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Abstract— Single-cell RNA sequencing (scRNA-seq) al-
lows gene expression to be measured at single-cell resolu-
tion, offering new opportunities to investigate Gene Reg-
ulatory Networks (GRNs), which represent the regulatory
interactions between transcription factors (TFs) and their
target genes. Given their relational structure, GRNs are for-
mulated as graphs, enabling gene interaction inference to
be framed as a link prediction task among graph nodes (i.e.,
genes). Prior work adopts Graph Neural Networks (GNNs)
to this end, employing their unique ability to model inter-
node relationships. However, since GNNs are inherently
limited to pair-wise node interactions, they struggle to cap-
ture the higher-order dependencies characteristic of GRNs.
Gene expression is regulated through multi-way feedback
loops involving multiple TFs and targets, and disregarding
these higher-order dependencies can lower accuracy in
gene interaction inference. To overcome this limitation,
we introduce scHyperLink, a hypergraph-based framework
for GRN reconstruction. scHyperLink models gene interac-
tions using Hypergraph Neural Networks (HGNNs), where
hyperedges allow the simultaneous representation of multi-
gene regulatory relationships. scHyperLink integrates ex-
perimentally derived interaction graphs with dynamically
learned hyperedges to better reflect the underlying regula-
tory structure. We demonstrate that scHyperLink achieves
higher accuracy than state-of-the-art on cell-type-specific
benchmark datasets, particularly in sparse regimes with
few known interactions. Moreover, we validate the biolog-
ical relevance of scHyperLink via interpretability analyses
on inferred hypergraphs and showcase its scalability to
tissue-level analyses. We share the analyzed datasets and
source codes for reproducibility.1

Index Terms— Hypergraph neural networks, graph neural
networks, scRNA, Gene Regulatory Networks

I. INTRODUCTION

Gene regulatory networks (GRNs) describe the architec-
ture of regulatory interactions between target genes and

their transcription factors (TFs), i.e., encoded proteins that
modulate gene expression through processes such as tran-
scriptional activation or repression [1]. As GRNs provide a
foundation for understanding the molecular logic underlying
cell identity, developmental programs, disease mechanisms,
and therapeutic targets [2]–[4], systematic identification of
regulatory relationships through GRN reconstruction is a cen-
tral task in systems biology. Traditional approaches to GRN
reconstruction have focused on aggregating experimentally
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validated TF–gene interactions into curated databases [5], [6],
or inferring regulatory links from gene co-expression patterns
derived from bulk RNA-seq data [7], [8]. However, curated
databases often suffer from limited coverage across cell types
and environmental conditions [9], [10], while correlations in
bulk RNA-seq data may reflect confounding effects or shared
upstream regulators rather than direct regulation [11].

The recent advent of single-cell RNA sequencing (scRNA-
seq) has enabled fine-grained analysis of gene expression
at single-cell resolution, offering improved insight into ge-
nomic regulation [12]–[15]. Unlike bulk RNA-seq, which
averages across heterogeneous cell populations and obscures
cell-specific signals, scRNA-seq captures expression hetero-
geneity across diverse cell types [16]. As in other areas of
bioinformatics, where machine learning have been applied to
analyze diverse molecular data such as circRNA, lncRNA,
and DNA sequences [17]–[20], the shift from bulk RNA-seq
to scRNA-seq has attracted substantial attention for tasks in-
cluding imputation, clustering, and cell-type annotation [21]–
[23], owing to its ability to capture cell-specific expression
patterns at high resolution. This development has renewed
interest in GRN reconstruction, where single-cell–level vari-
ability enables more context-specific inference of transcrip-
tional regulation [24]. Various learning-based methods have
been proposed to infer GRNs from scRNA-seq data, including
formulations based on ordinary differential equations [25],
[26] that can offer suboptimal capture of nonlinear dynamics,
and convolutional neural networks (CNNs) or transformers
applied to co-expression matrices [27], [28] that struggle to
scale efficiently to large single-cell datasets due to memory-
intensive computation of co-expression matrices.

Graph neural networks (GNNs) have emerged as a powerful
alternative for GRN reconstruction, given their native ability
to model dependencies in structured data [29], [30], [31].
GNNs have been applied to a range of transcriptomics tasks,
including cell-type classification [32], [33], [34], cell-cell
communication prediction [35], [36], and imputation [37]. In
the context of GRNs, a graph formulation represents genes
as nodes and regulatory interactions as edges, enabling graph-
based models to naturally identify patterns of genomic regu-
lation. For instance, GNNLink [38] uses graph convolutional
networks, scSGL [39] employs kernelized graphs, GENELink
[40] uses graph attention networks, while GRACE [41] further
integrates structural causal modeling. Despite the natural for-
mulation of GRNs as graphs, existing GNN-based approaches
fail to capture the higher-order dependencies characteristic of
gene regulation, as they are inherently limited to modeling
pair-wise relationships between genes. A well-known example
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of such higher-order structure is the interferon-beta (IFN-
β) enhanceosome—a multiprotein complex in which TFs
such as ATF-2/c-Jun, IRF-3/IRF-7, and NF-κB assemble into
a functional unit to cooperatively activate the IFN-β gene
[42], [43]. Modeling such combinatorial regulation using only
pair-wise interactions neglects the collective logic underlying
transcriptional control.

A promising approach to overcome this limitation is hy-
pergraphs that generalize conventional graphs by allowing
hyperedges to connect any number of nodes simultaneously,
enabling direct representation of higher-order relationships.
By extending message passing algorithms, hypergraph neural
networks (HGNNs) then allow multi-way dependencies to be
learned directly from data [44]. HGNNs have shown promise
in other applications such as spatial transcriptomics [45], can-
cer gene identification [46], drug interaction prediction [47],
[48], and therapeutic target identification in traditional Chinese
medicine [49]. Recent work such as scHyper [50] further
explores HGNNs for cell-cell communication by constructing
hypergraphs via modeling triplets of sending-cell expression,
receiving-cell expression, and known ligand–receptor inter-
actions. Note, however, that scHyper is designed to decode
cell–cell signaling rather than intra-cellular regulation, differ-
ing fundamentally from GRN-focused methods. Hence, the use
of HGNNs in GRN reconstruction remains limited. One excep-
tion within the GRN domain is MHHGRN [51] that employs
static hypergraphs to analyze gene co-expression patterns.
Notably, MHHGRN initiates hypergraphs using correlation-
based adjacency measures, which may constrain its expressive
potential for higher-order regulatory interactions. Thus, the
potential of HGNNs for GRN reconstruction remains under-
explored, particularly in a less constrained formulation that
permits dynamic hypergraph structures.

Here we introduce scHyperLink, an HGNN framework
for GRN reconstruction that addresses the key limitations
of conventional GNNs in capturing higher-order regula-
tory dependencies. scHyperLink integrates a prior-informed
hypergraph—incorporating experimentally validated interac-
tions—with a learnable, expression-driven dynamic hyper-
graph to jointly encode both known and context-specific reg-
ulatory structures. Unlike HGNN-based approaches designed
for non-GRN tasks, scHyperLink derives its hypergraphs di-
rectly from gene-expression profiles and experimentally vali-
dated TF–target relationships, allowing it to capture higher-
order regulatory dependencies characteristic of GRNs. By
propagating signals over this hybrid hypergraph, the model
learns latent gene representations optimized for downstream
interaction prediction. Through experiments on 14 cell-type-
specific datasets, we show that scHyperLink outperforms state-
of-the-art methods in GRN reconstruction. We further demon-
strate the biological relevance of the learned hypergraphs
through interpretability analysis [52], and validate the scal-
ability of our approach via tissue-level regulatory inference.
Our main contributions are:

• We propose scHyperLink to capture the higher-order
dynamics in GRNs by learning gene representations.

• scHyperLink is able to leverage two hypergraph con-

structions: a static hypergraph containing prior interac-
tion information, and a dynamic hypergraph constructing
hyperedges adaptively from gene expression data.

• We demonstrate that scHyperLink outperforms state-of-
the-art methods on common benchmark datasets.

• We show that scHyperLink captures biologically plausi-
ble regulatory information via the dynamic hypergraphs
and showcase its scalability to tissue-level analyses.

• We show that scHyperLink enables cross-cell-type gen-
eralization, transferring regulatory information learned
from well-characterized cell types to improve inference
in sparsely annotated ones.

