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Editorial

I. INTRODUCTION

THE prevailing understanding in the field of machine
learning and deep learning (ML/DL) is that, given a high-

quality dataset, one can effectively learn data-related priors
through supervised learning. However, in medical imaging,
this assumption faces two critical challenges: 1) high-quality
training data are often scarce and 2) data are highly heteroge-
neous, stemming from different imaging scanners, protocols,
or populations at various institutions. This diversity makes it
impractical to represent the data with a single, universal prior
using traditional methods, leading to limited generalizability
in medical imaging tasks.

The recent advent of score-based generative diffusion
models has shown promise in addressing these challenges
by learning complex data distribution priors in an unsu-
pervised manner [1], [2]. The theoretical foundations of
score-based generative models provide a robust and inter-
pretable framework, suggesting their potential to overcome
the limitations associated with traditional methods in med-
ical imaging. As a result, diffusion models have gained
significant attention within the medical imaging community
[3], [4], [5], [6], [7], [8].

Following consultations with several experts in the field,
we identified the growing need for a Special Issue to spot-
light these pivotal advancements. This Special Issue of IEEE
Transactions on Medical Imaging focuses on cutting-edge
diffusion models and their applications in medical imaging.
It attracted a large interest from the scientific community;
i.e., 67 manuscript submissions, of which 20 articles were
selected for publication. Each article underwent a regular peer-
review process, typically involving two rounds of revisions,
with evaluations from between three to six experts in the field.
The following section provides an overview of the included
articles and key insights from each manuscript in the Special
Issue.

II. TOPICS OF THIS SPECIAL ISSUE

Given the immense potential of diffusion models for build-
ing capable deep learning methods, there is no surprise that
the articles in this Special Issue ranged broadly in terms
of the imaging modality and task that they tackled. Topics
of interest ranged from image reconstruction, artifact reduc-
tion, unsupervised quality assessment, segmentation, etc. The
submitted works highlight how score-based diffusion models
are shaping the future of medical imaging, providing new
pathways to improve image quality, enhance computational
efficiency, and solve longstanding clinical challenges. These

Digital Object Identifier 10.1109/TMI.2024.3464268

contributions demonstrate how diffusion models can bridge
the gap between research innovation and practical clinical
application by addressing key issues such as data sparsity,
radiation dose reduction, and diagnostic accuracy.

The pie chart in Fig. 1 summarizes how many papers
focused on a particular topic of interest. One can notice a slight
majority focus on medical image reconstruction, specifically
addressing the challenges of sparse-view and limited-angle
CT, as well as fast MRI reconstruction. The integration of
advanced techniques such as multi-frequency priors, wavelet
transforms, and data consistency terms significantly boost
reconstruction accuracy and robustness, offering solutions
to reduce radiation exposure while maintaining high image
quality. In addition, several papers explored diverse topics,
including metal artifact reduction, where diffusion models
were employed to restore degraded CT regions, and unsu-
pervised quality assessment, which introduced novel methods
to evaluate medical images without relying on ground truth
labels. Further contributions encompassed advancements in
segmentation, counterfactual generation, data augmentation,
radiotherapy planning, virtual staining in pathology, and mul-
timodal 3-D image generation. The eminent diversity of the
considered applications is a testament to the versatility of the
diffusion modeling framework. Below, we summarize the key
insights from each manuscript in the Special Issue.

III. ARTICLES INCLUDED IN THE SPECIAL ISSUE

A. Medical Image Reconstruction Using Diffusion Models

These methods focus on improving the accuracy and stabil-
ity of medical image reconstruction through the application of
diffusion models. They are particularly effective in scenarios
such as sparse-view and limited-angle CT reconstruction,
and fast MRI reconstruction. By incorporating techniques
such as multi-frequency priors, wavelet transforms, and data
consistency terms, these models not only enhance reconstruc-
tion quality and efficiency but also reduce radiation dose
and computational cost. These approaches improve diagnostic
precision and expand clinical applicability by addressing the
challenges of acquiring high-quality imaging data.

