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Preface 

The advancement of machine learning, especially deep learning, has dramatically 
transformed various domains, and medical image computing is no exception. Over 
recent years, generative models have emerged as a powerful tool, capable of syn-
thesizing high-quality medical images and augmenting the analysis, diagnosis, and 
understanding of complex medical data. This book, Generative Machine Learning 
Models in Medical Image Computing, aims to provide a comprehensive overview of 
the latest generative techniques, applications, and challenges in the field, addressing 
critical issues ranging from data augmentation to image reconstruction and disease 
modeling. 

Generative models in medical imaging hold tremendous potential to impact 
traditional imaging tasks such as segmentation, classification, and localization by 
producing synthetic data that enhances model training, helps overcome data scarcity, 
and supports various downstream applications. Unlike conventional methods, gen-
erative approaches enable a more nuanced understanding of data variations and 
complexities, including modeling rare diseases and generating patient-specific data. 
The contributions in this book showcase how these models can generate synthetic 
images across different medical modalities, including MRI, CT, ultrasound, and 
histopathology images, advancing the field of medical image synthesis and trans-
formation. 

This book is organized into several parts, each covering a significant aspect of 
generative models in medical imaging: 

Part I: Segmentation introduces innovative approaches to data synthesis for 
segmentation tasks, addressing the challenge of generating annotated datasets and 
evaluating their use in real-world scenarios. 

Part II: Detection and Classification discusses advanced generative techniques 
for disease detection and classification, exploring methods like vision-language pre-
training and synthetic data generation for training robust detection models. 

Part III: Image Super-resolution and Reconstruction focuses on how generative 
models enhance image resolution and reconstruct high-quality images from low-
resolution data, contributing to improved diagnostic accuracy and patient outcomes.

v



vi Preface

Part IV: Various Applications delves into diverse applications of generative mod-
els, including cardiac anatomy modeling, text-to-image synthesis, and anatomical 
structure synthesis, providing insights into both technical challenges and clinical 
implications. 

As editors, we are excited to bring together contributions from leading 
researchers in this field, aiming to showcase the breadth and depth of generative 
modeling techniques in medical image computing. This book serves as both an 
educational resource for newcomers and a reference for seasoned researchers, 
clinicians, and developers interested in the intersection of generative machine 
learning and medical imaging. 

We hope this volume inspires further innovation and collaboration across 
disciplines, ultimately contributing to the betterment of healthcare through com-
putational advancements. 

Birmingham, UK Le Zhang 
Sheffield, UK Chen Chen 
Oxford, UK Zeju Li 
London, UK Greg Slabaugh 
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Part I 
Segmentation



Chapter 1 
Synthesis of Annotated Data for Medical 
Image Segmentation 

Virginia Fernandez , Pedro Borges , Mark Graham , 
Walter Hugo Lopez Pinaya , Tom Vercauteren , and Jorge Cardoso 

Abstract In the past decade, the advances in deep learning technologies have 
enabled their application to medical image segmentation, showing great potential. 
Nonetheless, the scarcity of available labelled data can result in a lack of model 
generalisability. This is especially true for supervised methods requiring annotated 
data. Data augmentation can be used to partially alleviate data scarcity when training 
deep learning models. In particular, the use of deep learning-based generative 
modelling, which allows for the sampling of synthetic data from the modelled data 
distribution, has shown its potential for data augmentation in the past years. In 
this work, we address the topic of generative modelling to generate images and 
annotations, going over brainSPADE, a 2D and 3D generative model of healthy and 
pathological segmentations and corresponding multi-modal images for brain MRI, 
and how the synthetic data it produces can be applied to a range of segmentation 
tasks to mitigate the effects of data scarcity or domain shift. 

1.1 Introduction 

In the past decade, deep neural networks (DNNs) and, in particular, convolutional 
neural networks (CNNs) have revolutionised the field of medical imaging seg-
mentation, quickly becoming state-of-the art (SotA) [19], as they allow for the 
segmentation of a wide range of regions of interest in a variety of imaging modalities 
[1]. Unfortunately, these methods require large, representative datasets to be trained 
on, the lack of which results in underperforming or biased networks [19, 24], 
or networks trained on constrained tasks (e.g. one type of imaging modality). 
Whereas in computer vision, available datasets like ImageNet comprise tens of 
thousands, even millions of images, most medical imaging datasets fall behind these 
numbers by a large margin. This is because they have to be acquired with costly 
equipment that requires trained personnel, take longer to acquire and that, because 

V. Fernandez () · P. Borges · M. Graham · W. H. L. Pinaya · T. Vercauteren · J. Cardoso 
King’s College London, London, UK 
e-mail: virginia.fernandez@kcl.ac.uk 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
L. Zhang et al. (eds.), Generative Machine Learning Models in Medical Image 
Computing, https://doi.org/10.1007/978-3-031-80965-1_1
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they constitute Protected Health Information (PHI), they are subject to tight data 
regulations which makes them harder to share across institutions. Moreover, the 
process of labelling, especially in the case of segmentations, is extremely time-
consuming when done manually, which often restricts annotations to a specific task 
(e.g. tumour, multiple sclerosis lesions, etc.). 

Some techniques have been used to improve DNN models and make them more 
robust to domain shifts and more generalisable: examples are multi-task learning 
[6, 10], domain adaptation [17] or randomisation [2], either within specific tasks, 
modalities and anatomies or at the core of holistic models [33]. Another way to 
address these generalisability issues is to perform data augmentation. Initially, the 
latter was constrained to applying user-defined transformations on images (such as 
affine or contrast transformations). its platforms allowing for the randomisation and 
combination of such transforms, such as MONAI [8], these transformations remain 
a powerful tool to avoid model over-fitting. 