II. RELATED WORKS

A. Learning-based Approaches

Learning-based methods have gained momentum for GRN
inference due to their ability to capture complex patterns from
data. One of the earliest, GENIE3 [7], employs ensemble tree-
based models to predict gene expression from candidate regu-
latory inputs. However, training a separate model for each gene
renders it computationally expensive on large-scale datasets.
GRNBoost2 [53] builds on this with gradient boosting ma-
chines (GBMs) to improve scalability, yet it still analyzes
genes independently, limiting its ability to capture dynamic
dependencies and global structure. To improve sensitivity to
gene expression dynamics, SCODE [25] introduces a linear
ODE model over pseudo-time trajectories, while [26] extends
this framework to complex-valued ODEs. Although efficient,
ODE-based approaches depend heavily on accurate pseudo-
time estimation and cannot model the nonlinear dynamics or
feedback loops intrinsic to GRNs.

More recent methods aim to incorporate uncertainty and
richer data representations. DeepSEM [54] uses a variational
autoencoder (VAE) to learn low-dimensional gene embed-
dings while accounting for scRNA-seq noise, and PMF-GRN
[55] applies probabilistic matrix factorization with variational
inference to model uncertainty. CNNC [27] transforms co-
expression patterns into image histograms for gene-pair classi-
fication using CNNs, and DeepDRIM [28] further incorporates
neighboring gene expression to reduce false positives. While
CNN-based models achieve competitive performance, their
locality bias restricts sensitivity to short-range dependencies.
STGRNS [56] instead employs transformers to model long-
range dependencies in gene expression. Still, both CNN and
transformer-based approaches often incur substantial compu-
tational costs when constructing gene co-expression matrices,
limiting scalability on large scRNA-seq datasets.

B. Graph-based Approaches

With the rise of geometric deep learning, numerous efforts
have sought to leverage the graph-like structure inherent
to biological regulatory systems and their abstractions as
GRNs. GNE [57] employs multi-layer perceptrons (MLPs)
and neighborhood information to generate gene embeddings.
GNNLink [38] applies a graph convolutional network (GCN)
for message passing between genes, while GENELink [40]
adopts a graph attention network (GAT) to assign adaptive
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weights to gene–gene interactions. GATCL [58] enhances
the attention mechanism with convolutional kernels to detect
local patterns, and scMGATGRN [59] introduces a multi-view
attention strategy to capture up to second-order dependencies.
Beyond attention-based models, GMFGRN [60] integrates ma-
trix factorization with GCNs to model gene–cell interactions,
GRACE [41] combines graph learning with structural causal
modeling (SCM), and HGTCGRN [61] utilizes hierarchical
graph transformers to capture local and global dependencies.
GCLink [62] introduces a graph contrastive framework that
generates dual views of the gene interaction graph and applies
GATs to obtain more expressive gene embeddings. LineGRN
[63] employs line GNNs to overcome the limitations of low-
degree-node-dominated topologies and learn representations
for gene–gene interactions rather than individual genes. These
pioneering approaches have enabled a structured framework
for modeling second-order regulatory interactions. However,
they remain intrinsically limited in capturing multi-way de-
pendencies that extend beyond pair-wise links, which are
fundamental to complex gene regulatory logic.

In a recent study, MHHGRN [51] attempts to mitigate
these issues by employing static hypergraphs constructed
from gene expression. Yet, MHHGRN constructs hypergraphs
based on various correlation methods, which are pair-wise by
nature. Such construction may limit its ability to capture more
complex, higher-order regulatory dependencies. Meanwhile,
HyperG-VAE [64] introduces a Bayesian hypergraph gener-
ative model for scRNA-seq data, employing gene and cell
encoders to simultaneously capture cellular heterogeneity and
co-regulated gene modules within a shared embedding space.
Nevertheless, as an unsupervised generative model, HyperG-
VAE does not incorporate biological priors or link-level su-
pervision and does not directly employ HGNN architectures
for relational inference. As such, the broader capabilities of
HGNNs for GRN reconstruction remain largely untapped,
especially in formulations that allow for dynamic hypergraph
representations. Hypergraph-based GRN reconstruction also
remains underexplored in terms of its biological plausibility.

Different from existing methods, scHyperLink combines
static hypergraphs built from prior biological knowledge with
dynamic hypergraphs learned from expression data. This hy-
brid formulation enables higher-order message passing be-
tween TFs and target genes, yielding refined gene representa-
tions for more accurate and interpretable regulatory inference.

III. PRELIMINARIES

A hypergraph is defined as H = (V, E), where
V = {v1, v2, . . . , v|V|} is the set of nodes and E =
{e1, e2, . . . , e|E|} is the set of hyperedges. In general, a
hyperedge ek is a non-empty subset of V that admits self-
loops. Here we strictly adhere to each hyperedge ek being a
subset of V with at least two nodes. The hypergraph structure
can be represented by an incidence matrix H ∈ {0, 1}|V|×|E|,

Hi,j =

{
1 if vi ∈ ej

0 otherwise

Given a node vi, the incident hyperedges, i.e., the set of
hyperedges that contain vi, are denoted as

NE(vi) = {ek ∈ E | vi ∈ ek}.
Each node vi has a node feature vector xi ∈ RF (F : node
feature dimension). The input node feature matrix, X ∈
R|V|×F , stacks node feature vectors into rows, x⊤

i for i ∈
{1, 2, ..., |V|}. Similarly, each hyperedge ej has a hyperedge
feature vector zj ∈ RF ′

(F ′: hyperedge feature dimension).
The hyperedge feature matrix Z ∈ R|E|×F ′

stacks these
vectors into rows, z⊤j for j ∈ {1, 2, ..., |E|}.

HGNNs extend traditional GNNs by operating on hyper-
graphs, where hyperedges can connect more than two nodes,
unlike edges in a graph. When each hyperedge connects
exactly two nodes, the hypergraph reduces to a standard graph.
Hyperedges allow HGNNs to capture higher-order relation-
ships and enable more expressive message passing between
nodes, surpassing the limitations of pair-wise interactions in
standard GNNs. A typical HGNN layer consists of two stages:
node-to-hyperedge aggregation and hyperedge-to-node aggre-
gation. Let H ∈ {0, 1}|V|×|E| be the incidence matrix of the
hypergraph. The formulation of one hypergraph convolutional
layer with unweighted hyperedges is proposed in [44], which
updates the node features as follows:

X(l+1) = σ
(
D−1/2

v HD−1
e H⊤D−1/2

v X(l)Θ
)
, (1)

where Θ is a learnable weight matrix, σ(·) is a nonlinear
activation function, and Dv ∈ R|V|×|V| and De ∈ R|E|×|E|

are diagonal matrices representing the degrees of nodes and
hyperedges, respectively:

Dv(i, i) =

|E|∑
j=1

Hi,j , De(j, j) =

|V|∑
i=1

Hi,j .

When Eq. 1 is considered without the degree matrices for
brevity, the H⊤X operation performs node-to-hyperedge fea-
ture aggregation, and multiplying with another H distributes
the aggregated features back to the nodes based on NE(vi)
for each node vi. This formulation allows node features to be
updated based on their connectivity through hyperedges, cap-
turing higher-order structural information that extends beyond
simple pair-wise relationships between nodes.

IV. SCHYPERLINK

A. Problem Formulation

We pose gene interaction prediction as a link prediction
task on a hypergraph H = (V, E), where V is the set of
vertices representing individual genes, and E is the set of
hyperedges, each containing at least two genes. Motivated by
biological gene regulation, we model each hyperedge to reflect
a TF and its neighborhood of target genes. Hence, hypergraph
construction yields an incidence matrix H ∈ RN×M (N :
number of unique genes; M : number of TF-encoding genes).
As input data, we utilize a scRNA-seq gene expression matrix
X ∈ RN×C (C: number of cells), and a binary gene interaction
matrix Ai ∈ RN×N containing experimentally validated TF-
gene interactions.

To construct a supervised learning setup, we reserve some
of the known interactions in Ai ∈ RN×N as the test set as
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positive pairs. This effectively splits the interaction matrix
into a training portion Atr ∈ RN×N and test/validation
portion Atest ∈ RN×N such that Ai = Atr + Atest. For
the splits, we first reserve 2/3 of the positive interactions
randomly for the training set, and then allocate 1/10 of the
training set as the validation set. The remaining 1/3 portion of
the positive interactions forms the test set. Since the positive
interactions are sparse, we utilize a uniform negative sampling
strategy to randomly select non-interacting TF-gene pairs as
negative samples for each split. To preprocess the scRNA-
seq expression data, we retain only the 500 (and 1,000)
most significantly varying target genes, and all TFs, based on
Bonferroni-corrected p-values (thresholded at p < 0.01). Our
data preparation and preprocessing pipeline closely follows the
protocols of GENELink [40] and BEELINE [65], where batch
effects were not considered since each dataset originates from
a single study and is processed independently under consistent
experimental conditions.

