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Abstract—The invention of single-cell RNA sequencing (scRNA-
seq) has enabled transcriptomic examination of cells on an in-
dividual basis, uncovering cell-to-cell phenotypic heterogeneity
within isogenic cell populations. Inevitably, cell type annotation has
emerged as a fundamental, albeit challenging task in scRNA-seq
data analysis, which involves identifying and characterizing cells
based on their unique molecular profiles. Recently, deep learning
techniques with their data-driven priors have shown significant
promise in this task. On the one hand, task-agnostic transformers
pre-trained on large-scale biological databases capture generaliz-
able representations but cannot characterize intricate relationships
between genes and cells. Contrarily, task-specific graph neural
networks (GNNs) trained on target datasets can characterize en-
tity relationships, but they can suffer from poor generalizabil-
ity. Furthermore, existing GNNs focus on either homogeneous or
heterogeneous relationships, failing to capture the full cellular
complexity. Here, we propose scGraPhT, a unified transformer—
graph model that combines pre-trained transformer embeddings
of scRNA-seq data with a multilayer GNN to capture cell-cell, cell-
gene, and gene-gene relationships. Different from previous GNNs,
scGraPhT examines both homogeneous and heterogeneous rela-
tionships through subgraph layers to offer a more comprehensive
assessment. Since the graph construction uses transformer-derived
embeddings, scGraPhT does not require costly training procedures
and can also be adapted to leverage any transformer-based single-
cell annotation method, such as scGPT or scBERT. Demonstrations
on three scRNA-seq benchmark datasets indicate that scGraPhT
outperforms state-of-the-art annotation methods without compro-
mising efficiency. Utilizing Grad-CAM, we demonstrate how the
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GNN and transformer components complement each other to en-
hance performance. We share our source codes and datasets for
reproducibility.
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1. INTRODUCTION

INGLE-CELL RNA-sequencing (scRNA-seq) is a state-of-
S the-art technique that allows the examination of gene ex-
pression profiles at the individual cell level, which paves the way
for significant discoveries in research fields such as pathology,
immunology, cancer, genomics, and regenerative medicine [1],
[21, [3], [41, [5], [6], [7], [8], [9]. Contrary to traditional bulk
sequencing, which collects RNA transcript information from
a large population of cells and produces an average read-out,
scRNA-seq enables the transcriptomic analysis of individual
cells [10], [11]. In this regard, scRNA-seq offers a higher
resolution view of mRNA composition in cells, facilitating
characterization of phenotypic heterogeneity across single cells
in populations and within tissues, tracking of cellular differen-
tiation, and unraveling the complexities of cellular responses to
environmental stimuli [12], [13], [14], [15].

Cell type annotation is a systematic process of identifying and
characterizing cells within a heterogeneous biological sample
based on their unique molecular and phenotypic profiles to
elucidate the type of each cell. It is a fundamental step in
scRNA-seq data analysis and constitutes the basis of further
downstream analyses [16], [17], [18], [19]. In its simplest form,
the task of annotating cells consists of two steps. First, cells are
grouped into clusters based on their gene expression profiles
using unsupervised clustering [20], [21], [22]. The resulting
clusters typically consist of cells with similar gene expression
profiles and common or closely related marker genes -those
that are distinctly and highly expressed in a specific cluster
compared to others [17], [23], [24], [25]. Thus, the clustering
step enables estimation of the number of distinct cell types
[26], [27]. Afterward, the identified marker gene candidates
are manually inspected or cross-checked against literature and
cell marker databases to assign cell type labels to the detected
clusters [28], [29], [30]. However, performing manual anno-
tation is challenging due to the lack of comprehensive infor-
mation on marker genes for specific cell subtypes [17], [18].
As such, despite their broad availability, utilization of such
unsupervised clustering-based methods can be labor-intensive.

2373-776X © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on August 12,2025 at 22:25:25 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-7275-1570
https://orcid.org/0009-0008-0210-4942
https://orcid.org/0009-0003-5163-9963
https://orcid.org/0000-0002-2296-851X
https://orcid.org/0000-0003-3289-8751
https://orcid.org/0000-0002-6348-2663
mailto:cukur@ee.bilkent.edu.tr
mailto:aykut.koc@bilkent.edu.tr
mailto:macar@ku.edu.tr
https://github.com/koc-lab/scGraPhT
https://doi.org/10.1109/TSIPN.2025.3573591

506 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 11, 2025

This labor-intensive nature poses significant challenges when
applying these methodologies in large-scale analyses involving
large populations or multiple experimental sessions.

With the unprecedented expansion of scRNA-seq atlases, in-
cluding the Human Cell Atlas [31], [32], [33], automated annota-
tion methods have been developed to simplify the cell annotation
process [25]. These methods often rely on classification algo-
rithms trained on reference datasets and employ transfer learning
strategies for their application to new single-cell datasets [17].
Forinstance, ACTINN [34] utilizes a neural network model with
three hidden layers, trained on reference datasets, to classify cell
types in query datasets. Kiselev et al. [35] developed scmap,
which projects cells from scRNA-seq data onto reference cell
types using nearest neighbor classifiers. De et al. [36] proposed
CHETAH that leverages a hierarchical classification approach
where cells are iteratively classified at multiple levels of reso-
lution; at each level, cells are grouped into progressively finer
clusters, allowing for a detailed and accurate annotation of cell
types. These earlier models are often trained on task-specific,
compact datasets from a limited variety of tissues, constraining
their ability to capture generalizable representations and struggle
to scale well to larger datasets. It is worth indicating that these
approaches constitute fundamental milestones and are crucial
for understanding the rapid advancements in this field.

To address the challenge of producing generalizable repre-
sentations, pre-trained transformer models originating from the
domain of natural language processing (NLP) have recently been
adopted for a variety of downstream applications in ScCRNA-
seq analysis, including cell type annotation. These models are
trained on extensive datasets, enabling them to capture universal,
dense representations of entities such as cells or genes from
scRNA-seq data [37]. Transformers are commonly subjected to
self-supervised learning to build task-agnostic representations,
making them effective for a diverse array of tasks, including
cell-type annotation. Their ability to generalize across different
datasets and tasks, coupled with fine-tuning on smaller labeled
datasets, enhances annotation accuracy and reduces the need
for manual curation [38]. Recently, transformer-based models,
including TOSICA [39], scBERT [40], and scGPT [41] have
been introduced in the scRNA-seq domain, and they have been
extensively employed for cell type annotation [42], [43], [44],
[45], [46], [47]. Note that existing transformer models take gene
expression profiles as input, i.e., a cell-by-gene count matrix
showing the relative abundance of specific genes for each cell.
Similar to how words are taken as tokens in NLP models, genes
are taken as tokens in scRNA-seq models. As such, existing
transformers primarily encode gene-gene interactions via self-
attention mechanisms. While this approach yields promising
performance in annotation tasks, a significant limitation is that
it does not consider broader relationships, such as cell-cell and
cell-gene interactions, which can also provide valuable informa-
tion for annotation.