In [A1], Li et al. introduced the dual-domain collaborative
diffusion sampling (DCDS) model to enhance sparse-view
CT reconstruction. Unlike previous methods that focus exclu-
sively on either sinogram or image domains, DCDS integrates
both domains through a collaborative diffusion mechanism.
This approach improves sinogram recovery and image gen-
eration synergistically. Extensive evaluations on simulations,
phantoms, and clinical datasets showed that DCDS signifi-
cantly outperforms state-of-the-art methods.
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Fig. 1. Topics included in this Special Issue.

In [A2], Xu et al. introduced a stage-by-stage wavelet
optimization refinement diffusion (SWORD) model for sparse-
view CT reconstruction. This approach used wavelet trans-
forms to enhance the robustness of diffusion models by
addressing instability issues in the original sinogram domain.
By integrating low- and high-frequency generative models
within a unified mathematical framework and applying these
models to wavelet-decomposed components, the SWORD
model demonstrated excellent performance.

In [A3], Liu et al. proposed an unsupervised sparse-view
spectral CT reconstruction and material decomposition algo-
rithm using a multi-channel score-based generative model
(SGM). This method addresses the challenge of inaccurate
contrast agent quantification due to streaking artifacts in
sparse-view scans. The approach involves training the SGM
with multi-energy and tissue images to generate accurate
multi-energy and tissue images from sparse-view projections.
These generated images are then used in a material decom-
position algorithm to determine the distribution and content
of contrast agents. The method was validated in mouse scan-
ning experiments, demonstrating its effectiveness in reducing
radiation dose and improving quantification.

In [A4], Zhang et al. identified several limitations in
applying score-based generative models (SGMs) to limited-
angle CT (LACT) reconstruction, including the neglect of the
directional distribution of artifacts and the varying properties
of different frequency components. To address these chal-
lenges, they proposed a wavelet-inspired score-based model
(WISM), which integrates wavelet transforms to model prob-
ability densities in both the image and wavelet domains.
This method retains the directional properties of artifacts
while simplifying density modeling by decomposing them
into component-specific models. The unified sampling process,
informed by observational data, produced high-quality LACT
reconstructions, with experimental results showing superior
performance compared to existing methods.

In [A5], Wang et al. introduced the time-reversion fast-
sampling (TIFA) score-based model for LACT reconstruction.

TIFA addresses the high computational cost of traditional
score-based generative models (SGMs) by employing a rapid-
sampling strategy that includes jump sampling, time-reversion
with re-sampling, and compressed sampling. This approach
improves reconstruction quality and efficiency by reducing the
number of sampling steps. The experiments on various datasets
demonstrated that TIFA outperforms existing methods with
fewer steps, achieving high-quality reconstructions in as few
as ten steps.

In [A6], Wu et al. proposed a multi-channel optimization
generative model (MOGM) to achieve stable ultra-sparse-
view CT reconstruction. The MOGM incorporated a novel
data consistency term into the stochastic differential equation
model, relying exclusively on original data to constrain the
generative outcomes. Furthermore, an inference strategy was
developed to trace back to the ground truth, which enhanced
reconstruction stability. The rxperimental results demonstrated
that MOGM consistently outperformed alternative methods,
even when reconstructing from as few as ten and seven views.

In [A7], Chen et al. introduced PRECISION, a physics-
constrained and noise-controlled diffusion model, to enhance
the quality of material basis images and the quantitative
accuracy of elemental composition in photon counting detec-
tors in computed tomography (PCCT). This model addresses
the issues caused by imperfect noise modeling and hand-
crafted regularization in existing direct material basis image
reconstruction approaches. PRECISION learns distribution-
level regularization from ideal material basis images and
samples the optimal images under physical constraints specific
to PCCT systems and subject data, showing potential for
improved image quality and elemental composition quantifi-
cation in PCCT.

In [A8], Guan et al. introduced the correlated and
multi-frequency diffusion model (CM-DM) to improve MRI
reconstruction accuracy in highly under-sampled images.
Unlike existing methods, CM-DM effectively combines high-
frequency operators to form a multi-frequency prior, enhancing
noise reduction and accelerating convergence in the diffusion
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process. The experimental results demonstrated that CM-DM
achieved about 2 dB improvement in PSNR over state-of-the-
art methods.