It is important to note that gene interaction matrices are not
necessarily undirected or do not contain self-loops, as they
contain TF-target relationships that carry directions. Hence,
we utilize two different views of the interaction matrix in
our framework: a symmetrized, self-loop inserted version of
Atr ∈ RN×N denoted throughout the paper as A ∈ RN×N

for practical purposes, and an undirected version denoted with
Atf ∈ RM×N that retains the M rows in Atr belonging to
TF-encoding genes, without any enforced self-loops.

With the setup described above, scHyperLink learns a
mapping fθ that takes in a scRNA-seq expression matrix
X ∈ RN×C and an interaction adjacency matrix A ∈ RN×N

to output latent gene representations G ∈ RN×D (D: gene
embedding dimension):

G = fθ(X,A), (2)
where the i-th gene had an embedding gi ∈ RD, and
G ∈ RN×D stacks embeddings row-wise as g⊤

i for i ∈
{1, 2, ..., N}. In this framework, we aim to learn gene embed-
dings such that the similarity scores between TFs and target
genes reflect the likelihood of regulatory links. To this end,
we view link prediction as a binary classification task, and
train scHyperLink using a binary cross-entropy loss along with
regularization terms. During inference, scHyperLink estimates
the interaction probabilities for previously unseen TF–target
pairs by computing similarity scores in the learned embedding
space and uses these probabilities to classify interactions in
gene pairs. Formally, a binary classifier h(·) receives gene
embeddings gi and gj for each gene pair (i, j), and decodes
them into interaction scores h : (gi,gj) → {0, 1}. Hence,
the overall aim of scHyperLink is to utilize an interaction
adjacency matrix and an expression matrix to derive latent
gene representations and decode interactions between pairs of
gene embeddings as detailed in Sec. IV-B.

B. Overall Architecture

In view of the link prediction formulation, scHyperLink
has three modules that are coupled in objective: a PHI (Prior
Hypergraph Induction) module, a DHI (Dynamic Hypergraph
Induction) module, and an HGNN module. Fig. 1 depicts the

overall architecture and individual modules of scHyperLink
that derive latent gene representations from an initial adjacency
matrix and an expression matrix.

The PHI module utilizes prior TF-gene interaction knowl-
edge to form a static hypergraph with inductive bias denoted as
H0. Since experimental interaction data are often noisy, sparse,
and imbalanced across TFs, we adopt the DHI module to learn
a dynamic hypergraph HL ∈ RN×M that complements the
neighborhood information carried by the static hypergraph in a
data-driven manner, and learns refined hyperedge features. Fol-
lowing the PHI and DHI modules, both constructing a binary
hypergraph incidence matrix, we obtain a final hypergraph as
HF = H0 ∨ HL, where ∨ is the element-wise logical OR
operation. The HGNN module utilizes the final hypergraph and
the learned hyperedge features to propagate representations
between neighboring genes, while mapping expression profiles
of genes to low-dimensional embeddings. Individual modules
are mathematically described in Secs. IV-C, IV-D and IV-E.

When the framework is considered sequentially, the PHI
module uses the TF-filtered version of A, denoted by Atf ,
to obtain the prior hypergraph H0. Concurrently, the input
data (X,A) is processed by the DHI module to produce a
dynamic hypergraph HL. This is combined with the prior
hypergraph H0 to form the final hypergraph HF . Alongside,
the DHI module also generates refined hyperedge features
X̂E , which, together with the expression matrix X and the
final hypergraph HF , are fed into the HGNN module. The
HGNN module employs a dual-stream architecture with cross-
attention between streams to produce low-dimensional gene
representations. By utilizing two separate streams, the distinct
functional roles of TF-encoding genes and target genes can
be captured more effectively. Therefore, the whole mapping
function fθ in Eq. 2 can be decomposed as

H0 = fPHI(A) = A⊤
tf , (3)[

X̂E HL

]
= fDHI(X,A), (4)

HF = H0 ∨HL, (5)

G = fHGNN (X, X̂E ,HF ), (6)
where the DHI module output in Eq. 4 comprises the hyper-
edge feature matrix and the learned hypergraph matrix.

The gene embedding matrix G ∈ RN×D is then utilized
to obtain the TF-gene interaction scores via the dot product
between individual genes, whether it be TF-encoding or target
genes. For gene i and gene j with embeddings gi and gj , the
normalized interaction score pij ∈ [0, 1] is computed with

pij = Sigmoid
(
g⊤
i gj

)
. (7)

Given the true TF-gene interactions yij∈{0, 1} and the com-
puted probabilities pij∈[0, 1], the primary training objective is
to minimize the binary cross-entropy (BCE) loss:

LBCE = −
∑

(i,j)∈S

[yij log pij + (1−yij) log(1−pij)] , (8)

where S is the set of positive and negative TF-gene pairs
chosen from Atr. To improve regularization and stability,
we additionally incorporate two auxiliary losses: the Kull-
back–Leibler (KL) divergence between the learned variational
distribution of the hyperedges and a unit Gaussian prior, which
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Fig. 1: The overall architecture of scHyperLink is illustrated. (a) The process begins with the PHI and DHI modules, which collectively form a hypergraph
structure where each TF has its own hyperedge. Note that although each hyperedge is defined by a single TF (the regulator), other TFs may appear within
the hyperedge as target genes. (b) The output hypergraph structure and the refined hyperedge features are fed along with the expression matrix to the HGNN
module, which learns low-dimensional gene representations. These gene representations are then decoded to obtain interaction predictions.

encourages a structured latent space for hyperedge sampling,
and a column-wise variance loss on the hypergraph HL,
which prevents over-saturation or collapse of the hyperedge
assignments by discouraging imbalanced distributions of gene
memberships. The variance loss is constructed with

Lvar =
1

M

M∑
j=1

∥∥∥H(:,j)
L − µj1

∥∥∥2
2
, (9)

where 1 ∈ RN is a vector of ones, H(:,j)
L ∈ RN is the j-th

column of HL, and µj is the row-wise mean of H(:,j)
L :

µj =
1

N

N∑
i=1

H
(i,j)
L . (10)

Lvar loss aims to penalize low-variance columns, thereby
discouraging the degenerate case where a small number of
hyperedges dominate the membership assignments while oth-
ers remain sparsely connected. The final regularized loss is:

L = LBCE + λKLLKL + λvarLvar, (11)
where λKL and λvar are hyperparameters controlling the con-
tribution of the KL and variance regularization terms.

During inference, the decoder uses a fixed threshold of 0.5
to classify whether a gene pair interacts. Interaction scores
above this threshold predict the presence of a regulatory link
between the gene pair, while scores below indicate its absence.

Formally, the classification rule for the gene pair (i, j) is:
I{Sigmoid

(
g⊤
i gj

)
≥ 0.5}, (12)

where I{·} is the indicator function that is equal to one if the
condition is satisfied, and zero otherwise.

C. PHI Module: Initializing a Static TF-Target Hypergraph

The PHI module is designed to ensure that the hypergraph
captures prior knowledge from the ground-truth TF-gene pairs
as an inductive bias. We inject this prior structure into an initial
static hypergraph H0 ∈ RN×|E| with H0 = A⊤

tf , where Atf ∈
RM×N is the TF-filtered version of the training adjacency
matrix introduced in Sec. IV-A. This injection yields |E| =
M number of hyperedges, where each hyperedge represents a
single TF and its gene neighborhood based on the interactions
present in the ground-truth data.

D. DHI Module: Learning a Dynamic TF-Target
Hypergraph

The DHI module is designed to learn a dynamic hypergraph
HL ∈ RN×M that complements the prior structure H0, where
each TF is initially associated with a hyperedge based on
known interactions. The DHI module adaptively updates the
static hypergraph structure by introducing new gene member-
ships into the existing hyperedges based on the relationship
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between hyperedge-gene features, which necessitates hyper-
edge features denoted as XE ∈ RM×de to be present. Instead
of directly encoding these features with expression vectors of
TFs, we treat hyperedge features as latent variables sampled
from a trainable distribution, which can capture task-specific
representations. Since this module aims to assign new gene
memberships to hyperedges, the hyperedge distributions can
be viewed as centroids in high-dimensional space, and genes
as queries that search for which clusters to join.