Graph Neural Networks (GNNs) are inherently capable of
capturing diverse relationships through their nodes and edges,
making them well-suited for modeling gene-gene, cell-gene,
and cell-cell interactions. In this context, GNNs emerge as a
compelling method for cell type annotation, as they can more

effectively capture both global and local relationships. GNNs
can primarily be divided into two groups based on the types
of entities represented on their nodes. The first group consists
of homogeneous graphs, where all nodes represent the same
type of entity, such as a social network graph where each node
represents a person and edges represent interactions between
them. The second group comprises heterogeneous graphs, where
nodes represent different types of entities, as in the case of a
graph where some nodes represent authors and others represent
books, with edges indicating which authors contributed to the
writing of which books. These examples can be applied across
various fields where graph-based modeling approaches are rele-
vant [48], [49], [50], [51], [52], [53], [54], [55], [56], [57]. Most
of the existing GNN-based approaches for cell type annotation
predominantly rely on homogeneous graph structures, where
nodes represent either cells or genes, and the edges encode their
interactions. For instance, methods like HNNVAT [58], sigGCN
[59], scAGN [60], and [61] utilize graph nodes that represent
either cell or gene features. On the other hand, scDeepSort [62]
presents a heterogeneous cell-gene graph network where both
cells and genes are represented as nodes.

While GNN-based methods demonstrated promising results,
several challenges still prevent them from reaching their full
potential. First, similar to conventional deep learning models,
GNNSs are trained on task-specific datasets, which limits their
generalizability in node feature representation. Second, most
existing methods rely on fixed graph representations, where
subsequent graph layers replicate the structure of the preceding
ones. Third, both homogeneous and heterogeneous graphs also
exhibit inherent shortcomings on their own. For instance, homo-
geneous gene-gene graphs lack the ability to capture cell-level
relationships. Even though homogeneous cell-cell graphs take
into account the interactions between cells, they are not sufficient
in capturing the gene-level interactions [63]. Despite integrating
cell- and gene-level relationships, heterogeneous graphs may
still struggle to fully capture the intricate and context-specific
interactions between these levels, leading to potential gaps in
biological representation. Therefore, more comprehensive GNN
models that effectively capture both homogeneous and hetero-
geneous interactions in complex biological systems are direly
needed.

In this study, we introduce scGraPhT, a transformer-based
graph neural network model for cell type annotation designed
to overcome the limitations of task-agnostic transformer models
and task-specific GNN models. scGraPhT incorporates hetero-
geneous and homogeneous graphs in a unified architecture. It
represents genes and cells as nodes and constructs subgraphs,
such as homogeneous connections between either genes or cells,
as well as heterogeneous connections between cells and genes.
The subgraph layers construct pathways, which are designed
as multi-layered subgraphs to capture a more diverse range
of relationships. Inspired by the representative capabilities of
transformer models, scGraPhT also utilizes a large-scale pre-
trained foundation model and combines it with the graph’s abil-
ity to represent globally intertwined relationships. We present
a range of training schemes and graph construction strategies
and evaluate their performance on three benchmark scRNA-seq
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datasets commonly used in the field for cell-type annotation.
Our model demonstrates superior performance compared to the
previously published state-of-the-art and conventional methods.
We also provide the analysis of performance enhancements
using Grad-CAM [64], a visual explainability technique that
identifies the key features driving our model’s predictive power.

Our main contributions can be summarized as follows. We
propose a cell-type annotation framework that

® constructs homogeneous and heterogeneous subgraphs to
better represent the transcriptomic interactions within and
across cells,

e offers a flexible and adaptable graph construction strategy,

e merges subgraph layers to form pathways designed as
multi-layered subgraphs that capture a broader array of
relationships,

® does not require exhaustive pre-training stages and can
leverage existing transformer-based foundation models as
a starting point,

e outperforms existing works in cell type annotation perfor-
mance on common benchmark datasets,

e provides insights into the complementary nature of GNN-
and transformer-based models for performance improve-
ment.

The rest of the manuscript is organized as follows. In
Section II, the related works utilizing state-of-the-art models,
including transformers and GNNSs, are provided. In Section III,
our proposed model scGraPhT is presented. In Section IV, the
experimental procedures, datasets with their properties, model
performances, and inference time comparison of the models are
provided. Sections V and VI present a discussion of our findings,
outline potential limitations, and propose possible solutions.
Finally, we conclude our manuscript in Section VIL.

II. RELATED WORKS

In this section, we present the existing literature in three
subsections. First, we provide preliminary works on automated
methods for cell type annotation within the scRNA-seq domain.
Then, we cover the recent transformer-based models used for
cell-type annotation with scRNA-seq data. In the last subsection,
we focus on GNN-based methods for cell type annotation using
scRNA-seq data.

A. Conventional Cell Type Annotation Methods

Prior to the emergence of sophisticated deep learning (DL)
models, various tools were developed for annotating cells, in-
cluding those based on probabilistic models, correlation anal-
yses, and simple machine learning (ML) techniques. [65] is a
robust framework for the probabilistic modeling of gene expres-
sion in single cells. Utilizing stochastic optimization and deep
neural networks (DNN), they effectively consolidate informa-
tion across similar cells and genes, accurately approximating the
underlying expression distributions. [66] proposes to annotate
cell types using correlation-based similarity measures by com-
paring individual cells in the test datasets to those in reference
datasets. Examples of supervised ML algorithms for cell type

annotation include [67] and [68], which are based on the Ran-
dom Forest algorithm [69]. Similarly, [70] introduces a logistic
regression framework that utilizes stochastic gradient descent
for optimization. Additionally, some methods [71], [72] employ
shallow multilayer perceptrons (MLPs) for cell-type annotation
tasks. While the conventional approaches are computationally
efficient and typically require fewer parameters, they are less
effective at capturing and interpreting intricate relationships
within the data, as demonstrated by transformer- and graph-
based approaches. In particular, unlike transformers, they lack
the ability to generate rich, transferable data representations that
can be effectively utilized by other models. In contrast to tra-
ditional task-specific models, our proposed method, scGraPhT,
leverages a large-scale transformer architecture pre-trained on
a vast dataset in a task-agnostic manner. This approach enables
the model to generate generalizable representations, allowing it
to adapt effectively to the cell-type annotation task with newly
introduced datasets.

B. Transformer-Based Cell Type Annotation Methods

Among the recent transformer-based models, TOSICA is a
supervised cell type annotation model trained to capture cell em-
beddings for pancreatic and brain cells in humans and mice [39].
Inspired by the BERT pre-training and fine-tuning paradigm
[73], scBERT is a pioneering model that is first pre-trained on
vast amounts of unlabeled scRNA-seq data from various human
tissues and then fine-tuned for cell type annotation task. sScBERT
leverages information from gene embeddings for classification
[40]. Another large-scale transformer-based pre-trained model
is CellPLM, which employs cell embeddings for the cell type
annotation task. It is trained on extensive sScCRNA-seq datasets
as well as spatially-resolved transcriptomic (SRT) data [74].
Finally, scGPT is a foundation model pre-trained on scRNA-seq
datasets collected from diverse human cell types and designed
for single-cell transcriptomic analysis using a generative pre-
training approach similar to scGPT in natural language gen-
eration (NLG) [75]. It utilizes the scGPT-based transformer
architecture to learn representations of cells and genes and
utilizes cell embeddings for cell type annotation [41].

Even though transformer-based models yield promising re-
sults, they exhibit limitations in modeling and capturing relation-
ships among different genes and cells. We present scGraPhT as a
transformer-based hybrid GNN model transferring embeddings
from the transformer model to a GNN model that can dynam-
ically construct and tailor the relationships between different
genes and cells.