Despite its usefulness, this type of augmentation does not tackle some directions 
of variability that might be useful for model generalisability (e.g. motion, presence 
of pathologies etc.) or data completion (e.g. missing modalities). In recent years, this 
type of image-based augmentation has been coupled to novel methods implementing 
a more dataset-driven augmentation capable of capturing the variability of the data 
distribution; a promising way to do so is to synthesise new images using deep 
learning (DL) generative models. 

Generative models learn the input data distribution and are stochastic, thus 
providing a potential infinity of images via sampling. Unsupervised deep neural 
networks such as variational auto-encoders (VAEs), generative adversarial networks 
(GANs) and, notably, the state-of-the-art (SotA) diffusion models are examples 
of DL-based generative models that have revolutionised the computer vision and 
medical imaging deep learning fields over the past years. Examples of highly 
photorealistic generative models in computer vision are Style-GAN [27] or Stable  
Diffusion [39], based on GANs and diffusion models respectively. In medical 
imaging, numerous publications have shown the potential of these models to tackle 
data scarcity [28, 29] in various imaging modalities, tasks and anatomies, improving 
downstream algorithms [29]. 

Most SotA segmentation algorithms, like nnU-Net [20], are supervised methods, 
therefore requiring annotations. Whereas many generative models, nowadays, are 
designed with some conditioning that can constitute an annotation for, e.g. a class 
token for a classification task, in the field of segmentation, obtaining (image, 
annotation) pairs is a more challenging task because the segmentation associated 
to a potential synthetic image might not necessarily be at the user’s disposal. 

This chapter tackles synthetic data generation for brain magnetic resonance 
imaging (MRI) segmentation. It is based on our 2022 and 2024 papers “Can seg-
mentation models be trained with fully synthetically generated data?” [13] and “A 
3D Generative Model of Pathological Multi-modal MR Images and Segmentations” 
[15]. In the next section, we will cover the main relevant architectures we used 
and other relevant previous and posterior works published in the field of generative 
modelling for medical imaging.
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1.2 Related Works 

1.2.1 Main DL Generative Models and Their Use in Medical 
Imaging 

In 2014, Kingma et al. [30] proposed a deep neural network called the “variational 
auto-encoder” (VAE). In a VAE, an encoder processes the image into a latent 
space representation, which can be linear or spatial and then decoded back into the 
input image. VAEs are optmisied by maximising the evidence lower bound (ELBO), 
which results in the need to minimise the distance between reconstructed and input 
images via an L1 . or L2 . loss, and the distance between the latent space distribution 
and a prior for that latent, which, in a simplified scenario [30], can be set up to 
be a Gaussian N(0, I)., via the use of the Kullback-Leibler divergence (D KL .). The 
generative power of VAEs is constrained due to the inherent blurring caused by the 
reconstruction loss [16]. Many papers have explored variations of VAEs, to sharpen 
its results or use different priors that fit the data more accurately. 

Generative adversarial networks (GANs) were first proposed by Goodfellow 
et al. in 2016 [16]. GANs comprise two networks: a generator, which produces 
an image from a noise sample, and a discriminator, which needs to learn to 
distinguish real images from synthetic ones. GANs are trained using an adversarial 
loss, which pushes the discriminator to better classify real and synthetic images 
as such, and the generator causes the discriminator to fail to distinguish synthetic 
images from real ones. Since the first GAN implementation, numerous works 
have proposed modifications of the generator or the discriminator, particularly to 
improve the training stability of the adversarial game. An example are Patch-GAN 
discriminators [21]; which, instead of predicting whether a whole image is real or 
fake, they do it on a patch basis. GANs can also be coupled to VAEs in a VAE-
GAN architecture [32]. GANs have been widely used in computer vision, resulting 
in SotA models such as StyleGAN [26] or Pix2PixHD [21]. In medical imaging, 
they are at the core of numerous papers about synthesis tasks [22]. An example of 
GAN success is medigan, a pre-trained medical imaging GAN models library that 
can be used to augment datasets in a variety of tasks [35]. 

In [18], Ho et al. proposed a deep learning-based diffusion model, revolutionis-
ing the field of image synthesis. Diffusion models learn the input data distribution 
by adding incremental amounts of noise to an image x0 . over T time-steps and 
then learning the reverse step-by-step denoising process back to the original image. 
Although the objective can be derived using different theoretical approaches, [18] 
uses Bayes’ rule similarly to how VAEs are optimised. A U-Net architecture [40] 
predicts the noise Et . that is added between time-steps t and t − 1., which needs 
to match, via an L1 . loss, a Gaussian noise sample N(0, I).. Due to their stability 
during training and their capability to produce extremely photorealistic images, 
diffusion models are currently SotA, with notable examples being Stable Diffusion 
[39] or DALL-E 2 [38]. A disadvantage of diffusion models is that inference 
takes a long time, requiring iterating over the T time steps to produce an image.
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Alternative schedulers such as DDIM can shorten this inference time [44], even 
though the sampling time is still far from that of a GAN. Another problem with 
diffusion models, especially when applied to medical imaging, where many images 
are volumetric, is that GPU memory and computing time are required to increase 
considerably with image size. Rombach et al. [39] proposed operating a diffusion 
model in the latent space of an autoencoder network in a latent diffusion model or 
LDM. Over the last years, the potential of this type of network has been shown 
in medical imaging: RoentGEN [5] is a text-to-image diffusion model trained on 
more than 100,000 images and capable of producing diverse and high-quality X-ray 
images. Khader et al. [29] showed how diffusion models can tackle data scarcity in 
many tasks, outperforming GANs on many occasions. 