More formally, we aim to learn a distribution P(XE | A,X)
over hyperedge features conditioned on the gene expression
matrix and the interaction matrix pair. Specifically, we model
each hyperedge feature (XE)i as being drawn from a Gaussian
distribution with a learnable mean µi and a shared learnable
variance vector σ, i.e.,

(XE)i ∼ N (µi,diag(σ
2)), (13)

where µ ∈ RM×de contains one mean vector per hyperedge,
and σ ∈ R1×de is shared across all M hyperedges. This
formulation allows each hyperedge to learn a distinct direction
in space with the mean vector, and the shared variance
reduces computational complexity. Since the sampling process
is discrete and cannot produce gradients, we use the repa-
rameterization method [66] to make µ and σ trainable, i.e.,
we sample a normally distributed matrix Q ∈ RM×de from
N (0, I) and obtain the ith hyperedge feature vector with

(XE)i = µi + σ ⊙Qi, (14)
where ⊙ is the Hadamard product. After sampling the hyper-
edge features, we process the expression matrix X ∈ RN×C

together with the normalized interaction matrix A ∈ RN×N

through a two-layered GCN block, projecting the expression
vectors onto the hyperedge feature space with

Ã = D−1/2AD−1/2, (15)

X̃ = σ
(
LN(ÃXW1)

)
, (16)

XV = σ
(
LN(ÃX̃W2)

)
, (17)

where D ∈ RN×N is the adjacency degree matrix of A,
XV ∈ RN×de are the new node features, W1 ∈ RC×de

and W2 ∈ Rde×de are learnable weight matrices, LN(·) is
the LayerNorm function, and σ(·) is the nonlinear activation
function, which is instantiated as the LeakyReLU function
throughout this manuscript. With this projection, the node
features benefit from the pair-wise relationships observed in
the interaction matrix A with propagations.

To refine the hyperedge features with the obtained gene
representations, we draw inspiration from the attention mech-
anism in transformers [67] by viewing the hyperedges as
queries that search for nearby nodes, and genes as keys and
values that will be aggregated into the hyperedges. We use
three mapping functions q(·), k(·), and v(·), each comprising
a learnable weight matrix, to obtain

αEi→Vj
=

e(q(XE)i[k(XV)⊤j ])∑
l e
(q(XE)i[k(XV)⊤l ])

, (18)

where αEi→Vj
is the hyperedge-to-gene attention coefficient.

In matrix form, we obtain αE→V ∈ RM×N that comprises all
such coefficients. To let each hyperedge aggregate distinctively

without propagating too much noise, we keep only the highest
k1 coefficients per hyperedge with topk(αE→V , k1), where the
topk(A, L) operator sets the largest L entries in each row of
a given matrix A to one, and sets all other entries to zero. The
filtered attention matrix then aggregates information from the
remaining nodes into the hyperedges with the value matrix
v(XV). The sampled features and the aggregated features
are then concatenated and processed through a multi-layer
perceptron (MLP) as follows:

X̂E = MLP (XE ∥ topk(αE→V , k1)v(XV)) , (19)
where ∥ is the concatenation operator. Now, each refined
hyperedge feature in X̂E ∈ RM×de carries information from
both its distribution and the k1 genes closest to the distribution.

With refined hyperedge features present, we now aim to
assign genes to hyperedges based on some distance criterion.
Viewing the hyperedges as centroids or keys, and genes as
queries that search for hyperedges to join into, we utilize the
same latent spaces defined with q(·), k(·), and v(·) to obtain
similarity scores with

αVi→Ej
=

e(q(XV)i[k(X̂E)
⊤
j ])∑

l e
(q(XV)i[k(X̂E)⊤l ])

, (20)

where αVi→Ej
is the gene-to-hyperedge attention coefficient.

In matrix form, we obtain αV→E ∈ RN×M , where each row
corresponds to a probability distribution over all hyperedges
for a given gene. To prevent noise propagation and over-
smoothing, we set the k2 highest coefficients in each row to
one, while setting all other entries to zero. This binarization
uses the raw attention scores for ranking and yields a clean
set membership for stable hypergraph message passing. With
this operation, each hyperedge can receive new gene members,
effectively creating a binary-valued dynamic hypergraph with

HL = topk(αV→E , k2), (21)
which is then added to the static hypergraph H0 to yield
the final hypergraph HF ∈ RN×M . To clarify and visualize
the dynamic hypergraph construction process, we provide an
illustrative toy example in Supp. Fig. 2.

E. HGNN Module: Creating Gene Representations

After a single forward pass through the DHI module, the
resulting pair (HF , X̂E) is passed to the HGNN module,
along with the gene expression matrix X. As outlined in
Sec. IV-B, the HGNN module adopts a dual-stream design to
capture the differing functional roles and expression profiles
of TFs and target genes, where the streams are architecturally
identical but with independent parameter initializations to learn
complementary representations. Each stream is structurally
symmetric and begins with an arbitrary number of hypergraph
neural network layers, propagating features across gene rep-
resentations using the modified hypergraph structure.

While our HGNNs follow the formulation described in
Sec. III, we modify the standard forward pass computation
in Eq. 1 following the design introduced in TDHNN [68]. In
conventional HGNNs, given an incidence matrix H ∈ RN×M

and node features V ∈ RN×F , the product H⊤V aggregates
node information into hyperedge representations, which are
then projected back to the nodes via multiplication with H.
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TDHNN proposes bypassing this node-to-hyperedge aggrega-
tion when useful hyperedge features are already available,
directly propagating information from hyperedges to nodes
instead. Since our DHI module already produces refined hy-
peredge features X̂E ∈ RM×de , the aggregation step HH⊤V
becomes redundant. Instead, we directly project the available
hyperedge features back to the nodes and combine them with a
node-wise transformation to update V. The TDHNN-inspired
forward pass is formulated as:

H̃F = D−1/2
v HFD

−1/2
e , (22)

X
(l+1)
V,si

= σ
(
X

(l)
V,si

W
(l)
V,si

+ H̃F X̂EW
(l)
E,si

)
, (23)

where Dv ∈ RN×N is the node degree matrix, De ∈ RM×M

is the hyperedge degree matrix, and W
(l)
V,si

and W
(l)
E,si are

learnable weight matrices for the l-th HGNN layer, and si
subscript denotes the i-th stream with i ∈ {1, 2}. The term
X

(l)
V,si

W
(l)
V,si

transforms the previous layer’s node features
without any message passing, serving as a direct node-to-node
path. The second term, H̃F X̂EW

(l)
E,si , distributes the refined

hyperedge features to their associated nodes, enabling higher-
order feature propagation through the connections in HF .
In conjunction, the first term captures node-specific features
without structural context, while the latter captures higher-
order neighborhood information lacking in the former. It is
important to clarify that an arbitrary number of layers can
be stacked sequentially. We use two layers throughout our
experiments, with the layer index l taking values in {0, 1}.
Hence, the node features are initialized with X

(0)
V,si

= X, and
we obtain X

(2)
V,si

∈ RN×dh as the output node features after
performing message passing through two HGNN layers, where
dh is the output node feature dimension.

Since the structure in HL is dynamically learned as given in
Eq. 21, some hyperedges may accumulate a disproportionate
number of member nodes while others receive little to none.
This imbalance can lead to oversmoothing, where node fea-
tures become indistinguishable due to excessive representation
mixing. To mitigate this effect, we incorporate a learnable
residual weight matrix Wr,si ∈ RC×dh in each stream, which
reintroduces raw node-specific information from the expres-
sion matrix X into the final representations. This promotes
feature diversity and preserves individual gene characteristics.
The new node representations for stream si are computed as:

XV,si = XWr,si +X
(2)
V,si

. (24)
To enable interaction between the two streams and allow
each to benefit from the complementary information captured
by the other, we incorporate a cross-attention mechanism.
Specifically, we adopt a shared set of projections q′(·), k′(·),
and v′(·), which map from dh to dh dimensions, and not to be
confused with the mapping functions in Sec. IV-D. Given the
node features XV,s1 and XV,s2 from the two streams, we com-
pute cross-attended representations by attending each stream
to the other. For instance, the refined node representations of
the first stream are obtained with:

αs1→s2 = Softmax
(
q′(XV,s1)k

′(XV,s2)
⊤) , (25)

X̂V,s1 = XV,s1 +αs1→s2v
′ (XV,s2) , (26)

where αs1→s2 ∈ RN×N is the cross-attention coefficient

matrix, and the refined node features are stored in X̂V,s1 ∈
RN×dh . Symmetrically, the update for the second stream is
given by reversing the roles of s1 and s2:

αs2→s1 = Softmax
(
q′(XV,s2)k

′(XV,s1)
⊤) , (27)

X̂V,s2 = XV,s2 +αs2→s1v
′ (XV,s1) . (28)

The cross-attention enables information passing between node
representations of two streams that capture distinct representa-
tions due to their independent initialization. The refined node
features in the i-th stream X̂V,si are then processed through
an MLP belonging to the i-th stream:

Gsi = MLPsi

(
X̂V,si

)
, (29)

where Gsi ∈ RN×D are the final set of gene representations
in stream si. When we refer to G, we implicitly refer to
the set {Gs1 ,Gs2}, where both are gene embedding matrices
obtained through separate streams with the same operations.
For the loss optimization step discussed in Sec. IV-B, we
draw embeddings of known TF-gene pairs from {Gs1 ,Gs2}
accordingly, and decode to predict the interaction scores.