C. GNN-Based Cell Type Annotation Methods

GNNss are powerful deep learning techniques that are used in
the analysis of sScRNA-seq data, enabling the integration of com-
plex cellular relationships and accurately encoding the homoge-
neous and heterogeneous interactions within biological entities
[12]. To represent these interactions, several methods employ
heterogeneous graph structures to encode relationships between
cells and genes across cells from multiple reference datasets
and within separate homogeneous graphs for cells and genes
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[62], [63], [76], [77]. These heterogeneous graph structures can
capture the wide array of relationships in a biological system,
enhancing the model’s ability to accurately annotate cell types.
However, they may require more computational resources due to
the complexity of modeling various interactions within a single
graph structure. In contrast, most of the cell type annotation
models utilize homogeneous graph structures based on either
cell-cell or gene-gene interactions [58], [60], [61], [63], [78].
These models are simpler and more computationally efficient,
focusing on uniform relationships within a single type of entity
(i.e. cell-cell or gene-gene). However, these models may lack the
expressiveness needed to capture the diverse interactions present
in biological systems that are complex and dynamic by nature.

Our method, scGraPhT, addresses these drawbacks by intro-
ducing an adaptive graph construction approach that utilizes
subgraph layers to concurrently capture both homogeneous and
heterogeneous interactions. These subgraphs model cell-cell,
gene-gene, and cell-gene interactions, and the overall assembled
graph can model the combination of these subgraphs.

III. SCGRAPHT

In this section, we present the details of our proposed
method, scGraPhT. After delineating the problem formulation
in Section III-A, we present the overall model architecture in
Section III-B. We analytically describe the transformer- and
graph-based components of scGraPhT in Sections III-C and
III-D, respectively. We present model variants based on different
strategies to integrate transformer and graph components in Sec-
tion III-E. Lastly, we present computational complexity analysis
of our model’s GNN component in Section III-F.

A. Problem Formulation

We formulate that sScRNA-seq data is represented by the gene
expression matrix X € RV*M where N denotes the number of
cells and M denotes the number of unique genes. We represent
each cell and gene by their corresponding embedding vectors.
For the i-th cell ¢; and the j-th unique gene gj; v; € RP
and u; € RP denote their D-dimensional embedding vectors,
respectively. The matrix C € RV*P and G € RM*P denote
the cell and gene embedding matrices, respectively. Cells with
the expression matrix X € RV*M in scRNA-seq data may or
may not have a corresponding cell type label during training
stage, so we use Cr,,, .. and Cr,,._, to denote the set of labeled
and unlabeled cell indices, respectively. For a total number of
K classes in a scRNA-seq data, y; € R® denotes the 1-hot
representation of ¢;’s target class, and Y € RV*X denotes the
target class matrix. For the cell type annotation task, we denote
the model output as P € RV*X | which is the classification
probability distribution of N cells over K classes. Please refer
to Table I for a summary of variable notations.

B. Overall Model Architecture

A schematic of scGraPhT’s model architecture that comprises
a large-scale pre-trained transformer, GNN, and integration
modules is displayed in Fig. 1. Given the scRNA-seq data

TABLE I
SUMMARY OF NOTATION

Notation Meaning

N Number of cells

M Number of genes

D Embedding dimension

¢ i-theell, s € {1,2,...,N}

95 j-th gene, j € {1,2,..., M}
K Number of classes

ClLivain Labeled cell indices

ClLiest Unlabeled cell indices

Y € RVXK Matrix of target classes

v; € RD D-dimensional embedding of c;
u; € RP D-dimensional embedding of g;
I, e R"X™ Any identity matrix of size n
X ¢ RNxM Gene expression matrix

C ¢ RNXD Cell embedding matrix

G ¢ RMxD Gene embedding matrix

A € R*" Any adjacency matrix with n nodes

Cell-cell adjacency matrix
Cell-gene adjacency matrix
Gene-cell adjacency matrix
Gene-gene adjacency matrix

Cell type probability distribution
Any trainable weight matrix
Subgraph matrices

Cell and gene embedding matrices

AGC c RAfXN

AGG c RIWXM

P € RNXK

W € RéinXdout

S € {Acc,Aca:Aca;Acct
E € {C,G Iy, In}

with the expression matrix X € RY*M  which is composed
of a collection of cells {c;}/, and unique genes {g;}}7;,
scGraPhT first employs the scGPT [41], a generative pre-trained
model tailored for scRNA-seq analysis, to produce embedding
matrices Cygpr € RV*P and Ggpr € RM*P for the cells
and genes, respectively. These embedding matrices provide a
rich representation of cell and gene entities that can show a
high degree of generalization. However, as scGPT architecture
is subjected to task-agnostic pre-training, they can be suboptimal
in capturing interactions between entities. Thus, scGraPhT does
not rely solely on transformer-based predictions of cell type.

Instead, scGraPhT employs a GNN module to construct a
graph that sensitively captures homogeneous and heterogeneous
interactions among cells and genes, where graph nodes are
initialized with transformer-driven embeddings.

Finally, cell type predictions from scGPT and GNN modules
are fused with an interpolation coefficient A within the integra-
tion module as follows:

PscGraPhT - )\PGNN + (1 - )")PSCGPT7 (1)

where A € [0, 1]. As such, scGraPhT combines the contextual
sensitivity of large-scale pre-trained scGPT models, along with
the global sensitivity of GNNs to entity interactions in order to
achieve a more comprehensive characterization of scRNA-seq
data and thereby improve accuracy in cell type annotation.

C. scGPT Module: Cell and Gene Embeddings

The scGPT module functions in two primary stages. In the
first stage, the gene expression matrix X € RY*M g trans-
formed into input gene embeddings X € RVN*M*D through
an embedding layer for each cell, where D is the embedding
dimension. This transformation comprises both pre-processing
of the expression matrix and mapping into embedding space.
It should be noted that M represents the total sequence length,
comprising both the number of gene tokens and special tokens,
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Fig. 1.

The overall architecture of our scGraPhT model with two-layer pathways is illustrated. S; — Sg indicates that the pathways are constructed by sequentially

integrating two consecutive subgraph layers, S; and So. The process begins with the input of cell and gene embeddings, which are first processed through an initial
subgraph layer. These embeddings are then passed to a second subgraph layer for further processing and classification. An integration module, which combines
the transformer and GNN modules, can be incorporated in the final stage, depending on the model variant.

such as [CLS], which summarizes gene information into a single
cell representation, and [PAD], which ensures consistent input
lengths across sequences.

In the second stage, these embeddings are fed into a trans-
former model, which consists of multiple blocks of masked
multi-head self-attention (MMHSA) layers and feedforward
neural networks (FFN). Given the input embeddings X, the
embeddings are first divided into & heads for multi-head self-
attention, resulting in:

X; e RVMAE wie (1,2, h}. )
Next, for each head, the transformer computes three sets of
vectors: queries (Q;), keys (K;), and values (V;). These are
obtained by linear transformations specific to each head:

Q= X,Wq,, Ki=XWg,, V,=X;Wy,, (3

where Wq,, Wgk,, Wy, € R#%*% are the learnable weight
matrices for each head. The attention mechanism computes the

attention scores for each head as follows:

Q.K”

\/g

Attention(Q;, K;, V;) = SOFTMAX V.. @

The calculated h attention scores are concatenated for improved
representations and linearly transformed:

MultiHead(Q, K, V) = Concat(heady, ... ,head, )W¢, (5)

where each head is defined as head; = Attention(Q;, K;, V;),
and Wo € RP*P is the output weight matrix. The result of the
multi-head self-attention is then processed through a residual
connection and layer normalization:

X! v = LayerNorm(X 4 MultiHead(Q, K, V)).  (6)

Next, the output of the attention layer X} ,, is passed through
an FFN, which consists of a linear transformation followed by
a ReLU activation function:

FFEN(X! ) = ReLU(X} y Wen),
RDXD

(N

where Wrpn € are learnable parameters. The output
of the FFN is again processed through a residual connection and
layer normalization:

X? v = LayerNorm (X7 y + FEN(X] v ))- ®)

These operations are iterated over consecutive transformer
blocks, wherein the output of one block is fed as the input for the
subsequent block. Let H? = X € RN*MxD Theentire process
can be summarized as follows:

H' = TransformerBlock;(H' ') Vi€ {1,2,...,B}, (9)
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where HZ € RV*MxD g the output of final transformer block,
B is the number of transformer blocks. It should be noted that
scGPT uses accelerated self-attention in its transformer blocks,
implemented through FlashAttention [41], [79]. The first entry
of HE in the second dimension corresponds to the [CLS] embed-
dings, which are identical to the cell embedding matrix Cy.gpr
for all cells. Similarly, the remaining entries, excluding the
[PAD] embeddings, are pooled to construct the gene embedding
matrix Gg.gpr. Ultimately, the [CLS] embeddings are mapped
to the classification layer. The formal definition of this mapping
is given as:

Py.cpr = SOFTMAX(Cycgpr WiepT), (10)
where W.gpr denotes the set of MLP blocks that map the
cell embeddings to the cell type probabilities P.gpy € RV* K.
Further details on the scGPT module can be found in [41].

D. GNN Module: Layer and Pathway Construction

Graph construction inherently involves the specification of
an adjacency matrix that governs interactions among graph
nodes. In scGraPhT, two possible node types are considered
to correspond to cell (c;) and gene (g;) entities. Here, we
propose four distinct types of adjacency matrices A € R™*™,
where n denotes the number of nodes. Heterogeneous graphs
can be constructed based on Acg € RY*M that allows cells
to aggregate gene information, or Agc € RM*V that allows
genes to aggregate cell information. Meanwhile, homogeneous
graphs can be constructed based on Acc € RYV*N that allows
cells to aggregate cell information, or Agg € RM*M that
allows genes to aggregate gene information. To capture both
homogeneous and heterogeneous interactions, we propose to
implement scGraPhT based on a mixture of subgraph layers
derived from {Acc, Acc, Aca, Acc}. More explicitly, we
build the entire GNN component of our scGraPhT by construct-
ing pathways—multi-layered subgraphs formed through various
combinations of these subgraphs.

In this section, we first define subgraph layers derived from
different types of adjacency matrices. We then illustrate how
these subgraph layers can be combined to produce pathways
that are sensitive to different types of entity interactions.

1) Subgraph Layers: Constructing subgraph layers in-
volves selecting a subgraph matrix S from the set
{Acc,Aga, Aca, Agc). an initial embedding matrix E
from {C,G,Iy,I)}, and an activation function ¢ from
{ReLU, Tanh, Sigmoid, SOFTMAX}. Based on the graph con-
volution framework, a subgraph layer based on the above selec-
tions can be expressed as:

E+D — ¢, (S(nEa)W(l)) , (11)
where W) denote network weights in layer I. Note that the
inner dimensions of S®) and E®) must match, which restricts the
selectable options for E() given S®). For instance, when S() =
Agc € RM*N EO canbeeither Iy € RV*N or C € RV*D,
and the subgraph layer maps from cells onto gene embeddings.

Below, we summarize the proposed definitions of the adjacency
matrices employed in scGraPhT:
o Acg =X € RV*M captures the expression patterns of
genes within individual cells.
¢ Agc = XT € RM*N captures the expression patterns of
individual genes across cells.

LN cch . ..
e Accl(i,g) = TerloTe;T; captures the similarities between

gene expression patterns of pairs of cells (c;,¢;) where
c € RM is k-th row vector of X, Vk € {1,2,..., N}.
o Acc(i,j) = Hgﬁéﬁ captures the similarities between
cell expression patterns of pairs of genes (g;,g;) where
gr € R is k-th column vector of X, Vk € {1,2,..., M}.
2) GNN Pathways: By integrating these subgraph layers in
alignment with the input embeddings, we construct pathways
represented as multi-layered graphs formed through the sequen-
tial aggregation of consecutive subgraphs. In scGraPhT, four
different pathways are considered based on a combination of the
abovementioned subgraph layers. These pathways are formed
by connecting two consecutive subgraph layers, S; and Ss.
It is important to note that any depth of these layers can be
constructed, provided the input embeddings and final outputs
of the subgraphs remain compatible. The principles of these
pathways are described below:
® Pathway I (P1): Agg — Acc
Takes gene embeddings as input and produces hidden gene
representations. Subsequently, final cell representations are gen-
erated:

GW =ReLU(AgeGOW©), (12)

C® = ReLU(AceGHWM), (13)

L4 Pathway 2(P2): Agc — Acc

Takes cell embeddings as input and produces hidden gene
representations. Subsequently, final cell representations are gen-
erated:

G = ReLU(AgcCOWO), (14)

C® = ReLU(AceGMWM), (15)

L4 Pathway 3(P3): Ace — Acc

Takes gene embeddings as input and produces hidden cell
representations. Subsequently, final cell representations are gen-
erated:

CW = ReLU(AccGOW®), (16)

C®? =ReLU(AccCHWM), 17)

® Pathway 4 (P4): Acc — Acc

Takes cell embeddings as input and produces hidden cell
representations. Subsequently, final cell representations are gen-
erated:

CW = ReLU(AccCOWO), (18)

C® = ReLU(AccCHWD), (19)
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Each pathway produces a final set of cell representations C(2).
To obtain cell type probabilities Poyy € RY*¥ from the output,
a linear layer followed by a softmax layer is employed, which
is common across all pathways. The formal definition of this
process is defined as follows:

Pony = SOFTMAX(CAW ), (20)
where W(2) ¢ Réeut*K denotes the linear layer that maps the

node feature size to the number of classes, and d,,; is the node
feature size of C(2) ¢ RN *dout

E. Training Procedures

In Section III-D, we described four distinct GNN pathways to
construct scGraPhT variants, each variant capturing different re-
lationships between cells and genes. Here, we consider four dis-
tinct training schemes to incorporate scGPT within scGraPhT:
scGraPhT ¢o, scGraPhT go, scGraPhT g, and scGraPhT ;7. It
should be noted that all training schemes utilize a transductive
setting.

1. scGraPhTgo: is a “graph only” variant that takes gene
and cell embeddings as one-hot vectors instead of utilizing
embeddings from the scGPT module. Specifically, C(*) =
Iy and G(© = I,,. This variantis trained via optimization
over GNN weights:

K
argmax Z ZYtk In P, ek

WGNN tethrain k=1

21

2. scGraPhTgo: is an “embedding only” variant that uti-
lizes embeddings from the scGPT module. Specifically,
we focus on cell embeddings, with CO® = Cygpr and
G(9 =1,,. This variant is again trained with (21).

3. scGraPhTgy : is an “embedding & logit” variant that uti-
lizes both the cell embeddings and the prediction logits
from the scGPT module. Specifically, C) = C,.gpr and
GO =1 - In this variant, the scGPT module provides
pre-saved and fixed logits. Thus, the scGPT weights are
not included in the optimization process, which adopts the
integration layer in (1) as follows:

K
argmax E E Ytk In PscGraPhT,tk .