VAEs, GANs, and diffusion models are only three of the main generative models, 
but they are not the only ones. Another successful architecture with generative 
potential is transformers [47]. 

1.2.2 Semantic Conditioning 

As briefly mentioned in the introduction, synthetic data can supplement real datasets 
for downstream tasks, but corresponding labels are required for many SotA DL-
based algorithms. Conditioned generative modelling can be implemented via many 
methods, such as special normalisation blocks [12] or cross-attention [47]. This 
conditioning allows the user to guide the synthesis process so that images belong 
to specific classes or follow a continuous variable. In [37], Pinaya et al. used 
cross-attention blocks to condition brain MRI synthesis on age or ventricle size. 
X-ray synthesis is conditioned on radiological reports in the previously mentioned 
RoentGEN model [5]. Class, continuous variable, or text conditioning typically 
makes it possible to pair generated images with annotations input by the user, which 
makes it possible to train supervised DL algorithms for classification or regression 
tasks. 

Supervised segmentation requires spatial categorical or probabilistic masks to 
accompany the data. Conditioning on them is referred to as semantic conditioning. 
Because segmentations have an image format, generic image-to-image translation 
architectures, such as pix2pixHD [21] can go from segmentations to images. Image-
conditioning methods, such as concatenation, can also guide the synthesis process 
[11]. Another approach is to use special normalisation blocks: in [36], Park et 
al. proposed a semantic-specific normalisation method that yields images with 
high correspondence to the input map. This normalisation is implemented via a 
convolutional block called SPADE, which is embedded in multiple layers of a GAN. 
Generative models using SPADE allow for style and content disentanglement in 
the synthesis process and have shown potential for semantic synthesis in medical 
imaging, for example in cardiac MRI or ultrasound imaging synthesis [43, 45]. 

These methods allow for the provision of paired images and segmentations. 
Nonetheless, real segmentations are still required, which, in some cases and as
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pointed out in the introduction, can be hard to obtain as they rely on human 
annotators. In the brain, where its complex anatomy is challenging to model and 
where pathologies cover a wide range of shapes and emplacements, thus limiting 
the efficacy of pseudo-lesion synthesis methods [48], there is potential for a 
model capable of producing anatomically accurate semantic maps of healthy and 
pathological regions, along with their corresponding images. 

In this chapter, we revise the contributions from [13] and [15], namely: 

• Generation of 2D and 3D healthy and pathological brain semantic maps 
• Generation of corresponding multi-modal 2D and 3D MRI images 
• Application of synthetic dataset pairs to downstream segmentation tasks 

1.3 Methods 

Our pipelines for [13] and [15] consist of a label generator implemented via a latent 
diffusion model, and an image generator based on the SPADE VAE-GAN from [36] 
we named “brainSPADE”. The pipelines differ mainly on the spatial dimensions 
used ([13] uses a 2D approach and [15] is 3D) and the fact that, in [15], conditioning 
was incorporated in the label generator to allow for the same model to produce 
healthy labels or labels containing either tumours or white matter hyperintensities 
(WMH). 

1.3.1 Data 

Subsets of the Southall and Brent Revisited (SABRE) V3 datasets [23], Alzheimer’s 
Neuroimaging Disease Initiative (ADNI)1 and Brain Tumour Segmentation (BraTS) 
2021 challenge [34] were used to train the models in both works. For testing, a 
set of unseen sites from BraTS we will name “BraTS test .” was used, along with 
subsets of the Open Access Series of Imaging Studies (OASIS) [31] and the Autism 
Brain Imaging Data Exchange (ABIDE) [9] datasets. Images were registered to 
the ICBM T1 1mm isotropic template using ANTsPy (https://github.com/ANTsX/ 
ANTsPy). Probabilistic labels of cerebrospinal fluid (CSF), grey matter (GM), white 
matter (WM), deep grey matter (DGM) and brainstem (BT) were obtained using 
GIF [3]. For SABRE and ADNI, manually labelled WMH labels were provided 
along with the datasets; similarly, labels of non-enhancing tumour core (NE

1 The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, positron 
emission tomography (PET), other biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progression of mild cognitive impairment (MCI) and 
early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org. 

https://github.com/ANTsX/ANTsPy
https://github.com/ANTsX/ANTsPy
https://github.com/ANTsX/ANTsPy
https://github.com/ANTsX/ANTsPy
https://github.com/ANTsX/ANTsPy
www.adni-info.org
www.adni-info.org
www.adni-info.org
www.adni-info.org
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Table 1.1 Summary of the datasets used in both 2D (second column) and 3D papers (third and 
fourth columns). Spatial resolution and used lesions are provided, as well as the modalities and 
number of training and test subjects used in the different publications. N/A: dataset not used 

3D 

2D 1 mm3 2 mm3 

Resolution 192 × 256. 160 × 176 × 112. 96 × 128 × 96. 