V. EXPERIMENTS AND RESULTS
A. Datasets

We use the cell-type-specific ChIP-seq datasets proposed in
BEELINE [65]. There are seven distinct cell types: hHEP (hu-
man hepatocytes), hESC (human embryonic stem cells), mDC
(mouse dendritic cells), mESC (mouse embryonic stem cells),
mHSC-E (mouse hematopoietic stem cells, erythroid-biased),
mHSC-GM (mouse hematopoietic stem cells, granulocyte-
macrophage-biased), and mHSC-L (mouse hematopoietic stem
cells, lymphoid-biased). We provide the raw and processed
versions of the datasets.

In total, there are 14 datasets, of which seven are small-
scale with 500 non-TF significantly varying genes, and seven
are large-scale with 1, 000 non-TF significantly varying genes.
In each scale, each cell type has scRNA-seq data and ChIP-
seq data, which contain interactions exclusive to the specified
cell type. Table I shows the statistics of ground truth ChIP-
seq networks, such as the number of active TFs and genes that
contain at least one interaction. The statistics of scRNA-seq
data after pre-processing are given in the Supp. Table 1.
TABLE I: Summary of cell-type-specific ChIP-seq networks after pre-
processing with the most varying 500 (and 1,000) genes.

Cell Type Active Genes Active TFs Interactions Network Density

hESC 815 (1,260) 34 (34) 20,677 (32,065) 0.164 (0.165)
hHEP 874 (1,331) 30 (31) 19,002 (30,026) 0.379 (0.377)
mDC 443 (684) 20 (21) 10,969 (18,556) 0.085 (0.082)
mESC 977 (1,385) 88 (89) 65,895 (96,460) 0.345 (0.347)
mHSC-E 691 (1,177) 29 (33) 13,632 (26,565) 0.578 (0.566)
mHSC-GM 618 (1,089) 22 (23) 9,280 (17,406) 0.543 (0.565)
mHSC-L 525 (640) 16 (16) 5,976 (7,392) 0.525 (0.507)

B. Experimental Setup

Our proposed framework contains various hyperparameters
to be specified. For the regularization coefficients λKL and
λvar described in Sec. IV-B, we use λKL = 0.0001 and
λvar = 0.005. For the k1 and k2 values in the DHI module, we
use k1 = k2 = 10. For the hidden dimensions de and dh, we
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TABLE II: AUROC and AUPRC performance of SCHYPERLINK and base-
lines on cell-type-specific ChIP-seq datasets with 500 non-TF genes.

AUROC hESC hHEP mDC mESC mHSC-E mHSC-GM mHSC-L

DeepSEM [54] 0.569 0.548 0.496 0.501 0.508 0.527 0.541
HyperG-VAE [64] 0.556 0.535 0.538 0.495 0.494 0.500 0.546
GENELink [40] 0.845 0.837 0.743 0.883 0.874 0.891 0.844
GNNLink [38] 0.827 0.831 0.654 0.820 0.798 0.852 0.849
GATCL [58] 0.865 0.851 0.754 0.887 0.869 0.881 0.820
GMFGRN [60] 0.864 0.895 0.795 0.898 0.918 0.918 0.874
GRACE [41] 0.849 0.868 0.650 0.917 0.900 0.893 0.836
scMGATGRN [59] 0.872 0.886 0.768 0.910 0.894 0.897 0.862
GCLink [62] 0.845 0.859 0.780 0.901 0.887 0.900 0.853
LineGRN [63] 0.870 0.880 0.801 0.871 0.911 0.913 0.845
scHyperLink 0.885 0.905 0.824 0.924 0.927 0.930 0.886

AUPRC hESC hHEP mDC mESC mHSC-E mHSC-GM mHSC-L

DeepSEM [54] 0.191 0.402 0.052 0.308 0.567 0.517 0.528
HyperG-VAE [64] 0.189 0.382 0.061 0.301 0.563 0.528 0.540
GENELink [40] 0.521 0.692 0.129 0.749 0.890 0.894 0.838
GNNLink [38] 0.470 0.701 0.132 0.617 0.791 0.842 0.816
GATCL [58] 0.563 0.714 0.133 0.752 0.880 0.881 0.809
GMFGRN [60] 0.558 0.826 0.149 0.793 0.940 0.928 0.874
GRACE [41] 0.529 0.790 0.132 0.833 0.915 0.891 0.815
scMGATGRN [59] 0.598 0.804 0.150 0.807 0.910 0.897 0.859
GCLink [62] 0.556 0.759 0.169 0.777 0.904 0.905 0.845
LineGRN [63] 0.567 0.802 0.144 0.725 0.932 0.922 0.843
scHyperLink 0.614 0.847 0.220 0.854 0.947 0.940 0.888

TABLE III: AUROC and AUPRC performance of SCHYPERLINK and
baselines on cell-type-specific ChIP-seq datasets with 1,000 non-TF genes.

AUROC hESC hHEP mDC mESC mHSC-E mHSC-GM mHSC-L

DeepSEM [54] 0.583 0.565 0.496 0.507 0.538 0.535 0.580
HyperG-VAE [64] 0.565 0.544 0.520 0.507 0.532 0.525 0.553
GENELink [40] 0.830 0.850 0.739 0.893 0.892 0.891 0.840
GNNLink [38] 0.853 0.822 0.708 0.818 0.833 0.863 0.807
GATCL [58] 0.870 0.858 0.754 0.900 0.894 0.875 0.822
GMFGRN [60] 0.863 0.900 0.799 0.905 0.933 0.930 0.852
GRACE [41] 0.852 0.877 0.703 0.919 0.901 0.911 0.844
scMGATGRN [59] 0.874 0.896 0.760 0.917 0.909 0.914 0.851
GCLink [62] 0.847 0.867 0.771 0.907 0.907 0.912 0.846
LineGRN [63] 0.874 0.886 0.798 0.872 0.933 0.925 0.843
scHyperLink 0.885 0.906 0.833 0.926 0.941 0.940 0.879

AUPRC hESC hHEP mDC mESC mHSC-E mHSC-GM mHSC-L

DeepSEM [54] 0.189 0.413 0.046 0.314 0.563 0.535 0.523
HyperG-VAE [64] 0.189 0.380 0.049 0.304 0.570 0.547 0.514
GENELink [40] 0.505 0.710 0.114 0.756 0.896 0.898 0.817
GNNLink [38] 0.501 0.670 0.139 0.602 0.807 0.853 0.749
GATCL [58] 0.573 0.732 0.132 0.774 0.901 0.868 0.802
GMFGRN [60] 0.563 0.835 0.135 0.796 0.947 0.942 0.826
GRACE [41] 0.565 0.803 0.135 0.829 0.904 0.921 0.809
scMGATGRN [59] 0.610 0.821 0.138 0.826 0.917 0.919 0.837
GCLink [62] 0.555 0.769 0.126 0.786 0.919 0.920 0.821
LineGRN [63] 0.573 0.811 0.133 0.716 0.947 0.938 0.825
scHyperLink 0.611 0.850 0.186 0.850 0.954 0.951 0.864

use de = dh = 128. For the final gene embedding dimension,
we use D = 64. As the optimizer, we use Adam [69]
with a learning rate 0.002 for training. All hyperparameters
were chosen based on the losses on the validation sets. The
hyperparameter search is presented in the Supp. Fig. 1. All
experiments were conducted on an RTX 4090 24GB GPU.