WGNN tethrain k=1

(22)

4. scGraPhT ;7 :isa“joint training” variant that extends E' L,
where the scGPT module also gets optimized during train-
ing, which allows C.gpr to be updated. The classification
probability of the hybrid model is computed with (1).
The optimization process is done over GNN and scGPT
weights simultaneously:

K
argmax Z ZYtk In PycGrapht ik (23)

(WGNN’VVSCGPT)teth k=1

TABLE II
FORWARD COMPUTATIONAL COMPLEXITY OF GNNS IN SCGRAPHT FOR
EACH PATHWAY

Pathway First Layer Second Layer Total Forward Computation
P1 O(M?2h) O(MK(N + h)) O(M2h + MK (N + h))
P2 O(Nh(M + D) O(MK(N + h)) O(Nh(M + D) + MK(N + h))
P3 O(M?h+ NMh)) O(N?K + NKh) O(N?K + Mh(M + N) + NKh)
P4: O(N2h+ NDh)  O(N?K + NKh) O(N%(K + h) + Nh(D + K))

For all model variants, model performance was evaluated in
the test stage via the accuracy metric:

Yicey,,, V(0 = wi)
(G

where y; = argmax(ke{l,Q’.“,K})PSC(;raphT,ik is the predicted
label of cell in i-th node, and y; denotes the true label of cell in
i-thnode, and I (J; = y; ) is the indicator function that equals 1 if
the predicted label g; matches the true label y;, and O otherwise.

Accuracy = ) (24)

F. Computational Complexity Analysis

We analyze the computational complexity of the GNN com-
ponent in scGraPhT for each pathway during a single forward
pass. Specifically, we present the layer-wise computational costs
along with the total cost for two-layered pathways. In our
analysis, M, N, D, h, and K represent the number of genes,
the number of cells, the embedding dimension, the embedding
dimension of any node between two layers, and the number
of cell types, respectively. In all datasets, it is assumed that
N > M > D > h > K. Table II presents the forward compu-
tational complexity of GNNs in scGraPhT, where the dominant
term depends on N, given order of dimensions. In P3 and P4,
which involve cell-cell interactions (Acc), the computational
cost is primarily dominated by quadratic terms in [N, making
these pathways the most expensive. P1 and P2, which involve
gene-gene (Agg) and gene-cell (Agc) interactions, have lower
complexity terms in [N. As a result, they remain relatively less
expensive than P3 and P4 when N is significantly large, such
as in datasets with millions of cell samples, as in the Human Cell
Atlas. Apart from the time complexity, the memory requirement
is another critical concern for growing graphs. In particular, the
use of the adjacency matrix in pathways involving Acc requires
memory proportional to N2, This quadratic scaling implies a
considerable amount of storage capacity for large-scale datasets
comprising millions of cells.

IV. EXPERIMENTS AND RESULTS

We first outline the datasets used for training and evaluating
our model scGraPhT in Section IV-A. Next, we describe the
experimental setup in Section IV-B. In Section IV-C, we present
the results of our proposed method and its comparison with
the state-of-the-art methods. Finally, Section IV-D presents our
ablation studies.

A. Datasets

We evaluate our approach on three datasets: Multiple Scle-
rosis (MS), Human Pancreas (Pancreas), and Myeloid, which
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TABLE III
DATASETS
MS Pancreas Myeloid
Train Cells 7,844 10,600 9,748
Test Cells 13,468 4,218 3,430
Genes 3,000 3,000 3,000
Classes 18 14 21

were curated from the scGPT repository [41]. All training and
test samples were pre-filtered following the protocol in [41],
including selection of the top 3,000 highly variable genes and
mitigation of scale differences via value binning. Dataset at-
tributes are summarized in Table III.

1) MS: Originally released in [80], the MS dataset contains
brain tissue cell types such as interneurons, excitatory neurons,
glial and precursor cells, endothelial cells, and phagocytes. The
training set contains nine healthy control individuals, whereas
the test set contains 12 MS disease individuals. This setting
enables the assessment of out-of-distribution generalization per-
formance.

2) Pancreas: This dataset is comprised of five scRNA-seq
datasets of human pancreas cells. The training set contains
Baron [81] and Muraro [82], and the test set contains Xin
[83], Segerstolpe [84], and Lawlor [85] datasets. The cell types
primarily include pancreatic cells such as alpha, beta, delta, PP,
PSC, and ductal cells. Immune cells such as mast, dendritic, B,
and T cells are also present.

3) Myeloid: The Myeloid dataset [86] is available in the
Gene Expression Omnibus database under the access tag
GSE154763. The cell types all belong to the immune system
and include various macrophage, monocyte, and conventional
dendritic cell subtypes. The training set contains six individuals
with different cancer types, while the test set contains three
individuals with distinct cancer types not observed in the training
set, which is another instance of out-of-distribution data.

B. Experimental Setup

Our design presents four different paths and four different
training schemes due to the size-matching condition of pathways
in a two-layered graph as discussed in Section III-D. We con-
ducted experiments for each training strategy across each path
simultaneously, resulting in a total of 16 different model variants
per dataset. For all model variants, including the competing
transformer baselines, we conducted model evaluations on test
sets 10 times using a randomly created array of fixed seeds
for a fair comparison. The collected scores were averaged, and
standard deviations were computed.

All variants, except for scGraPhT ;r, train only the graph
model, meaning that only the GNN weights W Ny are updated.
Compared to transformer models, which utilize computationally
heavy multi-head attention mechanisms, this small computa-
tional complexity of GNNs allows for training without mini-
batching while avoiding memory issues. Therefore, we perform
a single forward pass each epoch, significantly reducing training
time except for scGraPhT ;. For the scGraPhT ; variant, mini-
batch sizes were selected as 16 and ran for 25 epochs. The other

TABLE IV
TRAINING HYPERPARAMETERS

Min. Max. Step Size Setup
Lambda () 0.0 1.0 +0.1 0.7
LR-GNN 107° 1073 x10 1074
LR-scGPT 10-% 1074 x10 10-5
Dropout-GNN 0.1 0.4 +0.1 0.2
Dropout-scGPT 0.1 0.4 +0.1 0.2

variants were run for 3,000 iterations without mini-batching.
Additionally for the scGraPhT ;r variant, the standard learning
rate (LR) 10~ of the transformer was dropped to 1072,

To analyze the effects of different layer depths, we con-
ducted additional experiments on single-layered and three-
layered graphs. For the single-layer model, the size-matching
validity only holds for Acg and A cc, out of which Acg was
utilized. For the three-layer model, there exist 23 valid pathway
combinations, out of which Acqg — Agc — Aca was utilized.
The reasons for these choices are explained in Section IV-D.

Model hyperparameters were empirically selected based on
performance on the validation set, which comprises 10% of the
training data, as listed in Table IV. The selected parameters were
used in all experiments. Experiments were conducted on an RTX
4090 24GB GPU via the PyTorch framework.

C. Results

We compare our method scGraPhT against 4 state-of-the-art
transformer-based scRNA-seq analysis models: scBERT [40],
TOSICA [39], scGPT [41], and CellPLM [74]. Apart from
state-of-the-art deep learning approaches, we also compare our
method against three conventional approaches: ACTINN [34],
SingleCellNet [68], and CellTypist [70]. As evaluation metrics,
we use accuracy and macro-F1 (mF1) scores for model perfor-
mance and inference times for model complexity. We produced
the results of the competing methods by strictly adhering to
the guidelines provided in their original published papers and
shared code repositories. To ensure a fair comparison, each
method was executed 10 times on the same device, using an
identical array of seeds. In Table V, we present the performance
of scGraPhT alongside baseline methods. The results indicate
that our proposed method significantly outperforms the existing
approaches across nearly all datasets and metrics except one
case. We also visually inspect our model’s effectiveness using a
Uniform Manifold Approximation and Projection (UMAP) plot
illustrated in Fig. 2, where high-dimensional cell-type clusters
are projected onto a two-dimensional space.