In [A9], Cui et al. introduced a physics-informed diffusion
model for k-space interpolation. The approach utilizes inter-
polatable physical priors to interpolate high-frequency (HF)
k-space data from low-frequency (LF) data. By connecting
HF interpolation with the reverse heat diffusion process, a heat
diffusion model was developed to generate missing HF data
with enhanced accuracy. A k-space structural low-rank model
was also integrated as a data fidelity term, further boosting the
framework’s performance. The experimental results demon-
strated that this method significantly outperforms traditional
image-domain diffusion models.

B. Metal Artifact Reduction in CT Imaging
These methods focus on reducing metal artifacts in CT

imaging using diffusion models. Metal artifacts, caused by the
presence of metal implants, can severely distort CT images,
hindering accurate diagnosis. The diffusion models proposed
in these studies aim to address this issue by either inpaint-
ing missing sinogram data or iteratively restoring degraded
regions. By improving the handling of metal-induced distor-
tions, these approaches enhance image clarity and diagnostic
reliability.

In [A10], Karageorgos et al. proposed a denoising diffusion
probabilistic model (DDPM) for inpainting missing sinogram
data for improved metal artifact reduction (MAR). The model
was trained unconditionally, without relying on information
about metal objects, enhancing its generalizability across var-
ious types of metal implants. The DDPM-MAR technique
was evaluated on clinical CT images with virtually introduced
metal objects, demonstrating superior quality compared to
other methods. This approach shows promise in improving the
effectiveness of MAR, thereby enhancing the accuracy of CT.

In [A11], Liu et al. proposed an unsupervised MAR method
using a diffusion model. Initially, a diffusion model was
trained on CT images without metal artifacts. Subsequently,
diffusion priors were iteratively introduced in both the sino-
gram and image domains to restore the degraded regions
caused by metal artifacts. This approach outperformed existing
unsupervised methods, including those based on diffusion
models.

C. Unsupervised and Blind Image Quality Assessment
Unsupervised methods for medical imaging are essential for

scenarios where labeled data is limited or unavailable. These
studies apply diffusion models to either unsupervised model
medical images or assess their quality without the need for
explicit ground truth labels. These methods provide solutions
for tasks such as dehazing in ultrasound and blind image
quality assessment.

In [A12], Stevens et al. proposed a joint posterior sampling
framework utilizing two diffusion models for clean ultrasound
and haze distributions respectively. They introduced effective
techniques for training diffusion models on radiofrequency
ultrasound data. The proposed dehazing method proved effec-
tive in removing haze while preserving signals from weakly
reflected tissue, as demonstrated through experiments on both
in-vitro and in-vivo cardiac datasets.

In [A13], Shi et al. introduced a novel blind image quality
assessment (BIQA) metric that emulates the human visual
system’s (HVS) active inference process. It utilized a DDPM
to predict primary content and derived a dissimilarity map
to assess the relationship between distorted images and their
primary content. This multi-channel image, combining the
distorted image and dissimilarity map, was evaluated using
a transformer-based quality evaluator. The proposed method
achieved competitive performance on a low-dose CT dataset.

D. Segmentation and Image Label Pair Generation

Segmentation and image-label generation are crucial for
tasks like disease identification and treatment planning in
medical imaging. However, data scarcity, class imbalance,
and the complexity of accurately segmenting medical images
often pose significant challenges. The methods in this category
utilize diffusion models to generate high-quality image-label
pairs and improve segmentation accuracy. These approaches
enhance generalization and performance across different
datasets, especially in challenging scenarios like small object
segmentation or highly imbalanced datasets.

In [A14], Chen et al. proposed HiDiff, a hybrid diffusion
framework for medical image segmentation that integrates
discriminative and generative models. HiDiff combines a
conventional discriminative segmentor with a novel binary
Bernoulli diffusion model (BBDM) as a refiner. The segmentor
provides initial segmentation masks, which the BBDM refines
by modeling the underlying data distribution. Trained in an
alternating manner, HiDiff showed superior performance on
various segmentation tasks, including small object segmenta-
tion and generalization to new datasets, compared to state-of-
the-art methods.

