problem by dividing it into
smaller sub-problems. The pseudocode of the algorithm
is given below, where A represents the system matrix, µ
is the step size, and b is the received signal. Here, m = 2
because a weighted sum of 2 cost functions are proposed
as TV and l1 norm.

Moreau proximal mapping functions associated with
each linearly separable cost function are required to solve
the problem defined in (4). Here we provide proximal
operators for each function. Proximal mapping for l1

norm with weighting is given as:

Ψ‖c ‖1/α1
(s ) = soft(c , 1/α1) , (6)

where soft (y ,τ) is the element-wise application of soft-
thresholding function:

soft(c , 1/α1) = sign(c ) ·max(|c | −1/α1, 0) . (7)
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Algorithm 1 ADMM with Hybrid Cost Function [17]

1: Set iteration variable n = 0, choose step size µ > 0

Initialize z (i )0 , d (i )0

2: Repeat

3: ĉn+1 =
�

m I + AH A
�−1 �

AH
�

z (0)n +d (0)n

�

+ . . .

· · ·
∑m

i=1

�

z (i )n +d (i )n

��

4: cn+1 = ĉn+1 · (ĉn+1 > 0)
5: for i = 1, . . . , m do

6: z (i )n+1 =Ψαiφi /µ

�

cn+1−d (i )n

�

7: d (i )n+1 = d (i )n + z (i )n+1− cn+1

8: end for

9: z (0)n+1 =ΨI E (ε,I ,b )

�

Acn+1−d (0)n

�

10: d (0)n+1 = d (0)n + z (0)n+1− Acn+1

11: n← n +1

12: Until some stopping criterion is satisfied.

Proximal mapping for TV with weighting α2 is calculated
using Chambolle projections as in [19]. For the constraint
function ‖Ac −b ‖2 ≤ ε, proximal mapping is as follows:

ΨlE (ε,I ,b )
(s ) =

¨

s , if ‖s −b ‖2 ≤ ε
b +ε (s−b )

‖s−b ‖2
, if ‖s −b ‖2 >ε

(8)

where lE (ε,I ,b ) represents the indicator function of the fea-
sible set E (ε, I ,b ). Positivity constraint can be forced at
the least squares step of the algorithm (see step 4, Alg. 1).

For comparison purposes, the NFL reconstruction
was implemented on MATLAB using the previously pre-
sented algorithm in [16]. The problem formulation for
the NFL approach is as follows:

argmincβ‖c ‖1+αTVP (c ) +
1

2
‖Ac −b ‖2

2+ Ip o s (c ) , (9)

where TVP (c ) is defined as [20]:

TVP (c ) =
P
∑

p=1

∑

i j

wp |ci j − c(i , j )+N (p )| . (10)

Here, P is number of directions. The directions and
weights (wp ) for each direction is [21]:

N = {(1, 0), (0, 1), (1, 1), (1,−1),

(2, 1), (2,−1), (1, 2), (1,−2)}
(11)

ws =



















p
5−2 , s = 1, 2

p
5− 3

2

p
2 , s = 3, 4

1
2 (1+

p
2−
p

5) , s = 5, 6, 7, 8

(12)

The same implementation of the taut string algorithm

[22]was used to solve (9) as in the case of [16]. It is worth
mentioning that although the problem model stated for
ADMM is very similar to the one in NFL, the TV formula-
tions are different.

In ADMM solution, we scaled the ε value with the
noise level. The ADMM parameters α1 and α2, and NFL
parameters α and β were separately adjusted to attain
the optimal SSIM values. ε,α, andβ values used for each
SNR value are given in Tab. 1.

As a stopping criterion for the above solutions,

‖cn−1− cn‖2/
�

‖cn‖2+10−3
�

< t o l (13)

was used, where n is the iteration number and t o l was
set as 1 ·10−5. Maximum number of iterations was set to
5 ·103 for ADMM and 1 ·104 for NFL solutions. With these
parameters, the SSIM values of the reconstructed im-
ages converged before reaching the maximum number
of iterations or upon satisfying the stopping criterion.

For both ADMM and NFL solutions, least square so-
lution of the problem was given as an initial solution to
start the reconstruction algorithms.

Table 1: The parameters for ADMM and NFL that result in the
best SSIM performance at each SNR value.