Lesions Oedema, tumour WMH, oedema, NE tumour, GD-tumour 

Skull-stripped Yes Yes Yes 

SABRE T1, FLAIR T1, FLAIR, T2 T1, FLAIR, T2 

Training: 200 Training: 630 Training: 630 

Test: 25 Test: 30 Test: 30 

ADNI T1, FLAIR T1, FLAIR T1, FLAIR 

Training: 38a Training: 66a Training: 66a 

Test: N/A N/A N/A 

BRATS T1, FLAIR T1, FLAIR, T2 T1, FLAIR, T2 

Training: 128 Training: 103 Training: 103 

Test: 30+5 Test: 30 Test: 30 

ABIDE (“near-OoD”) T1 N/A N/A 

Test: 25+5 

OASIS (“far-OoD”) FLAIR N/A N/A 

Test: 25+5 
a 

ADNI was used to train the image generators, but not the label generators 

tumour), peritumoral oedema (oedema) and GD-enhancing (GD-tumour) tumour 
were provided with BraTS. The last two layers were merged in [13] and left separate 
in [15]. The healthy labels were overlaid with the lesions when available. Since 
BraTS images are skull-stripped, we performed skull-stripping on the other images 
during training to ensure consistent model behaviour. Table 1.1 summarises the 
resolutions, lesions, number of subjects per dataset and modalities used. 

For the 2D paper, [13], 2D axial slices were taken from all datasets. The label 
generator of healthy maps was trained on around 7000 192 × 256. slices from 
SABRE, whereas the label generator of semantic maps, including tumours, was 
trained on around 8000 BraTS slices. The image generator was trained on around 
3000 segmentation slices and their corresponding images from ADNI, BraTS and 
SABRE, with an even distribution between the three datasets. 

For the 3D paper [15], 2 mm3 and 1 mm3 isotropic volumes were used to train 
two different brainSPADE (label+image generator) models. 2 mm3 isotropic 96 ×
128 × 96. volumes were obtained via resampling. For the 1mm3 sets, volumes had 
to be cropped to fit into GPU, resulting in 160 × 176 × 112. volumes.
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Fig. 1.1 Architecture of brainSPADE model, with highlighted differences between 2D and 3D, 
and training and inference pathways 

1.3.2 brainSPADE Model 

A diagram depicting the main brainSPADE pipeline, along with the difference 
between the 2022 2D (brainSPADE2D) and 2024 3D (brainSPADE3D) versions, 
is depicted in Fig. 1.1. brainSPADE consists of a latent diffusion model that 
synthesises semantic maps and an image generator that produces images matching 
the content of the input semantic map and the contrast of the input style image. 

1.3.2.1 Label Generator 

The label generator is a latent diffusion model comprising a spatial VAE that 
encodes the images into a latent space and then reconstructs it. A diffusion model 
operates within this latent space. These are trained in two stages. 

For the spatial VAE, the 2D and 3D models differ in their number of downsam-
plings, resulting in latent spaces of 3×48×64., 8×24×32×24. and 8×20×22×14. 

respectively (the first element being the number of latent channels). Given a 2D or 
3D input segmentation map s, the network reconstructs it into ŝ . and is trained via 
the following loss: 

. LV AE = λFLFL(s, ŝ) + λadvL2(D(ŝ), 1) + λKLDKL(zs,N(0, I))

+ λpercL2(P(s),P( ˆs)) (1.1)
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where FL  is a focal reconstruction loss, L2 . is an L2 loss, D. is a Patch-GAN [21] 
discriminator, 1. being a tensor of ones of the same shape as the output, DKL . is the 
Kullback-Leibler divergence bringing the VAE latent space representation zs . to a 
Gaussian N(0, (I )). [30], and P. is the backbone of a network used to calculate the 
perceptual loss (note that P. outputs a series of intermediate features). VGG-19 was 
used for the 2022 2D model, whereas MED3D [6], a 3D network trained on medical 
images, was used for the 3D models. The losses were adjusted with empirically-
adjusted weights λ.. 

After training the spatial VAE, the diffusion model Dm . is trained in a second 
stage. It is based on the one proposed in [39] and is implemented via a U-Net 
backbone, which is trained by predicting, for a specific time step t , the added noise 
between t and t − 1., and optimising the following loss LDM .: 

.LDM = ||Dm(
/

αtx0 + /
1 − αtEt , t) − Et ||2 (1.2) 

where x0 . is the input latent2 Et . is a N(0, I). sample, and αt =  l lt
i=1 1 − βt ., 

with βt . being the variance added between time step t − 1. and t [18]. Whereas 
in the 2D models, two different label generators were trained to generate (1) 
healthy segmentation maps (CSF, GM, WM, DGM, BT) and (2) segmentation maps 
including tumour layers (CSF, GM, WM, DGM, BT + tumour); the 3D work used 
cross-attention conditioning to control which lesions were present in the generated 
semantic volumes, resulting in a single label generator. This conditioning takes in 
an additional argument dcjl . per subject j and lesion type l (WMH, NE tumour, 
GD-tumour and oedema):

.dcjl =
EN

n=1 sjln

maxj

EN
n=1 sjln

(1.3) 

where sjl . is the semantic map corresponding to that subject and lesion, and N is the 
number of voxels and sjln . is a specific voxel in the map. 

1.3.2.2 Image Generator 

The image generator is based on the SPADE VAE-GAN network [36]. The input to 
the VAE encoder is a 2D image slice containing the desired output contrast. This 
slice is encoded into a linear latent vector, or “style code”, which is then decoded 
into an image. Each decoder comprises a convolutional block that uses a SPADE 
normalisation block, which takes in the activations and the input semantic map, 
resized to match the shape of the activations.