In [A15], Huang et al. proposed a framework for gen-
erating diverse and balanced image-label pairs for retinal
layer segmentation in optical coherence tomography (OCT)
images. This framework initially generates varied layer masks
and subsequently creates corresponding OCT images using
two customized diffusion probabilistic models. To address
data imbalance, the approach incorporates pathological-related
conditions and utilizes a structure modeling technique to trans-
fer knowledge from less pathological to highly pathological
samples. Extensive experiments on two public datasets demon-
strated that this method produces OCT images with superior
quality and diversity, enhancing performance in downstream
segmentation tasks.

E. Counterfactual Generation and Data Augmentation

In medical imaging, data scarcity and class imbalance are
common challenges that can hinder the training of robust mod-
els. The methods in this category employ diffusion models to
generate counterfactual images and augment existing datasets,
improving model performance in downstream tasks such as
classification, localization, and disease detection. These tech-
niques are particularly valuable in scenarios where obtaining
real-world data is costly or time-consuming.

In [A16], Wang et al. proposed a score-based counterfactual
generation (SCG) framework to address data scarcity and
imbalance by creating counterfactual images from latent space.
It incorporated a learnable FuzzyBlock into the classifier to
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manage uncertainties from external physical factors. The SCG
framework showed significant improvements in both classi-
fication and lesion localization tasks, achieving an average
enhancement of 3%–5% compared to state-of-the-art methods.

In [A17], Deshpande et al. systematically evaluated the
capacity of DDPMs to learn spatial context relevant to medical
imaging. The study used stochastic context models (SCMs) to
generate training data and quantitatively evaluated DDPMs’
performance in reproducing the spatial context. The results
showed that DDPMs effectively generate contextually accu-
rate images, offering significant advantages over generative
adversarial networks (GANs) for data augmentation tasks. This
assessment provides new insights into the potential of DDPMs
for medical imaging applications.

F. Innovative Diffusion Models for Specialized
Applications

These methods introduce cutting-edge diffusion models
tailored for specific medical imaging applications, such as
radiotherapy planning, virtual staining in pathology, and mul-
timodal 3-D image generation.

In [A18], Zhang et al. proposed a distance-aware diffusion
model (DoseDiff) for accurate dose distribution prediction in
radiotherapy treatment planning. This model utilized signed
distance maps (SDMs) obtained from target and organ-at-
risk masks, incorporating these along with CT images into
a sequence of denoising steps. The proposed multi-encoder
and multi-scale fusion network (MMFNet) enhanced feature-
level information fusion between CT images and SDMs using
multi-scale and transformer-based modules. Evaluations on in-
house and public datasets showed that DoseDiff outperformed
existing methods in both quantitative performance and visual
quality.

In [A19], He et al. developed PST-Diff, a method for
generating virtual immunohistochemistry (IHC) images from
hematoxylin and eosin (HE) images using diffusion models.
PST-Diff addresses the challenges of high costs and infor-
mation loss associated with IHC by allowing simultaneous
viewing of multiple staining results from the same tissue slide.
The method incorporates an asymmetric attention mechanism
(AAM) and a latent transfer (LT) module to ensure patho-
logical consistency and reduce bias. In addition, a conditional
frequency guidance (CFG) module maintains structural con-
sistency. PST-Diff demonstrated impressive effectiveness and
generalizability in generating stable and functionally accurate
IHC images, with promise for clinical virtual staining and
pathological image analysis.

In [A20], Xu et al. proposed a method for generating high-
resolution 3-D lung CT images guided by textual information
and anatomical components. Their approach relies on a hier-
archical scheme using a modified UNet architecture to first
create low-resolution images from text and then refine these
into high-resolution volumetric data. Additional anatomical
guidance is provided through segmentation masks for vascular,
airway, and lobular structures. As evaluated by radiologists,
the proposed method demonstrated superior performance over
GAN and other diffusion-based models in preserving anatom-
ical details and texture.