Noise free 30 dB 20 dB 10 dB

ADMM

ε 0.1 0.68 2.14 6.74
α1 0.96 0.96 0.96 0.85
α2 0.04 0.04 0.04 0.15
µ 90 80 75 40

NFL

α 2 ·10−5 2 ·10−5 7 ·10−5 7 ·10−4

β 9 ·10−4 1 ·10−3 6 ·10−4 1 ·10−3

λ 1 1 1 1
γ 1.8 1.8 1.8 1.8

II.II. Image Reconstruction with the
Projection-Based Method

For the inverse Radon transform (IRadon) reconstruc-
tion, the received signal can be re-formulized as follows:

Sr (θk , t ) = (DΛ′(t )(m̂ (v ) ∗R (c )(θk , v ))) ∗ r (t ) , (14)

where m̂ (v ) is the convolution kernel as

m̂ (v ) =m
d

dv
L
�

µ0G v m

kB T

�

, (15)

L is the Langevin function, D is the amplitude of DF,
Λ(t ) = sin(2π f0t ) is the excitation function of the DF, f0

is the DF frequency, R (c ) is the Radon transform of the
sampled image, and m is the magnetic moment per mass
unit of the sample. r (t ) is the relaxation kernel [7, 18].
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For the reconstruction process, we first took the av-
erage of the DF cycles of the received signal, and passed
the average signal through a Wiener filter to remove the
effect of relaxation. Then, the time domain signal was di-
vided by the FFL velocity, and transformed to the spatial
domain using interpolation. For interpolation, we used
the interp1 function of MATLAB using piece-wise cubic
hermit interpolating polynomial (pchip). Next, the sig-
nal was deconvolved with the convolution kernel using
a Wiener filter. This process was repeated for all rotation
angles. Finally, the image was reconstructed with inverse
Radon transform using the iradon function in MATLAB.
Details of these reconstruction procedures were previ-
ously presented in [7, 10]. IRadon images can contain
negative values as a side-effect of various filtering and
deconvolution steps. These values were set to zero, and
images were then normalized to a maximum of one.

II.III. Image Metrics

SSIM and nRMSE metrics were used to quantitatively
compare the reconstructed images. The SSIM metric
was calculated using the ssim function in MATLAB with
default input parameters. The nRMSE was calculated
using the standard definition:

nRMSE =

∑W
i=1

Ç

1
W

�

cr e c ,i − cr e f ,i

�2

max(cr e c )−min(cr e c )
, (16)

where cr e c is the reconstructed image vector, cr e f is the
reference image vector, and W is the number of pixels in
the image. All reconstructed images were normalized to
a maximum of one prior to metric calculations.

III. Results

Figs. 3–6 show the SSIM and nRMSE results for the
ADMM and NFL methods as a function of cumulative
computation time, which is measured with cputime func-
tion in MATLAB, for noise-free case, 30 dB SNR, 20 dB
SNR and 10 dB SNR values. The corresponding images
are given in Fig. 7. The SSIM and nRMSE parameters
of the reconstructed images are tabulated for all noise
levels in Tab. 2 and Tab. 3, respectively.

For the IRadon solution, reconstruction time was
15.6 ms for all SNR values. Since this is a direct algo-
rithm, its reconstruction time is significantly shorter and
depends only on the size of the data.

For all noise levels, the images reconstructed with
ADMM and NFL, and the resulting quality metrics (SSIM
and nRMSE) are similar. Both system-matrix methods
clearly depict vessel edges, yet the IRadon method yields
blurry images and lower SSIM values as shown in Fig. 7.
Furthermore, gridding artifacts in IRadon reconstruc-
tions are visible at all SNR values and residual artifacts

Figure 3: SSIM and nRMSE as a function of cumulative com-
putation time for the noise-free case.

Figure 4: SSIM and nRMSE as a function of cumulative com-
putation time at 30 dB SNR.

Figure 5: SSIM and nRMSE as a function of cumulative time
at 20 dB SNR.

Figure 6: SSIM and nRMSE as a function of cumulative com-
putation time at 10 dB SNR.

reach the intensity level of the vessels themselves at 10 dB.
These residual artifacts result in a poor contrast in IRadon
images compared to the system-matrix-based images.

In the presence of noise, ADMM and NFL show simi-
lar SSIM and nRMSE performance as a function of CPU
time. For both methods, convergence is reached within
similar total CPU time. These results are expected be-
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Table 2: SSIM of final images.

Noise free 30 dB 20 dB 10 dB

ADMM 0.87 0.86 0.81 0.68
NFL 0.88 0.86 0.84 0.66

IRADON 0.55 0.55 0.54 0.42

Table 3: nRMSE of final images.

Noise free 30 dB 20 dB 10 dB

ADMM 0.15 0.16 0.18 0.23
NFL 0.15 0.16 0.17 0.23

IRADON 0.27 0.27 0.27 0.30

cause ADMM and NFL use nearly identical problem for-
mulations apart from the differences in the definitions
of the TV term.