2 In the case of the 1mm3 model, the latent space had to be padded with zeros so that it is divisible 
by 2N D ., where N  D . is the number of downsamplings in the U-Net, resulting in a latent space of 
8 × 24 × 24 × 16.. 
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Although it is technically possible to use unpaired semantic maps and style slices, 
making SPADE able to disentangle style and content, it is done implicitly during 
training, as nothing prevents the encoder from retaining semantic information. To 
enforce disentanglement, [13] proposes to use unpaired styles and segmentations 
during training. Both in brainSPADE2D and brainSPADE3D, the encoder network 
is a 2D network taking in axial and sagittal slices, respectively, retrieved from the 
same subject from which the training (semantic map, ground truth) pair is. On the 
other hand, to make sure slices belonging to the same dataset and modality cluster 
together (and not, for instance, slices belonging to e.g. the same anatomical region), 
thereby aligning with the MRI contrast characteristics of the data, we implemented 
a “modality and dataset discriminator loss” Lmod−dat . [13]: 

.Lmod−dat = λmodBCE(C(î), modi) + λdatBCE(C(î), dati) (1.4) 

where î . is the image generated from semantic map si . and input style image is ., BCE 
is the binary cross-entropy loss, λmod . and λdat . are loss weights and modi . and dati . 

are the one-hot encoded modality (T1 or FLAIR—and T2 in the case of [15]) and 
dataset (SABRE, BraTS or ADNI) of the input style image. Operator C. is a two-tail 
classifier using the backbone of Densenet-121, that classifies both the modality and 
the dataset of the input 2D image. C. was pre-trained on the training dataset, yielding 
an accuracy of ∼90%. for modality and ∼80%. for dataset. 

In addition, a contrastive loss [7], named “slice consistency loss,” is added in 
[13], and is implemented to enforce that the style codes remain invariant to spatial 
deformations, to ensure that only the contrast is picked up by the encoder: 

.Lcont = cosim(E(is),E(T(is))) (1.5) 

where cosim is the cosine similarity, E. is the style encoder, and T. is a random affine 
augmentation transform (including rotation, shearing and scaling). 

The network is trained on these two losses, in addition to the original losses from 
[36], namely adversarial loss Ladv ., perceptual loss Lperc ., KLD loss  LKLD . and the 
discriminator regulariser feature loss Lf eat ., bringing the total loss LIG . to: 

.LIG = λadvLadv+λf eatLf eat+λKLDLKLD+λpercLperc + λcontLcont . (1.6) 

+λmod−datLmod−dat (1.7) 

where Ladv . =
END

d=1 Hinge(Dd(î), 1)., with Hinge being the Hinge criterion [36] 
and Di, i ∈ {1, . . . , ND}. being ND . multi-scale Patch-GAN discriminators; Lf eat . 

=
END

d=1

EF
f =1L2(Df

d (î),Df
d (i))., with fj , j ∈ {1, . . . , F }. being intermediate 

features of each discriminator; LKLD . = DKL(E(is),N(0, I))., the KL divergence 
between the result from forwarding the style slice is . through the VAE encoder E.; and 
Lperc = L2(P(i),P(î))., a perceptual loss identical to that from Eq. 1.1 using VGG-
19. Weights λ. for each loss are adjusted empirically. Note that, whereas Lmod−dat .
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proved effective in [13], it was discarded in [15] as no significant improvement was 
observed with it, keeping λmod = λdat = 0. in the 3D approach. 

We also replaced categorical semantic maps by probabilistic maps, where each 
voxel i has a depth of S semantic channels, and

ES
c=1 ic = 1.0., something that has 

been linked to increased image sharpness [41]. 
Due to the extensive memory requirements of 3D modelling for the 1mm3 3D 

model, a patch-based approach was used for the image generator: patches of size 
64 in the axial dimension were drawn from the semantic volumes during training. 
A sliding-window approach obtained 160 × 176 × 112. images in inference. Further 
implementation details can be checked in each paper and their corresponding 
codebases.3 

1.3.2.3 Inference 

On inference, the only real data required by brainSPADE is the input style slice 
for the image generator, which is the desired contrast of the output image. On 
the 3D model, the lesion conditioning dcjl . can be specified or randomised to 
produce a semantic map with a specific phenotype. The lesion map is generated 
first and then forwarded, along with the style slice, to the image generator, 
which produces the images (or patches in the case of the 1 mm3 3D model). The 
inference pathway is shown in Fig. 1.1. Example images from brainSPADE2D 
and brainSPADE3D can be seen in Figs. 1.2 and 1.3 (figure drawn from [15]). 
The incorporation of conditioning in brainSPADE3D not only allows to generate 
different phenotypes with the same semantic model; Fig. 1.3 shows that the label 
generator can extrapolate to unseen phenotypes (WMH + tumour). 