IV. CONCLUSION

This Special Issue was curated to provide a unique snapshot
of the latest advances in AI-based medical imaging, with a
particular emphasis on the growing influence and potential
of diffusion models. By assembling a collection of cutting-
edge algorithms and systems built upon modern generative AI
frameworks, we aim for this issue to be a valuable resource for
the community. We also hope it will inspire future studies and
innovations in imaging methods and tools within this domain.

We believe that future of score-based generative mod-
els, especially physics-inspired diffusion models, in medical
imaging, is promising, with the potential to transform clin-
ical practice. Over the coming years, we anticipate notable
advancements in image quality, predictive accuracy, inter-
pretability, and computational efficiency, alongside broader
clinical adoption following large-scale validations. The inte-
gration of these advanced models into clinical workflows could
enable faster, higher quality imaging, even in challenging
scenarios such as low-dose or rapid imaging protocols. Ulti-
mately, these technological advances could play a pivotal role
in improving patient outcomes and setting new standards for
disease detection, monitoring, and personalized healthcare.

Before closing, we would like to extend our heartfelt thanks
to all the authors who submitted their valuable work to this
Special Issue, and to the reviewers who generously contributed
their time and expertise to provide insightful feedback on the
submissions. We also express our deepest gratitude to the
Editor-in-Chief of IEEE Transactions on Medical Imaging,
Prof. Leslie Ying, and the Managing Editor, Prof. Rutao Yao,
for giving us the opportunity to organize this Special Issue
and for their unwavering guidance and support throughout the
process.

Dong Liang, Guest Editor
Institute of Biomedical and Health Engineering
Shenzhen Institutes of Advanced Technology
Chinese Academy of Sciences
Shenzhen 518055, China
e-mail: dong.liang@siat.ac.cn

Daniel Rueckert, Guest Editor
Klinikum rechts der Isar Technical University of Munich
80333 Munich, Germany
Department of Computing Imperial College London
SW7 2AZ London, U.K.
e-mail: daniel.rueckert@tum.de

Ge Wang, Guest Editor
Biomedical Imaging Center
Rensselaer Polytechnic Institute
Troy, NY 12180 USA
e-mail: ge-wang@ieee.org



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 43, NO. 10, OCTOBER 2024 3397

Tolga Cukur, Guest Editor
Department of Electrical and Electronics Engineering
Bilkent University
06800 Ankara, Türkiye
e-mail: cukur@ee.bilkent.edu.tr

Hengyong Yu, Guest Editor
Department of Electrical and Computer Engineering
University of Massachusetts Lowell
Lowell, MA 01854 USA
e-mail: Hengyong_Yu@uml.edu

APPENDIX: RELATED ARTICLES

[A1] Z. Li et al., “Dual-domain collaborative diffusion sampling for
multi-source stationary computed tomography reconstruction,” IEEE
Trans. Med. Imag., vol. 43, no. 10, pp. 3398–3411, Oct. 2024, doi:
10.1109/TMI.2024.3420411.

[A2] K. Xu, S. Lu, B. Huang, W. Wu, and Q. Liu, “Stage-by-stage
wavelet optimization refinement diffusion model for sparse-view
CT reconstruction,” IEEE Trans. Med. Imag., vol. 43, no. 10,
pp. 3412–3424, Oct. 2024, doi: 10.1109/TMI.2024.3355455.

[A3] Y. Liu, X. Zhou, C. Wei, and Q. Xu, “Sparse-view spectral CT
reconstruction and material decomposition based on multi-channel
SGM,” IEEE Trans. Med. Imag., vol. 43, no. 10, pp. 3425–3435,
Oct. 2024, doi: 10.1109/TMI.2024.3413085.

[A4] J. Zhang, H. Mao, X. Wang, Y. Guo, and W. Wu, “Wavelet-inspired
multi-channel score-based model for limited-angle CT reconstruction,”
IEEE Trans. Med. Imag., vol. 43, no. 10, pp. 3436–3448, Oct. 2024,
doi: 10.1109/TMI.2024.3367167.