IV. Discussion

The system-matrix-based ADMM and NFL methods out-
performed the IRadon method, which yielded blurry im-
ages, in terms of both SSIM and nRMSE. On the other
hand, the IRadon method was very fast, resulting in re-
constructions on the order of 10-20 ms. As the problem
complexity of the ADMM and NFL solutions are similar,
they showed similar convergence behavior.

While SSIM and nRMSE performance metrics are
used commonly for image evaluation, purely quantita-
tive inspections can be misleading without confirmation
via visual inspection. In particular, SSIM and nRMSE
are global metrics that do not reflect the type of recon-
structions errors contained (e.g., blurring, noise, block
artifacts). Further studies are needed to identify perfor-
mance metrics that most highly correlate with the radio-
logical evaluations in a clinical setting.

There were three small regions with stenosis included
in the numerical phantom tested here. By means of
visual inspection, it was observed that system-matrix-
based methods (ADMM and NFL) result in higher con-
trast near stenotic regions compared to projection-based
(IRadon) reconstructions at all SNR values. In this study,
we selected the reconstruction parameters (α1 and α2

vs. α and β ) freely to optimize the SSIM value in each
method. Although the formulation of the system-matrix
solutions was similar for the ADMM and NFL approaches,
the relative weightings assigned to l1 norm and TV penal-
ties were different. This is primarily due to the differ-
ences in the TV definitions. The TV definition in the NFL
method was proposed by Chambolle [20], whereas the
definition in ADMM was the isotropic TV [19]. Impor-
tantly, the isotropic TV term introduces a two-fold scaling
in magnitude that in turn roughly halves the relative TV

penalty weights in ADMM.
In the simulations, the whole FOV was covered in a

single scan, which required a relatively high DF ampli-
tude and the use of large number of signal harmonics
for high resolution. By dividing the FOV into smaller sec-
tions, the amplitude of the DF can be decreased and a
smaller number of signal harmonics may suffice to ob-
tain a similar resolution [23]. Utilizing a lower DF may
actually be necessary to abide by the safety limits of the
imaging procedure [24].

The simulations in this study were performed assum-
ing ideal magnetic fields with a constant gradient and
linear FFL. In non-ideal conditions, the gradient and the
linearity of the FFL would deteriorate with increasing
distance from the FOV center, depending on the coil sys-
tem design. This non-ideality of the FFL results in signal
fading and resolution losses [9]. If the FOV is defined
as the region where the deviation of FFL gradient and
linearity is within "acceptable limits", the results would
be similar to the ideal-field conditions. The extent of the
"acceptable limits" is out of the scope of this work and
is a subject of future studies. The non-linearity of the
FFL can be mitigated by using the measured fields in the
reconstruction phase. This is already taken into account
in the system-matrix approach. For the projection-based
reconstruction method, the formulation can be adapted
for non-linear FFL paths. The decrease in the gradient
amplitude may be a bigger concern as it directly affects
the image resolution.

Although the reconstruction times compared to
IRadon reconstruction are very high for system-matrix-
based ADMM and NFL algorithms, these algorithms
can be parallelized to significantly improve their conver-
gence time. Graphics processing units (GPU) may also be
used for the same purpose, as these algorithms include
many vector-based calculations. Furthermore, reduc-
ing system matrix size and system calibration procedure
by applying compressive sensing techniques can also
improve the convergence time of system-matrix-based
methods significantly [25, 26].

In the system-matrix-based reconstruction methods,
the least square solution of the problem was given as an
initial condition. Performance may be further improved
by selecting the starting point as the image reconstructed
by the fast IRadon method. A synergistic combination of
the system-matrix and projection-reconstruction meth-
ods that involves gridding steps followed by iterative re-
constructions may improve the convergence speed and
quality of the resulting images [27].

V. Conclusion

In this paper, we comparatively analyzed system-matrix
and x-space-based reconstruction methods for MPI. The
x-space method is computationally fast compared to the
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Figure 7: Final images of ADMM, NFL, and IRadon solutions for noise-free, 30 dB SNR, 20 dB SNR, and 10 dB SNR cases.

system-matrix methods and it does not require a time-
consuming system calibration scan [25, 26]. However,
x-space reconstructions can yield residual artifacts and
relatively low contrast. Our results show that system-
matrix methods outperform the x-space method in terms
of SSIM and nRMSE metrics that reflect enhanced image
contrast and artifact suppression.
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