C. Results

We compare scHyperLink against seven state-of-the-
art baseline methods: DeepSEM [54], HyperG-VAE [64],
GENELink [40], GNNLink [38], GATCL [58], GMFGRN
[60], GRACE [41], scMGATGRN [59], GCLink [62], and
LineGRN [63]. We use AUROC (Area Under the Receiver
Operating Characteristic Curve) and AUPRC (Area Under the
Precision-Recall Curve) as our evaluation metrics. To ensure
fair comparison and reproducibility, we use the same dataset
splits across all methods, execute each method 10 times with
an identical array of seeds on the same device, and obtain the
average score in each metric. In Tables II & III, we provide
the results of scHyperLink and other baseline methods on
the 500 non-TF and 1,000 non-TF variants of the cell-type-
specific ChIP-seq datasets discussed in Sec. V-A, where the
best performances in terms of metrics are displayed in bold,
and the closest competing results are underlined.

The results in Tables II & III indicate that our proposed
method consistently outperforms existing baselines across all
cell-type-specific ChIP-seq datasets in AUROC and AUPRC
metrics, demonstrating the importance of higher-order mes-
sage passing through hypergraphs in the context of GRN
reconstruction, which we also validate via conducting ablation
studies by altering or removing the hypergraph structures and
comparing the performances.

D. Ablation Studies

We conducted a set of ablation experiments to deter-
mine the effect of the main components of scHyperLink
under various sparsity conditions, which are simulated via
randomly dropping out a portion of the positive samples
in training. For reference, we utilize interaction drop rates
p = {0.0, 0.3, 0.5, 0.7}. To examine the robustness of
scHyperLink, we create five variants. The variant w/o DHI
removes the DHI module, hence the learned hypergraph, leav-
ing only the initial hypergraph structure for inference. w/o PHI
removes the prior hypergraph, leaving only the DHI module to
learn a hypergraph structure. w/o DS reduces the dual stream
nature of the HGNN module to a single stream, removing
the cross-attention block in the process. w/o CA removes the
cross-attention block but retains the dual-stream, isolating the
contribution of cross-attention. Lastly, w/o HGNN removes the
HGNN module from the streams, instead replacing it with
two streams of two-layered GCNs. We run all variants and
scHyperLink with a fixed array of 10 seeds in each sparsity
scenario, and record the mean and standard deviations for the
metric scores in each dataset. Our results in Fig. 2 and Table IV
demonstrate that scHyperLink remains robust in metric scores
across various sparsity scenarios.
TABLE IV: AUROC/AUPRC scores of model variants under different interac-
tion drop rates p. Scores are averaged across seven cell types (10 runs each).

Variant p = 0.0 p = 0.3 p = 0.5 p = 0.7

scHyperLink 0.897 / 0.759 0.889 / 0.750 0.881 / 0.740 0.866 / 0.723
w/o PHI 0.895 / 0.756 0.887 / 0.746 0.878 / 0.737 0.866 / 0.720
w/o DHI 0.885 / 0.756 0.877 / 0.745 0.866 / 0.731 0.842 / 0.706
w/o DS 0.886 / 0.729 0.879 / 0.719 0.871 / 0.707 0.854 / 0.678
w/o CA 0.895 / 0.756 0.887 / 0.746 0.879 / 0.736 0.864 / 0.719
w/o HGNN 0.874 / 0.738 0.868 / 0.730 0.856 / 0.718 0.838 / 0.699
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Fig. 2: Ablation study of SCHYPERLINK under varying sparsity settings
on two cell types (mDC & hHEP). Positive links are randomly dropped
to simulate sparsity at rates shown on the x-axis. Bars represent mean
AUROC/AUPRC across 10 runs, with standard deviations shown as black
lines. From left to right, the variants are: scHyperLink (blue), w/o PHI (green),
w/o DHI (orange), w/o DS (red), w/o CA (gray), and w/o HGNN (purple).

In the mDC dataset, which is the sparsest network [see
Table I], the w/o DHI variant underperforms at any given
sparsity condition compared to scHyperLink, while the w/o
PHI variant does not affect the performance much. This
confirms the expectation that with few prior interactions, the
static hypergraph becomes noisy, and the dynamic hypergraph
can complement and introduce beneficial TF-gene links for
information propagation. As a denser network [see Table I],
in the hHEP dataset, the removal of the prior hypergraph
degrades the performance slightly more than the removal of
the dynamic hypergraph, as there are useful prior interactions
that can help with refining the representations.

To examine the overall performance of the variants across
different datasets, we average the metric scores across all
cell types for each variant, which are displayed in Table IV.
Across each interaction drop rate, scHyperLink outperforms
each variant, showing that the ablated components contribute
to our model. The w/o PHI and w/o DHI variants perform well
individually, and the best performance is obtained when they
are used in conjunction. The w/o DS and w/o HGNN variants
consistently underperform, showing the importance of using
two separate streams to capture the distinct roles of TFs and
target genes and using hypergraph neural networks to perform
information propagation, respectively. Lastly, from the variant
w/o CA, we reason that the cross-attention block is beneficial
for the dual-stream nature of scHyperLink.

As an additional ablation study, we quantify the effect of
the loss term Lvar that acts as a regularizer. Specifically, we
sweep its regularization coefficient λvar over several orders
of magnitude and report validation AUROC/AUPRC scores
together with a Gini-based measure of hyperedge-membership
imbalance computed on HL. We observe that decreasing λvar
weakens the regularization on HL, producing a more uneven
distribution of hyperedge memberships (higher Gini) and a
drop in performance scores. The degradation is strong in small-

scale datasets, where insufficient PHI priors force the model
to depend heavily on the learned DHI structure. The results
of this analysis are presented in Supp. Fig. 1.

E. Few-Shot Transfer Learning

In many cell types or cellular states, the number of experi-
mentally validated interactions is very limited, hindering GRN
reconstruction. In such scenarios, leveraging knowledge from
related, data-rich cell types becomes crucial. Hence, to test
the generalization performance of scHyperLink, we consider a
few-shot transfer setting, pretraining scHyperLink on a source
cell type with ample data and transferring the learned weights
to a new target cell type with only a small set of labeled
TF–target interactions, where fine-tuning is performed.

To facilitate a few-shot scenario with our datasets, we
randomly retain only 5% of the ground-truth interactions in
the target cell type. Since the dataset of the source cell type for
pretraining needs to be much larger than the target, we choose
the mESC-1000 dataset as the source cell type, which has the
largest number of ground-truth interactions [see Table I]. We
ensure matching weight dimensions compatible for transfer via
singular value decomposition on both the source and target cell
type feature matrices. To ensure consistency with our previous
experiments, we utilize the same set of hyperparameters, but
decrease the number of epochs in the fine-tuning phase to
avoid overfitting to the small target cell type.

hESC hHEP mDC mHSC-E mHSC-GM mHSC-L
0

0.2

0.4

0.6

0.8

1

Sc
or

e

With Pretraining (AUROC) With Pretraining (AUPRC)
No Pretraining (AUROC) No Pretraining (AUPRC)

Fig. 3: Few-shot transfer of SCHYPERLINK. In the pretrained setting, the
learned weights on the source (mESC-1000) dataset are transferred to any
other target dataset. Bars represent mean AUROC/AUPRC across 10 runs,
with standard deviations depicted as black lines.

In Fig. 3, we show that pretraining scHyperLink on a large
source dataset with broad interaction coverage and transferring
the learned weights to a smaller target dataset consistently
yields better performance than training directly on the limited
target cell type. These results highlight scHyperLink’s capacity
to generalize across cell types and suggest its potential to
extend to diverse perturbation conditions via transfer learning.

F. Computational Complexity Analysis

We benchmark computational cost against baselines using
wall-clock training time and peak GPU memory. Supp. Table
2 reports results on the smaller mHSC-L-500 dataset, while
Supp. Table 3 reports results on the larger hHEP-1000 dataset.