1.3.3 Segmentation Experiments 

The main goal of a semantic map and image generator is to help train downstream 
segmentation models, either by supplementing real datasets or training only on 
synthetic data. For this, we used nnU-Net [20] (“2D”, nnU-Net v1 in [13], “3D-
full resolution”, nnU-Net v2 in [15]), an automated, SotA segmentation method 
that ensures reproducibility. Only the number of epochs was modified to ensure 
convergence. Dice score was used to evaluate the performance of every model, 
in addition to accuracy, precision and recall for the binary segmentation tasks. 
Statistical significance was assessed via two-sided independent t-tests or signed 
Wilcoxon tests. The metrics calculation of 2D and 3D segmentation models was

3 Code is available at https://github.com/virginiafdez/brainSPADE_RELEASE (2022 paper) and 
https://github.com/virginiafdez/brainSPADE3D_rel (2024 paper). 

https://github.com/virginiafdez/brainSPADE_RELEASE
https://github.com/virginiafdez/brainSPADE_RELEASE
https://github.com/virginiafdez/brainSPADE_RELEASE
https://github.com/virginiafdez/brainSPADE_RELEASE
https://github.com/virginiafdez/brainSPADE_RELEASE
https://github.com/virginiafdez/brainSPADE3D_rel
https://github.com/virginiafdez/brainSPADE3D_rel
https://github.com/virginiafdez/brainSPADE3D_rel
https://github.com/virginiafdez/brainSPADE3D_rel
https://github.com/virginiafdez/brainSPADE3D_rel
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Fig. 1.2 Example label, T1 and FLAIR slices generated using the 2022 2D brainSPADE model. 
The top case used the healthy label generator, whereas the bottom one used the tumour label 
generator 

always performed in 3D; for 2D networks, test volumes are forwarded slice by 
slice, and the resulting segmentations are reassembled back into 3D predictions. 
Computing the Dice in 3D allows calculated Dice scores not to be affected by a 
potential low ground truth voxel count of the regions to segment on some slices. 

1.4 Experiments and Results 

In both works, the central experiments focus on the following questions: (1) can 
synthetic data be used to supplement existing datasets to train deep learning-based 
MRI segmentation algorithms? (2) can synthetic data be used as a standalone train-
ing set in the same tasks? In this chapter, we focus on segmentation experiments. 
Additional quality metrics computation for labels and images (such as MSE or 
SSIM), are available in the papers [13, 15].
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Fig. 1.3 Example axial, coronal and sagittal label, T1, FLAIR and T2 slices from images 
generated using the 3D 1mm3 and 2mm3 isotropic brainSPADE3D models. Two examples are 
shown for each case; the left cases were generated using > 0. tumour and WMH conditioning, 
whereas the right cases used only WMH conditioning. This figure was originally published in [15] 

1.4.1 Segmenting Healthy Regions with Synthetic Data 

brainSPADE2D and brainSPADE3D compare the performances of a nnU-Net 
segmentation model trained on real T1 images Rid . to that of a model trained on 
synthetic T1 images Sid ., to segment healthy regions (CSF, GM, WM—and DGM 
and brainstem for brainSPADE3D models). For the 2D model (brainSPADE2D), 
∼.7000 images (equivalent to the slices from SABRE used to train it) were used 

to train Rid ., whereas 20,000 synthetic T1 images and labels were used to train Sid .. 
In the case of both 3D models, 500 real and synthetic label and T1 volume pairs 
were used to train Rid . and Sid ., respectively. The resulting models were tested on 
25 (brainSPADE2D) and 30 (brainSPADE3D) T1 SABRE volumes (see Sect. 1.3.3 
for further information on testing). Results are reported in Table 1.2. Rid . models 
worked significantly better in all three cases. In most cases, though, a comparable 
performance is achieved by models trained solely on synthetic data, showcasing 
the potential of synthetic data. The main difference is found for the deep grey
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Table 1.2 Results obtained on the segmentation of CSF, GM, WM, DGM and brainstem for 
models trained on real 2D, 1mm3 and 2mm3 isotropic 3D T1 volumes and labels Rid . and synthetic 
counterparts Sid .. For each Rid .-Sid . pair, * indicates significantly better performance 

CSF GM WM DGM Brainstem 

2D modela Rid . 0.9530.008 .* 0.9520.006 .* 0.9650.005 .* N/A N/A 

Sid . 0.9190.023 . 0.9250.008 . 0.9450.006 . N/A N/A 

3D model (1 mm3)b Rid . 0.9570.005 .* 0.9590.003 .* 0.9710.003 .* 0.8750.015 .* 0.9580.021 .* 

Sid . 0.8840.014 . 0.9120.009 . 0.9360.005 . 0.6840.034 . 0.8740.036 . 

3D model (2 mm3)b Rid . 0.9470.057 .* 0.9580.046 .* 0.9680.039 .* 0.8870.065 .* 0.9620.024 .* 

Sid . 0.8690.057 . 0.8950.052 . 0.9310.047 . 0.7030.100 . 0.9050.025 . 
a 

Values obtained from [13] (table 1)  
b 

Values obtained from [15] (table 3)  

matter in the case of the 3D models (in the 2022 brainSPADE paper, DGM was 
included under the grey matter category). DGM is, indeed, an anatomically complex 
structure, with intensities spanning the WM-GM range. Whereas the probabilistic 
maps used to train the generative models take this uncertainty into account, splitting 
the label value into WM, GM and DGM channels, nnU-Net takes in categoricals 
(obtained by giving the voxel the value of the most probable label), which can 
result in noisy ground truth labels that differ from the synthetic ones, which have 
undergone smoothing due to the presence of a VAE within the label generator. 