‘We now discuss the training variants and the pathway variants
independently to assess their individual importance in our pro-
posed method, starting with the training settings. Primarily, the
scGraPhT ¢ variant generally underperforms against the trans-
former baselines and other training settings, which confirms the
significance of having contextualized processing of the model
through transformers in training. To uncover the effect of P.gpr,
we examine the scGraPhT go and scGraPhT g, variants in con-
junction, which only differ with the inclusion of scGPT predic-
tions. Notably, scGraPhT g, outperforms scGraPhT g in most
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TABLE V
ACCURACY AND MACRO-F1 SCORES ARE PRESENTED

METHOD DATASET
MS Pancreas Myeloid

Accuracy (%) T mF1 (%) 1 ‘ Accuracy (%) T mF1 (%) 1 ‘ Accuracy (%) T mF1 (%) 1
ACTINN#* - 62.80+0.012 - 70.50+0.005 - -
SingleCellNet* - 63.7040.001 - 73.9040.006 - -
CellTypist 76.05+0.002 62.28+0.004 97.17+0.002 66.291+0.04 61.124+0.004 32.5640.002
scBERT 75.09+5.36 40.92+10.3 97.331+0.61 66.61+2.20 54.71+1.72 31.14+1.20
CellPLM 87.88+0.01 76.59+0.01 96.30+0.01 74.3940.01 62.8440.01 33.7740.01
TOSICA 69.37+1.68 58.78+2.27 96.45+0.35 65.25+2.78 47.35+£3.91 27.27+1.05
scGPT 84.96+1.17 71.134+2.68 96.41+1.07 72.82+4.49 63.47+3.00 34.16+1.41
Pl: Age — Acc
scGraPhTgo 83.514£0.92 70.00+1.62 94.85+2.62 75.89+3.49 65.58+1.58 38.05+1.03
scGraPhT o 83.514£0.92 70.00+1.62 94.854+2.62 75.89+3.49 65.58+1.58 38.05+1.03
scGraPhT g, 86.354+0.92 72.254+1.09 97.46+0.23 74.484+0.74 67.86+0.84 38.024+0.90
scGraPhT jp 85.97+0.66 73.234+0.55 96.3040.41 73.73+2.55 62.01+1.07 37.4240.48
P2: Agc — Acc
scGraPhTg o 81.03+1.30 68.6910.76 89.16+12.8 67.47+16.0 65.39+1.15 34.804+0.42
scGraPhTpo 87.55+£0.45 73.9940.45 97.6640.31 80.14+-1.87 67.97+1.20 37.29+£1.01
scGraPhTgp, 88.17+0.41 74.30+0.31 97.76+0.10 74.60+0.73 68.08+0.59 37.86+0.78
scGraPhT jp 86.70+0.42 72.90+0.51 97.274+0.39 72.90+1.49 64.824+1.00 36.73+1.80
P3: ACG — Acc
scGraPhTgo 79.961+0.64 69.661+0.44 84.59+3.17 61.70+1.08 55.94+1.30 31.454+0.59
scGraPhT g0 79.961+0.64 69.661+0.44 84.59+3.17 61.70+1.08 55.94+1.30 31.454+0.59
scGraPhTgp, 82.65+0.52 71.604+0.30 91.244+2.27 65.73+1.33 59.77+1.21 32.88+0.54
scGraPhT jp 85.2140.81 74.304+0.52 97.61+0.44 74.18+1.84 61.20+1.01 33.2240.57
P4: Acc — Acc
scGraPhTg o 75.61+0.21 66.471+0.33 60.32+4.57 49.10+3.01 50.90+0.47 30.58+0.55
scGraPhT o 80.77+0.70 70.00+0.40 93.24+2.72 63.23+3.36 54.72+1.79 30.96+0.76
scGraPhTgr, 84.73+0.55 72.814+0.40 97.361+0.18 73.641+0.52 62.78+1.22 33.924+0.57
scGraPhT ;- 85.914+0.41 73.2940.57 97.0640.25 75.50+1.07 64.86+1.16 35.9141.02

The best model performances are highlighted in bold, and the scores from our method that outperform scGPT are underlined. Arrows indicate that
higher scores are superior. (*) Indicates results taken from [74] to be included here for comparison purposes.
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Fig.2. Label-annotated and predicted cell types for the Pancreas dataset. Each

color represents a different cell type in Pancreas tissue. Projection onto two-
dimensional space was performed with UMAP.

cases by capturing the complementary aspects of the predictions,
yielding better results from the interplay. In pathway variants,
P2 demonstrates exceptional performance against other meth-
ods. Since heterogeneous subgraphs are directly based on the
gene expression matrix in our formulation, the results show the
importance of utilizing inherent interactions present in the data.
A detailed interpretation of the subgraph connections will be
provided in Section V.

To analyze the effect of the integration layer introduced in
(1), we initialize A = 0.0 and increment until A = 1.0, which
corresponds to utilizing only scGPT and only GNN predictions,
respectively. For this analysis, we investigate all pathways under
the scGraPhTgy variant. The results are displayed in Fig. 3,

where the scGPT baseline acts as a comparative benchmark. A
close examination reveals that:

1) For A €[0.7,0.9], where pathway P2 achieves op-
timal performance across all datasets, the GNN-
based component contributes 70% — 90% of the weight
to each prediction. This underscores the importance
of incorporating global information in refining cell
representations.

2) Increasing A from 0.9 to 1.0 (the case where only GNN-
based components of scGraPhT are taken into account in
overall predictions), a decrease in accuracy across all path-
ways and datasets is observed. This suggests that scGPT
predictions start complementing information potentially
missed by the GNN module for contribution factors as
lowas (1 —4) =0.1.

3) There is no universal choice of A that maximizes perfor-
mance across all pathways since the peak of each pathway
occurs at a different point. We extend this discussion in
Section V to account for the importance of datasets on the
choice of A.

We also examine the inference times of the best-performing
pathway P2. It should be noted that running scGPT once allows
the embeddings and logits to be saved for later retrieval by our
models. Thus, our approach requires a single complete run of
scGPT beforehand for each dataset. Therefore, for fairness, our
graph models’ results are added to the baseline inference time
for evaluation. Nevertheless, we note that any subsequent run
of scGraPhT does not need to rerun scGPT, benefiting from
the modular nature of our models. In Table VI, we demonstrate
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Fig. 3. Accuracy of scGraPhT with varying A under the scGraPhT g, variant with all four pathways. The straight line and 1 = 0.0 point correspond to the

fine-tuned scGPT baseline. A = 1.0 point corresponds to predictions based on merely GNN-based contributions.

TABLE VI
INFERENCE TIMES (IN SECOND) FOR QUERYING CELLS IN TEST PORTION ON AN NVIDIA RTX 4090 24GB GPU

METHOD DATASET
MS Pancreas Myeloid
Duration (s) |  Accuracy (%) T Duration (s) |  Accuracy (%) T Duration (s) |  Accuracy (%) T
scBERT 416.09 75.09 341.93 97.33 176.16 54.71
CellPLM 9.29 87.88 9.36 96.30 10.09 62.84
TOSICA 5.05 69.37 2.19 96.45 1.96 47.35
scGPT 16.43 84.96 6.25 96.41 435 63.47
Acc —Acc

scGraPhT g o 0.032 81.03 0.026 89.16 0.025 65.39
scGraPhT o 16.43 + 0.028 87.55 6.25 + 0.022 97.66 4.35 + 0.023 67.97
scGraPhT gy, 16.43 + 0.037 88.17 6.25 + 0.028 97.76 4.35 + 0.026 68.08
scGraPhT ;1 16.43 + 55.72 86.70 6.25 + 19.90 97.27 4.35 + 14.10 64.82

Down arrows indicate that lower scores are better, while up arrows indicate that higher scores are better.