[A5] Y. Wang, Z. Li, and W. Wu, “Time-reversion fast-sampling score-
based model for limited-angle CT reconstruction,” IEEE Trans.
Med. Imag., vol. 43, no. 10, pp. 3449–3460, Oct. 2024, doi:
10.1109/TMI.2024.3418838.

[A6] W. Wu, J. Pan, Y. Wang, S. Wang, and J. Zhang, “Multi-channel
optimization generative model for stable ultra-sparse-view CT recon-
struction,” IEEE Trans. Med. Imag., vol. 43, no. 10, pp. 3461–3475,
Oct. 2024, doi: 10.1109/TMI.2024.3376414.

[A7] R. Chen, Z. Zhang, G. Quan, Y. Du, Y. Chen, and Y. Li, “PRECISION:
A physics-constrained and noise-controlled diffusion model for photon
counting computed tomography,” IEEE Trans. Med. Imag., vol. 43,
no. 10, pp. 3476–3489, Oct. 2024, doi: 10.1109/TMI.2024.3440651.

[A8] Y. Guan, C. Yu, Z. Cui, H. Zhou, and Q. Liu, “Correlated
and multi-frequency diffusion modeling for highly under-sampled
MRI reconstruction,” IEEE Trans. Med. Imag., vol. 43, no. 10,
pp. 3490–3502, Oct. 2024, doi: 10.1109/TMI.2024.3381610.

[A9] Z. Cui et al., “Physics-informed DeepMRI: K-space interpolation
meets heat diffusion,” IEEE Trans. Med. Imag., vol. 43, no. 10,
pp. 3503–3520, Oct. 2024, doi: 10.1109/TMI.2024.3462988.

[A10] G. M. Karageorgos et al., “A denoising diffusion probabilistic model
for metal artifact reduction in CT,” IEEE Trans. Med. Imag., vol. 43,
no. 10, pp. 3521–3532, Oct. 2024, doi: 10.1109/TMI.2024.3416398.

[A11] X. Liu, Y. Xie, S. Diao, S. Tan, and X. Liang, “Unsupervised CT metal
artifact reduction by plugging diffusion priors in dual domains,” IEEE
Trans. Med. Imag., vol. 43, no. 10, pp. 3533–3545, Oct. 2024, doi:
10.1109/TMI.2024.3351201.

[A12] T. S. W. Stevens, F. C. Meral, J. Yu, I. Z. Apostolakis, J.-L. Robert, and
R. J. G. Van Sloun, “Dehazing ultrasound using diffusion models,”
IEEE Trans. Med. Imag., vol. 43, no. 10, pp. 3546–3558, Oct. 2024,
doi: 10.1109/TMI.2024.3363460.

[A13] Y. Shi, W. Xia, G. Wang, and X. Mou, “Blind CT image quality assess-
ment using DDPM-derived content and transformer-based evaluator,”
IEEE Trans. Med. Imag., vol. 43, no. 10, pp. 3559–3569, Oct. 2024,
doi: 10.1109/TMI.2024.3418652.

[A14] T. Chen, C. Wang, Z. Chen, Y. Lei, and H. Shan, “HiDiff: Hybrid
diffusion framework for medical image segmentation,” IEEE Trans.
Med. Imag., vol. 43, no. 10, pp. 3570–3583, Oct. 2024, doi:
10.1109/TMI.2024.3424471.

[A15] K. Huang et al., “Diverse data generation for retinal layer segmen-
tation with potential structure modelling,” IEEE Trans. Med. Imag.,
vol. 43, no. 10, pp. 3584–3595, Oct. 2024, doi: 10.1109/TMI.2024.
3384484.

[A16] K. Wang, Z. Chen, M. Zhu, Z. Li, J. Weng, and T. Gu, “Score-based
counterfactual generation for interpretable medical image classification
and lesion localization,” IEEE Trans. Med. Imag., vol. 43, no. 10,
pp. 3596–3607, Oct. 2024, doi: 10.1109/TMI.2024.3375357.

[A17] R. Deshpande, M. Özbey, H. Li, M. A. Anastasio, and
F. J. Brooks, “Assessing the capacity of a denoising diffusion proba-
bilistic model to reproduce spatial context,” IEEE Trans. Med. Imag.,
vol. 43, no. 10, pp. 3608–3620, Oct. 2024, doi: 10.1109/TMI.2024.
3414931.