1.4.2 Addressing Out-of-Distribution Data with Synthetic 
Image and Label Pairs 

This experiment was only performed in the 2022 brainSPADE2D work [13]. 
It attempts to study whether, given that SPADE is designed to extract contrast 
information from any given image, it can help bridge the gap between test sets 
belonging to a different distribution from that available for training (so-called “in-
distribution” or “id”). In this task, 25 T1 volumes from the ABIDE dataset and 
25 FLAIR volumes from the OASIS dataset (see Table 1.1), both unseen by the 
generative model, are used. The acquisition modality is the same in the first case, 
making it a “near” out-of-distribution (“n-OD”). In contrast, we are dealing with 
an entirely different modality and dataset in the second, so we consider it a “far” 
out-of-distribution (“f-OD”). 

Two synthetic datasets of 20,000 labels and respective T1 and FLAIR slices 
are generated using brainSPADE, and random slices from the “f-OD” and “n-
OD” test sets as input styles to the image generator encoder. These datasets train 
segmentation models Sn−OD .and Sf −OD . to segment CSF, WM and GM. Aside from 
the 25 test subjects available for each case, the remaining subjects (see Table 1.1) 
were used to train reference models Rn−OD . and Rf −OD .. We tested all trained 
models, and the in-distribution models Rid . and Sid . from Sect. 1.4.1, on the 25 test
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Table 1.3 Dice scores obtained on near (n-OD) and far (f-OD) out-of-distribution data by models 
trained on real in-distribution data from Sect. 1.4.1 Rid . and Sid . and models trained on synthetic 
and real n-OD and f-OD data. * indicates significantly better performance (p-value <. 0.05) and 
** indicates significantly better performance than every model besides R∗−OD . 

n-OD f-OD 

Model CSF GM WM CSF GM WM 

Rid . 0.7820.002 . 0.7740.019 . 0.6520.036 . 0.7110.042 . 0.5310.033 . 0.4470.180 . 

Sid . 0.8250.023 . 0.8810.008 . 0.8730.007 . 0.7360.054 . 0.5920.033 . 0.4330.178 . 

S∗−OD . 0.8410.017 .** 0.8950.010 .** 0.8910.007 .** 0.7920.034 .** 0.7840.027 .** 0.8090.031 .** 

R∗−OD . 0.9140.022 .* 0.9710.011 .* 0.9730.009 .* 0.8300.050 .* 0.8260.047 .* 0.8620.038 .* 

volumes from each dataset. Results, collected from table 2 in [13], are available 
in Table 1.3. Whereas the reference models trained on real out-of-distribution 
data R∗−OD . perform better than any other, models Sn−OD . and Sf −OD . (S∗−OD .) 
perform significantly better than segmentation models trained on synthetic or real 
in-distribution data, showcasing the potential of brainSPADE2D to address domain 
shift. 

1.4.3 Lesion Segmentation 

Unlike neurotypical tissues like CSF, white or grey matter, brain lesions have more 
uncertain locations, shape and texture across subjects. Therefore, the potential for 
synthetic data is greater in this case, as it can fill the gaps within existing lesion 
datasets. The 2022 paper explores this in the context of tumour segmentation 
by combining a small dataset containing real lesions and manually segmented 
labels with a synthetic one. The 2024 paper addresses the benefits of generative 
models capable of extrapolating to unseen phenotypes to make models robust to the 
presence of unexpected lesions. 

1.4.3.1 Tumour Segmentation Using Synthetic Data (2D) 

This experiment from [13] addresses binary tumour segmentation when little data 
is available. A model Rles . is trained on five subjects—1064 2D T1, FLAIR and 
tumour masks triplets—from the test set from BraTS, BraTS test . (see Sect. 1.3.1). 
On the other hand, 20,000 synthetic T1, FLAIR and label triplets are generated 
using slices from BraTS test . as style. These are used to train model Sles .. The real 
and synthetic datasets are combined together and used to train hybrid model Hles .. 
The models were tested on 30 BraTS test . subjects, resulting in Dice, precision and 
recall measures available in the boxplots from Fig. 1.4. Whereas the model trained 
on synthetic data achieved lower performance overall than the model trained on
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Fig. 1.4 Dice scores, precision and recall values obtained on the test set for Hles ., Rles . and Sles . 
segmentation models on binary tumour segmentation. The values used for this plot are taken from 
table 3 in [13] 

a small real dataset, Hles . performed significantly better than every other model, 
showcasing the benefits of adding synthetic data to a small, labelled dataset. 

1.4.3.2 WMH Segmentation in the Presence of Tumours 

The 2024 brainSPADE3D paper shows that, when a model is trained on curated data 
containing only the lesion of interest (in this example, WMH), segmentation models 
fail when presented with test images that contain other lesions with overlapping 
features, such as similar intensities (e.g. peritumoral oedema). To show this, due to 
the absence of ground truth WMH masks in BraTS test ., a metric accounting for the 
tumour voxels mislabeled as WMH by the model, FPtumour . is proposed: 

.FPtum = Nstum∩spred−wmh

Nstum

(1.8) 

where stum . is the ground truth tumour mask, spred−wmh . is the predicted WMH 
mask, Nstum∩spred−wmh

. is the number of voxels in the intersection between the two, 
and Nstum . is the number of tumour voxels. 