TABLE VII
COMPARISON OF MODEL PERFORMANCES BETWEEN SCBERT AND SCBERT i1,
WITH THE LATTER INTEGRATING OUR APPROACH INTO THE ORIGINAL SCBERT

MS Pancreas Myeloid

Accuracy (%) T mF1 (%)t  Accuracy (%) T mF1 (%) 1 Accuracy (%) 1 mF1 (%)
scBERT 75.09+5.36 40.9241025  97.3320.61 66.6142.20  5471£1.72 31144120
scBERT 7, :
Acc —Acc 7626098 59.55+1.22  97.22+0.47 76.93+1.73  59.18+1.01 33.92+1.00
Agc —Acg  79.84£256 6245E1.49  97.95+0.37 72.74+2.57  56.41+138 33.5540.82
Acc —Acc  81.60£0.35 70214024 91.52+2.42 65.1951.80  54.96+1.02 32.87£0.53
Acc — Acc  7832+057 65254112 94.76%+1.02 70.70£1.80  55.70£091 33.12£0.63

The best model performances are emboldened, and the scores from hybrid methods
outperforming scBERT are underlined.

that our models operate in the order of milliseconds, adding
negligible changes to overall durations except for the
scGraPhT jr variant, which is naturally more demanding due
to joint training.

In the main experiments reported above, the transformer
module in scGraPhT was implemented based on scGPT, given
its generally high performance and fast inference times on
most scRNA-seq datasets. That said, it is worth noting that
other transformer architectures could also be adopted in sc-
GraPhT modularly. To demonstrate this point, we also inte-
grated our method with scBERT, creating scBERT 1, where
both embeddings and logits from scBERT were utilized in
the GNN module of scGraPhT. Similar to the main re-
sults based on scGPT, we find that our hybrid transformer-
GNN approach enables significant performance improvements
over scBERT across all datasets. The results are detailed in
Table VII.

D. Ablation Study

As an ablation study, we conduct a set of experiments to
examine the effect of different layer depths in our proposed
models. For reference, we utilize a single-layered and a three-
layered model. Since our analysis indicated that the heteroge-
neous subgraphs might be more favorable, we set the layers
as Acg and Acg — Agc — Acg for the new models, re-
spectively. Table VIII illustrates that a two-layered composition
is optimal for our annotation task, which may indicate that
a one-layer aggregation may potentially fail to capture suf-
ficient cell-gene information, whereas appending beyond two
layers may cause over-aggregation, harming cell distinctiveness.
However, we note that this optimal depth might not be suit-
able in all contexts. For instance, a multi-tissue dataset where
the same cell types are sampled across different tissues is a
scenario absent in the benchmark datasets. Since intra-tissue
sample pairs of the same cell type often exhibit more similar
profiles compared to inter-tissue pairs where technical noise
tends to be more prevalent [87], extensive information shar-
ing between nodes can propagate undesired variations, poten-
tially harming cell distinctiveness. In such a case, adopting
a single-layer GNN might be preferable to avoid excessive
aggregation.

V. DISCUSSIONS

A primary motivation for building scGraPhT rests on the
hypothesis that transformers and GNNs, due to their distinct
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TABLE VIII
MODEL PERFORMANCE IN DIFFERENT LAYER DEPTHS

METHOD DATASET
MS Pancreas Myeloid
Accuracy (%) T mF1 (%) 1T Accuracy (%) T mF1 (%) Accuracy (%) T mF1 (%) 1
Acc
scGraPhTgo 77.294+0.35 63.661+0.39 97.754+0.12 74.41+2.04 61.754+0.38 33.254+0.20
scGraPhT o 77.294+0.35 63.661+0.39 97.754+0.12 74.41+2.04 61.7540.38 33.254+0.20
scGraPhT g, 82.18+0.22 68.331+0.37 97.774+0.05 75.73+1.01 64.314+0.30 34.384+0.17
scGraPhT ;1 83.81+0.43 70.904+0.38 98.07+0.28 74.414+2.94 63.201+0.44 33.934+0.20
Acc —Acc
scGraPhTgo 81.03£1.30 68.691+0.76 89.16+12.3 67.47+16.0 65.39+1.15 34.80+0.42
scGraPhTgo 87.55+0.45 73.994+0.45 97.66+0.31 80.14+1.87 67.97+1.20 37.2941.01
scGraPhT gy, 88.17+0.41 74.30+0.31 97.76+0.10 74.60+0.73 68.08+0.59 37.86+0.78
scGraPhT jp 86.70+0.42 72.90+0.51 97.274+0.39 72.90+1.49 64.82+1.00 36.73+1.80
Acc —Acc —Acc

scGraPhTgo 75.71+3.36 57.60+2.48 96.574+0.56 69.564+2.30 62.86+2.21 38.154+2.18
scGraPhTgo 75.714+3.36 57.60+2.48 96.574+0.56 69.56+2.30 62.86+2.21 38.154+2.18
scGraPhTgy, 84.05+0.79 65.62+1.51 97.59+0.22 70.69+1.25 66.54+1.05 38.95+0.39
scGraPhT jp 84.7241.07 68.47+1.48 96.44+1.17 72.2242.61 62.01£1.26 37.3540.60

Arrows indicate that higher scores are superior. The best scores are emboldened.
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Fig.4. PCA analysis of scGPT and GNN Grad-CAMs on the MS dataset. The
triangles and circles depict GNN and scGPT results, respectively.

architectures, emphasize different aspects of cells and genes
—transformers excel in contextualized processing, while GNNs
are better at global analysis. By integrating these two com-
plementary approaches, scGraPhT aims to achieve better per-
formance in identifying more nuanced cell types, capturing
subtleties that may be missed by either model in isolation. To
offer support for this hypothesis and to make our approach more
interpretable, we use Grad-CAM [64], a visual explainability
method, on the scGPT and GNN modules separately, where the
latter uses scGraPhT go to benefit only from cell embeddings.
The top 1% of importance scores returned by GradCAM are
retained to identify the most critical entries of cell embeddings
for distinguishing cell types, which result in an importance
profile for each cell under each module. Afterward, principal
component analysis (PCA) is performed on these importance
profiles to assess the similarities/dissimilarities among different
cell types and, more importantly, between scGPT and GNN
modules, as depicted in Fig. 4.

Fig. 4 highlights a significant result: the importance profiles
for the GNN module and the importance profiles for the scGPT
module form spatially segregated clusters in the PCA space.
This outcome indicates that, on average, for each cell type,

the transformer and graph modules focus on distinct attributes
of the cell embeddings during cell type predictions. Having
validated the strength of the scGraPhT model, this result offers
a mechanistic understanding of our approach, explaining how it
outperforms state-of-the-art methods through its use of the two
modules in a complementary manner. To ensure the consistency
of this analysis, we ran our scGraPhTgo variant four more
times with different seeds on the MS dataset. As anticipated, the
clustering pattern was preserved across all trials. The resulting
figures are provided in the Supplementary Material.

While a precise functional interpretation of gene-level contri-
butions onto PCA axes is challenging, some clustering among
different cell types is also evident from observing Fig. 4. In
terms of segregation between respective GPT and GNN im-
portance profiles, the PC1 axis appears to primarily capture a
contrast between glial-immune cells (Oligodendrocytes, Glial
Cells, and Phagocytes) with higher segregation versus neuronal-
vascular cells (Cortical Neurons, Astrocytes, Interneurons, and
Endothelial Cells) with lower segregation. PC2 axis appears to
capture a contrast between glial/vascular cells (Microglia, En-
dothelial Cells, Astrocytes, Phagocytes, and Oligodendrocytes)
with higher segregation versus neuronal cells (Cortical Neurons,
Interneurons, and Pyramidal Neurons) with lower segregation.