[A18] Y. Zhang, C. Li, L. Zhong, Z. Chen, W. Yang, and X. Wang, “DoseDiff:
Distance-aware diffusion model for dose prediction in radiotherapy,”
IEEE Trans. Med. Imag., vol. 43, no. 10, pp. 3621–3633, Oct. 2024,
doi: 10.1109/TMI.2024.3383423.

[A19] Y. He et al., “PST-diff: Achieving high-consistency stain transfer by
diffusion models with pathological and structural constraints,” IEEE
Trans. Med. Imag., vol. 43, no. 10, pp. 3634–3647, Oct. 2024, doi:
10.1109/TMI.2024.3430825.

[A20] Y. Xu et al., “MedSyn: Text-guided anatomy-aware synthesis of high-
fidelity 3D CT images,” IEEE Trans. Med. Imag., vol. 43, no. 10,
pp. 3648–3660, Oct. 2024, doi: 10.1109/TMI.2024.3415032.

REFERENCES
[1] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic

models,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020,
pp. 6840–6851.

[2] Y. Song et al., “Score-based generative modeling through stochastic
differential equations,” in Proc. ICLR, 2021, pp. 1–36.

[3] H. Chung and J. C. Ye, “Score-based diffusion models for
accelerated MRI,” Med. Image Anal., vol. 80, Aug. 2022,
Art. no. 102479.

[4] R. Graf et al., “Denoising diffusion-based MRI to CT image translation
enables automated spinal segmentation,” Eur. Radiol. Experim., vol. 7,
no. 1, p. 70, Nov. 2023.

[5] M. Selim et al., “DiffusionCT: Latent diffusion model for
CT image standardization,” in Proc. AMIA Annu. Symp., 2023,
p. 624.

[6] M. Özbey et al., “Unsupervised medical image translation with adver-
sarial diffusion models,” IEEE Trans. Med. Imag., vol. 42, no. 12,
pp. 3524–3539, Dec. 2023.

[7] C. Cao et al., “High-frequency space diffusion model for accelerated
MRI,” IEEE Trans. Med. Imag., vol. 43, no. 5, pp. 1853–1865,
May 2024.

[8] Z. Li, Y. Wang, J. Zhang, W. Wu, and H. Yu, “Two-and-a-half
order score-based model for solving 3D ill-posed inverse problems,”
Comput. Biol. Med., vol. 168, Jan. 2024, Art. no. 107819.

http://dx.doi.org/10.1109/TMI.2024.3420411
http://dx.doi.org/10.1109/TMI.2024.3355455
http://dx.doi.org/10.1109/TMI.2024.3413085
http://dx.doi.org/10.1109/TMI.2024.3367167
http://dx.doi.org/10.1109/TMI.2024.3418838
http://dx.doi.org/10.1109/TMI.2024.3376414
http://dx.doi.org/10.1109/TMI.2024.3440651
http://dx.doi.org/10.1109/TMI.2024.3381610
http://dx.doi.org/10.1109/TMI.2024.3462988
http://dx.doi.org/10.1109/TMI.2024.3416398
http://dx.doi.org/10.1109/TMI.2024.3351201
http://dx.doi.org/10.1109/TMI.2024.3363460
http://dx.doi.org/10.1109/TMI.2024.3418652
http://dx.doi.org/10.1109/TMI.2024.3424471
http://dx.doi.org/10.1109/TMI.2024.3384484
http://dx.doi.org/10.1109/TMI.2024.3384484
http://dx.doi.org/10.1109/TMI.2024.3384484
http://dx.doi.org/10.1109/TMI.2024.3375357
http://dx.doi.org/10.1109/TMI.2024.3414931
http://dx.doi.org/10.1109/TMI.2024.3414931
http://dx.doi.org/10.1109/TMI.2024.3414931
http://dx.doi.org/10.1109/TMI.2024.3383423
http://dx.doi.org/10.1109/TMI.2024.3430825
http://dx.doi.org/10.1109/TMI.2024.3415032