Additionally, to examine how scHyperLink scales to large-
scale datasets, we perform a parametric analysis. Since asymp-
totic analysis focuses on order-of-growth, we adopt two prac-
tical simplifications consistent with our implementation [see
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Sec. V-B]: we set k1=k2=k and de=dh=d as in our experi-
mental setup. The PHI module sets H0 = A⊤

tf at negligible
cost. In the DHI module, the two GCN passes and the node-
to-hyperedge and hyperedge-to-node attention computations
dominate. In the HGNN module, the cross-attention opera-
tion between streams and the per-layer projections dominate.
Putting these together, the forward pass scales as:
O
(
N2d+(N+M)d2+N(C+M+D)d+NM log k

)
. (30)

Here, the N2d term comes from cross-attention across streams,
(N+M) d2+N(C+M+D) d is from linear projections/MLPs
(e.g., computing query/key/value matrices, per-layer weight
multiplications); and NM log k is from the top-k selections
used to sparsify node–hyperedge interactions. Since log k ≪
min{N,M}, the other terms dominate, yielding an order of:

O
(
N2d+ (N +M)d2 +N(C +M +D)d

)
. (31)

This analysis demonstrates that scHyperLink’s complexity
scales quadratically with respect to the number of genes N
and the hidden dimension d, which denotes de or dh, which
are practically similar. The hidden dimensions in the DHI and
HGNN modules can be kept relatively small and do not need
to scale aggressively with dataset size. On the other hand, the
N2d term remains the principal bottleneck for scaling to large-
scale datasets. When applying scHyperLink to datasets with
lots of genes, several optimization strategies can be considered.
We discuss some potential techniques in Sec. VI.

G. Interpretability Analysis on Learned Hyperedges

Having demonstrated the superior inference performance
of scHyperLink in Tables II & III, and demonstrated the
importance of the DHI module through ablation results in Fig.
2 and Table IV, we now turn to an interpretability analysis
to assess the biological relevance of the learned regulatory
hyperedges. To perform the biological plausibility evaluation,
we employ Grad-CAM [52], a gradient-based localization
method that highlights the regions of a layer’s activation map
that are most informative towards output predictions. To adapt
Grad-CAM into our framework, we track the gradients of
the learned hypergraph incidence matrix HL ∈ RN×M with
respect to the binary interaction predictions for each TF-gene
pair in the test set. This yields an importance matrix of size
N × M , where each entry (i, j) quantifies the contribution
of target gene i and TF j toward the model’s predictions
in the test set. Then we take the column-wise mean of the
importance matrix to obtain a 1×M vector, where each entry
is a scalar value representing the average importance of the
corresponding TF in the test set. We then choose the Top-5
contributing TFs and their target genes, which are effectively
the Top-5 most significant learned hyperedges, and employ
GO (Gene Ontology) [70] & KEGG (Kyoto Encyclopedia of
Genes and Genomes) [71] term enrichment analysis to recover
the most statistically significant terms in each TF’s hyperedge
gene set. For each TF, we retain one GO and one KEGG term.

For biological plausibility assessment, we use the mHSC-E
dataset due to its highest AUROC and AUPRC performance.
In Fig. 4, Top-5 TFs recovered by Grad-CAM (left) connect to
their Top-5 targets (middle) and flow to significantly enriched
terms (right) for that learned hyperedge, demonstrating crucial

Fig. 4: Top-5 TFs recovered by Grad-CAM, their associated Top-5 target
genes from the learned hyperedges, and the most statistically significant terms
enriched per TF. For each TF, we display one GO term and one KEGG term.
Each color-tracked path highlights one TF-to-term regulatory trajectory via
its learned hyperedge set.

biological relevance in hematopoietic stem cells with erythroid
differentiation tendencies. GATA1 serves as the master regula-
tor in erythropoiesis, promoting erythroid lineage commitment
by activating genes essential for red blood cell development
while repressing alternative lineage programs [72]. Through
interactions with cofactors like FOG1, it facilitates chromatin
remodeling at erythroid-specific enhancers [73]. Conversely,
NFIA plays an antagonistic role in erythroid differentiation.
The NFIA-ETO2 fusion suppresses gene expression programs
in erythroid maturation and differentiation, inducing ery-
throleukemia [74]. In broader hematopoietic context, HDAC10
regulates DNA replication and genome stability in malignant
lymphoid cells. HDAC10 inhibition leads to DNA damage
accumulation and apoptosis in cancerous lymphoid cells [75].
The findings in Fig. 4 align with experimental validations in
literature, demonstrating that scHyperLink learns biologically
plausible and context-specific hyperedge sets that propagate
biologically consistent information across TFs and targets.

As a case study, we also evaluate whether scHyperLink cap-
tures known multi-TF regulatory modules. Specifically, we ex-
amine the well-characterized OCT4/POU5F1–SOX2–NANOG
(OSN) core circuit that maintains pluripotency in human em-
bryonic stem cells [76]. Using the hESC dataset and the same
hyperparameter configuration as in our main experiments, we
extracted the hyperedges inferred for the OSN TFs in each
training seed and quantified their degree of co-regulation by
computing the mean of the pairwise overlap ratios among
the three hyperedges. This produced one co-targeting score
per seed for the OSN triad, which we then averaged across
seeds. To evaluate whether this co-targeting was greater than
expected by chance, we generated a size-matched null by
randomly resampling gene sets of the same cardinality for each
TF, creating random hyperedges. This preserves the individ-
ual hyperedge sizes of POU5F1, SOX2, and NANOG while
removing any coordinated targeting among them. Applying
the overlap statistic to 10, 000 resampled triads yielded a
null distribution, against which the observed OSN co-targeting
score was compared. The OSN co-targeting score exceeded
the null expectation with high significance (p = 5.99×10−4),
and was 1.863× larger than the null mean. Taken together, this
experiment demonstrates that scHyperLink does not merely as-
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Fig. 5: (a) The reconstructed GRN of the Top-15 TFs and Top-15 target
genes ranked by node degree. (b) The Top-10 predictions for the TF SPI1
and NOTCH1, each with nine true positive predictions. (c) The Top-15 TFs,
ranked by the betweenness centrality coefficient. (d) Significantly enriched
biological terms on the set of TFs found in (c) and their target genes. The
horizontal axis displays the negative log of the adjusted p-values for the terms.

sign targets to each TF independently, but captures coordinated
target sharing among TFs known to function jointly within a
regulatory module, consistent with the expected role of the
OSN triad in maintaining pluripotency. Additional results of
this analysis are presented in Supp. Table 4.

H. Inferring Tissue-Specific Regulatory Networks

Across the primary analyses reported here, the TF-gene
interaction inference task has been performed in cell-type-
specific contexts. However, certain physiological and patho-
logical processes, such as inflammation or immune responses,
involve tissue-level phenomena that emerge from coordinated
regulation across multiple cell types within a shared microen-
vironment [77]. Therefore, to evaluate how scHyperLink scales
to broader interaction contexts, such as tissue-level speci-
ficity, we gather blood tissue interactions from the hTFtarget
database [78]. As scRNA-seq expression data, we utilize the
PBMC8K dataset, which comprises various cell types such as
CD14+ monocytes, CD8 T cells, CD4 T cells, and B cells. The
data pre-processing details are described in Supp. Materials.

After training, we apply scHyperLink to reconstruct a
blood tissue-specific GRN at inference. We first analyze the
reconstructed GRN at a global scale. Using the correctly
predicted positive samples in the test set as edges and taking
the Top-15 TFs and Top-15 target genes (ranked by node

degree), Fig. 5-(a) displays a portion of the reconstructed
GRN, where orange nodes are TFs and yellow nodes are
target genes. As a global statistic of the reconstructed GRN,
we examine the betweenness centrality coefficients of each
node, a metric that identifies nodes serving as bottlenecks
in the GRN [79]. Fig. 5-(c) illustrates that most information
of the reconstructed GRN is localized in a few TFs, with
NOTCH1 having the highest score. NOTCH1 is known to
enhance B cell activation and antibody secretion [80], and
regulate peripheral T cell activation, proliferation, and cytokine
production [81], making it a highly significant regulator in
peripheral blood mononuclear cells (PBMCs). To evaluate
the biological relevance of the bottleneck TFs in Fig. 5-
(c), we consider the bottleneck TFs and their target genes
as a set and perform term enrichment analysis to extract
significant biological processes. Fig. 5-(d) displays the GO &
KEGG & Reactome [82] enriched terms and their adjusted
p-values, which are highly consistent with general PBMC
functions, such as sensing pathogens, producing cytokines, and
coordinating early immune responses.

Additionally, we analyze the reconstructed GRN at a local
scale, illustrated in Fig. 5-(b). Considering both the true
positives and the false positives, we recover the Top-10 target
prediction scores of two key TFs, NOTCH1 and SPI1, both of
which identify nine out of 10 known targets. An examination
shows that the NOTCH1-MAML1 pair is correctly predicted,
which is a well-studied interaction. NOTCH1 and MAML1
work together as part of a key regulatory complex in PBMCs.
MAML1 acts as a transcriptional coactivator that is directly
recruited by the intracellular domain of activated NOTCH1.
Once assembled into the NOTCH1–RBPJ–MAML1 complex,
MAML1 enhances transcriptional activation and promotes the
acetylation of NOTCH1 by p300, a modification that stabilizes
NOTCH1 by preventing ubiquitination [83], [84]. In the SPI1
hub, the SPI1-ISG15 is another well-studied regulatory link.
ISG15 contains a promoter region with a specific binding site
for SPI1 (PU.1), a key TF in myeloid and lymphoid differenti-
ation. SPI1 activates ISG15 by forming heterocomplexes with
immune-restricted IRFs such as IRF8 and IRF4, promoting its
expression in hematopoietic cells [85], [86].