Due to factors intrinsic to the scRNA-seq method, datasets
usually suffer from mRNA count drop-outs and batch-to-batch
differences. Our approach is no different from other state-
of-the-art approaches with similar downstream analysis goals
in terms of its performance being inherently constrained by
the quality of the sequencing data. For example, an inspec-
tion of the results shown in Table V shows that cell-cell and
gene-gene interaction layers generally underperform against
heterogeneous subgraphs, which we attribute to the absence
of inherent connections stemming directly from the data. This
problem is further emphasized by our method of computing
similarities between nodes, which results in a matrix where
all entries are non-zero. Such non-sparsity necessitates the use
of thresholding techniques such as k-nearest neighbors (KNN)
or hard thresholding to limit connections and, consequently,
the number of aggregations. However, these methods require
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manual cut-off value selections that lack flexibility and prevent
generalization across different datasets. In future studies, an
adaptive thresholding mechanism tailored to transcriptomics can
potentially be adopted to overcome this potential generalization
issue.

Another example of the scRNA-seq data-related performance
constraints can be provided when the inherently stochastic na-
ture of gene expression processes is considered. Due to stochas-
ticity, gene-specific mRNA counts are usually different, even
among isogenic cells grown in the same environment. Further-
more, the total number of mRNA molecules transcribed from
a gene can be very low, increasing the impact of even minute
differences in single-cell mRNA counts. Therefore, with such
inherent and unavoidable variability, transcriptomics data alone
might be insufficient in faithfully capturing cell-cell or gene-
gene similarities. As additional information, knowledge graphs
that model interactions between entities can be incorporated into
training. Such information is generally static since they are based
on known biological pathways, co-expressions, and functional
relations. Although it may introduce higher computational com-
plexities, cell-cell interaction [88] or gene-gene interaction [89]
knowledge graphs can refine the homogeneous subgraphs based
on experimentally validated interactions.

In our analyses, we observed that the parameter A that gov-
erns how predictions from scGPT and GNN modules are fused
is pathway-dependent, while the optimal lambda values for a
given pathway are fairly consistent across datasets. However,
the optimal A values may change for other datasets that show
distinct distributions from those examined here. To account for
this potential data-driven variability, the selection of A can be
performed using an adaptive learning-based approach. In this
regard, one approach is gradient-based optimization [90], which
integrates A directly into the training loss, allowing it to be op-
timized via backpropagation alongside other model parameters.
As discussed in [90], gradient-based methods can be further
enhanced by incorporating Bayesian optimization techniques for
more robust hyperparameter learning. Another effective strategy
involves leveraging meta-learning frameworks [91], which aim
to learn an optimal A that generalizes well across a variety of
tasks or datasets. Additionally, reinforcement learning [92] can
be employed to dynamically adjust A based on a reward function
that reflects performance improvements, offering a flexible and
adaptive approach to hyperparameter optimization. These ap-
proaches could achieve an optimal balance between our modules
while implicitly addressing the data-induced variations. Inter-
estingly, if our approach were to be tailored to another down-
stream task, these methods could also possibly account for the
distinct nature of the new task, where the optimal interplay be-
tween our modules might vary greatly from the trends observed
herein.

In addition to the discussed data constraints, many benchmark
scRNA-seq datasets suffer from cell type imbalances, which
can affect the results for various downstream tasks [93]. Hence,
this imbalance situation requires special attention and further
analysis. To this end, we provide confusion matrices for scGPT
and scGraPhT in cross-comparison to examine the success of

our approach in identifying rare cell types. The results indicate
that the scGraPhT shows cleaner segregation among distinct cell
types compared to scGPT. Thus, the nuanced cell representations
in scGraPhT help mitigate biases in the annotation of rare cell
types. The comparative results are presented in the Supplemen-
tary Material.

In this study, we present a computationally efficient frame-
work by utilizing pre-trained transformer-based embeddings.
Additionally, we discuss the computational complexity of the
GNN component in Section III-F and present the results in
Table II. Our findings reveal that as the dataset size increases
from tens of thousands to millions of samples, the computational
cost of a single forward pass grows by a factor of 100 for P1
and P2 and 10,000 for P3 and P4. In terms of storage, all
pathways impose significant memory demands, posing scala-
bility challenges. However, it is important to note that scal-
ing GNNs to large datasets is a well-documented challenge
in the field and remains an active area of research. There-
fore, this limitation is inherent to GNNs rather than specific to
our approach. To further mitigate these challenges, distributed
training can be employed, particularly for scGraPhT ;7, where
the transformer and GNN components are trained in parallel
on separate devices. Additionally, distributing graph computa-
tions, sparse matrix representations, and gradient checkpointing
[94] can further optimize memory efficiency and computational
performance.

VI. LIMITATIONS AND IMPLICATIONS

One limitation of this study concerns an inevitable reality
associated with scRNAseq experimental pipelines or output:
missing entries or zero expression values in the gene expression
matrix. We construct the adjacency matrices of our graphs from
these expression matrices. In this context, significant data loss or
sparsity in the original expression matrix may pose challenges
in determining the degree of connections between nodes. As a
solution, the missing or zero values in the expression matrix
can be enriched at an earlier stage using specialized imputation
models tailored for this purpose [95], [96].

Another limitation concerns the large datasets containing
millions of cells. As discussed previously, the size of the
dataset poses a challenge not only for our model but also
for general GNN studies. However, as outlined, there are
several strategies available to mitigate the computational and
memory burden associated with handling such large-scale
data.

Lastly, the presence of rare cell types gives rise to the issue of
class imbalance in the dataset. While scGPT does not directly
address this challenge, and we have not specifically focused
on it, scGraPhT enhances the classification of rare cell types
compared to scGPT, as previously discussed. Potential biases
from class imbalance can be mitigated through imbalance-aware
training techniques [97], both within the transformer framework
and the GNN model we have developed. Furthermore, data
augmentation strategies may also be employed to alleviate the
impact of rare class types [98].
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VII. CONCLUSION

We proposed scGraPhT, a merged transformer-graph model
that draws parallels from the NLP and GNN domains to scRNA-
seq analysis to enhance the distinctiveness of cell representa-
tions, leading to better results in cell-type annotation tasks. As
scGraPhT is devised to capture distinct interaction types be-
tween cell and gene entities, it can aggregate global information
in both homogeneous and heterogeneous settings. In addition
to the contextualized processing of cells within the transformer
model, which considers only intra-cell relations, global infor-
mation passing facilitates cell representations to benefit from
inter-cell dependencies that capture a broader context. Given
that the complementary nature of the transformer and graph
models was a central hypothesis of our approach, we validated
it through explainability methods [64], rendering our approach
and the outcomes more interpretable.

To examine the effects of the interplay between the trans-
former and graph models on single-cell annotation, we proposed
four different training schemes that adopt distinct settings. Our
experimental results illustrate that the proposed graph layers
improve the annotation performance of existing transformer
models, with only a marginal increase in required inference
times in the order of milliseconds. In addition to the compu-
tational simplicity, we showcased that our merged transformer-
graph framework is highly modular, highlighting its potential
to enhance annotation capabilities for other foundation models
pre-trained on single-cell transcriptomics data.
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