Overall, this reconstruction of a blood tissue-specific GRN
demonstrates that scHyperLink can be applied to broader
contexts like tissue-level specificity while retaining biological
relevance in the inferred networks, and hints at potentially
novel targets yet to be experimentally validated.

VI. DISCUSSION

The technical novelties of scHyperLink center on its hy-
brid HGNN architecture that uniquely combines static prior-
informed hypergraphs with learnable dynamic hypergraphs to
capture higher-order regulatory dependencies beyond conven-
tional pairwise interactions. Unlike existing methods relying
on correlation-based adjacency measures, scHyperLink adap-
tively learns context-specific hyperedges from gene expres-
sion data while leveraging experimentally validated regulatory
knowledge, enabling comprehensive modeling of multi-way
transcriptional dependencies. Clinically, this enhanced capa-
bility to reconstruct biologically plausible and context-specific
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GRNs holds translational potential for precision medicine,
including identification of novel therapeutic targets, prediction
of drug responses based on patient-specific regulatory pro-
files, and understanding disease mechanisms through tissue-
specific regulatory perturbations. The demonstrated scalability
to tissue-level analyses and superior performance across di-
verse cell types position scHyperLink as a promising tool for
clinical genomics, where accurate GRN inference could inform
personalized treatment strategies and facilitate the discovery of
regulatory biomarkers for disease diagnosis and prognosis.

Several limitations merit consideration for enhancing the
utility of hypergraphs in GRN inference. Our static hypergraph
construction in the PHI module relies on curated experimental
interaction data to form hyperedges, providing reliable ground-
truth links for information propagation. However, such curated
resources are inherently incomplete and noisy, and they can
exhibit biases toward TFs with many validated interactions.
Conversely, TFs that are less studied often have sparse or
missing annotations, causing a degree imbalance between TFs
[87]. This imbalance can hinder effective information propa-
gation for low-degree TFs, limiting the quality of learned rep-
resentations and model performance. One particular direction
to mitigate this issue is transfer learning (as demonstrated in
Sec. V-E, where pretraining on large-scale interaction data can
provide broader TF coverage, and enhance downstream per-
formance following fine-tuning on cell–type–specific datasets.
Another complementary strategy is to incorporate sequence-
based regulatory priors, such as enhancer predictions. Ap-
proaches such as Enhancer-MDLF [88] identify cell-type-
specific enhancer regions from DNA sequences, which could
supply additional regulatory information for the PHI module
and improve the biological grounding of inferred interactions.

Our dynamic hypergraph construction requires each gene
to select and join a fixed number of TF-associated hyper-
edges. Without external regularization—such as the column-
wise variance term Lvar we employ—this scheme can lead to
imbalanced membership distributions across TFs. This may
be biologically plausible in GRN reconstruction, as cell-type-
specific datasets typically feature a small number of active TFs
[see Table I]. However, when seeking improved stability and
uniformity, beyond our own column-wise variance regulariza-
tion term that promotes uniformity, alternative dynamic hy-
pergraph learning strategies such as HSLS [89] and SPHINX
[90] can be considered. HSLS promotes smooth variation of
signals across hyperedges for balanced memberships through
regularization, and SPHINX uses k-subset sampling to ensure
each hyperedge includes exactly k members. These alternative
methods can help alleviate this imbalance. Beyond balancing
strategies, more expressive graph-learning architectures may
also strengthen DHI. The transformer-based TREE framework
[91] captures long-range dependencies through multi-head
relational attention, which could improve TF–gene interaction
modeling in our setting. The Bayesian formulation in LCAAG
[92] models link-level uncertainty and latent structural pat-
terns, and incorporating a similar Bayesian prior for hyperedge
formation could yield more reliable regulatory inferences.

The improved performance of scHyperLink in sparse

regimes can be understood through the way it models TF-
gene interactions as a hypergraph instead of a simple graph.
In scHyperLink, each TF is assigned a hyperedge that links it
to a group of potential target genes, processing relationships
collectively rather than through isolated TF-gene pairs. Thus,
information from a limited number of observed interactions
can extend to other genes connected to the same TF, yielding
more robust inference under data scarcity. Furthermore, the
asymmetric design of the hypergraph, where only TFs initiate
hyperedges, introduces a biologically plausible inductive bias
that mirrors the direction of regulation observed in real gene
networks. By constraining information flow to proceed from
TFs to genes, only biologically plausible interactions are
considered, reducing the risk of overfitting to coincidental
correlations. Together, these properties allow scHyperLink to
generalize more effectively in sparse regimes while maintain-
ing an interpretable regulatory structure.

The HGNN layers in our model rely on the conventional
formulation, with a forward-pass equation modification as
proposed in TDHNN [68], which enables hyperedge features
and node features to be used concurrently as in Eq. 23.
While effective, future work could enhance this component
by incorporating attention-based mechanisms [93] or exploring
variants like WHNN [94], which employ Wasserstein distance
to model geometric node relationships, offering a richer and
more flexible representational capacity. Additionally, other
dynamic hypergraph frameworks such as DHHNN [95] can
be utilized, which integrates hyperbolic geometry to create
dynamic hyperedges. The PHI module constructs static hy-
pergraphs from experimentally-derived TF-gene interactions,
which may be noisy, incomplete, or biased toward well-
studied regulators. This can result in sparse and potentially
misleading hypergraph structures [see Fig. 2]. A promising di-
rection would be to adopt multi-view hypergraph construction
strategies that integrate orthogonal biological data types—such
as gene ontology (GO) annotations—to group functionally
related genes into more biologically meaningful hyperedges,
following approaches similar to HGTCGRN [61].

While our method is designed with efficiency in mind,
scaling to large datasets such as whole-tissue atlases or multi-
organ expression atlases remains a challenge. Constructing
large dynamic hypergraphs with dense TF-gene relationships
incur high memory and computational costs. Model optimiza-
tion strategies and sparse training routines could facilitate
broader applicability to large-scale genomics datasets [96],
[97]. Various methods employ approximation strategies specif-
ically aimed at improving the scalability of HGNNs. For
instance, HyperGCN [98] reduces the cost of clique expan-
sion by linking each node only to two representative nodes
per hyperedge, and Ada-HGNN [99] accelerates training by
adaptively sampling neighbors to replace the standard two-step
aggregation. scHyperLink can also reduce computational costs
by distributed/data-parallel training, sparse incidence matrix
representations to cut storage costs, and gradient checkpointing
to trade compute for lower peak memory.

Our model is trained and evaluated on cell-type–specific
datasets, and we have further demonstrated a few-shot transfer
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learning setting that enables adaptation to new cell types
or conditions with limited labeled interactions. Nonetheless,
broader generalization across diverse biological contexts, such
as developmental stages or perturbation conditions, remains
an open challenge. Future extensions could build on this
foundation through domain adaptation, cross-condition, or
multi-task training frameworks [100], [101], which may allow
the model to capture both shared and context-specific regu-
latory mechanisms simultaneously. Integrating such designs
with perturbation-based single-cell datasets or developmental
atlases could further enhance robustness and interpretability
across heterogeneous settings, extending the applicability of
our approach beyond the static, cell-type–specific regime.

VII. CONCLUSION

We proposed scHyperLink, an HGNN-based model that
fuses biological prior knowledge and dynamic learnable hyper-
graphs to create refined gene representations and predict cell-
type-specific TF-gene interactions for GRN reconstruction.
By utilizing hypergraphs, scHyperLink effectively captures
higher-order interactions in gene regulation beyond standard
pairwise graph structures. Our experiments showed scHyper-
Link outperforms state-of-the-art methods in link prediction
accuracy across 14 benchmarks. Ablation studies across vary-
ing sparsity conditions validated complementary contributions
of each module to scHyperLink’s effectiveness. Interpretability
analyses indicated that learned hyperedges capture biologically
relevant information. Finally, application to tissue-scale GRN
reconstruction with human blood tissue interactions demon-
strated effective capture of important pathways and TFs.
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