As evidenced by Fig. 1.6 (which values have been extracted from table 4 in [15]) 
and visual examples in Fig. 1.5, a model trained on 500 real FLAIR volumes from 
SABRE, and corresponding WMH lesion segmentations, MR100S0 ., achieves a Dice 
of 0.728. in a hold-out test of 30 SABRE volumes, as well as good precision and 
recall values. Nonetheless, when tested on BraTS test ., FP  tum . is 0.325, showing a 
considerable mislabelling of tumours as WMH. As discussed in Sect. 1.3.2.3, the  
3D label generators make it possible to extrapolate to unseen phenotypes (WMH 
+ tumours). Using this feature, a synthetic dataset combining both lesions can 
be generated, resulting in 500 FLAIR volumes containing tumours and WMH, 
and corresponding WMH segmentations. When testing a model trained on this 
dataset, SMR0S100 ., FP  tum . decreases to 0.001, as can be seen in Fig. 1.6 (which 
values have been extracted from table 4 in [15]). However, as discussed in the 
previous experiment, an under-segmentation of WMH leads to a significant drop
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Fig. 1.5 This figure was originally published in [15] (except for the name of models, which 
have been changed for consistency across the chapter). The top row shows predictions made for 
BraTS test .. Note that the ground truth here depicts the tumour mask, which should not be segmented. 
The bottom row shows predictions made for SABRE. From left to right, the percentage of synthetic 
data increases, except for the last column, which shows results for model R 100 .S 0 .*, trained on real 
BraTS and SABRE subjects. The values used to plot this graph were taken from table 4 in [15] 

Fig. 1.6 Dice scores, 
precisions, recalls and FP tum . 
values obtained using 
different proportions of real 
and synthetic datasets. 
R100S0* refers to the model 
trained on real SABRE and 
BraTS volumes (leaving the 
WMH segmentations empty 
for BraTS) 

in the Dice score to 0.362. Combination of both datasets, though, using different 
percentages, leads to a good compromise, resulting in high Dice scores and FP tum . 

values significantly lower than those obtained by MR100S0 .. With only 5% of real 
data within the dataset, the Dice goes up to 0.642, keeping FP tum . under 0.03. 
This experiment also shows that training a model on a set of real BraTS volumes 
and empty labels, along with the SABRE volumes and their WMH segmentations, 
results in a model that associates BraTS contrast or the presence of tumours to an 
absence of WMH, which is not correct, emphasizing on the need for synthetic data 
in these scenarios. This last model achieves good Dice and FP tum . metrics, but visual 
examples from Fig. 1.5 show that segmentation is failing for this model, labelled 
“R100S0*” in the figures.
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1.5 Discussion 

brainSPADE is an example of how generative models can provide a variety of anno-
tations and corresponding multi-modal images, which can be used to supplement or 
replace real datasets, maintaining comparable performance to them. brainSPADE2D 
[13] proposed a 2D model and showed that synthetic data could address domain shift 
and alleviate notably scarce datasets in the context of binary tumour segmentation. 
brainSPADE3D [15] made the model 3D, enabling, conditioning on multiple 
lesions, allowing the model to extrapolate to unseen data. Whereas a loss of fidelity 
is evidenced in 3D by comparing the images from Figs. 1.3 and 1.2, likely due to 
the increased computational cost and reduction of data availability when going from 
slices to full models, 3D modelling allows to condition the label generation process 
on more anatomically meaningful variables, such as the presence of lesions and their 
size, age or ventricular size, as shown by Pinaya et al. in [37]. 

The problem of image fidelity and loss of detail in 3D can be mitigated using 
more extensive datasets and models with more capacity [25]. In the previously cited 
example, the proposed high-resolution generative model was trained on the UK 
BIOBANK, a dataset encompassing 100,000 images, whereas brainSPADE3D was 
trained with 100 times less. More recent publications, such as the work by Khader 
et al. [29], show how generative models can generate high-fidelity 3D images in 
various anatomical regions and imaging modalities. 

The boom of diffusion models in the past year has increased publications that 
apply generative models in medical imaging. Recently published works have shown 
that these models can promisingly produce labels and images simultaneously. The 
authors use diffusion models in [42] to produce polyp segmentation masks and 
corresponding endoscopic images. Likewise, Usman Akbar et al. [46] apply the 
same approach to BraTS images, generating multi-modal images and corresponding 
tumour segmentations. In a comprehensive study involving multiple segmentation 
baselines and generative models, the authors show that synthetic images can 
improve the performance of segmentation models and replace real data without 
severely compromising performance. Although these works remain constrained to 
a specific task, they show how combining images and labels can alleviate data 
scarcity in medical image segmentation. Our work shows how making generative 
models encompass more data, including different phenotypes or semantic regions, 
can further increase the generalisability of DL-based generative models. 

An advantage of synthetic datasets and generative models is that, theoretically, 
they do not hold sensitive information, and thus, they can be shared, breaching the 
silos discussed in the introduction. However, the question of whether this is true has 
also been addressed by numerous works in the past few years; diffusion models, 
for instance, are more prone to memorise the training data distribution than their 
GAN counterparts [4], thus being more at risk of breaching the privacy of training 
datasets. Progress in the field of generative modelling should be accompanied by 
an assessment of how privacy-preserving these models are, including, if possible, 
solutions to prevent memorisation [4, 14].
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1.6 Conclusion 

In this chapter, we have outlined the potential of deep learning-based generative 
models to perform dataset-level data augmentation and address data scarcity in the 
context of medical imaging segmentation, mainly when these models can generate 
annotations to go along with the data. As an example, we discuss brainSPADE, 
a two-stage label and multi-modal image generator of healthy and pathological 
regions, first implemented in 2D in [13], then in 3D [15]. Through the experiments 
proposed in the papers we covered, we have shown how synthetic data can be used to 
train segmentation models or support small real datasets, reinforcing the potential 
of generative models. We hope that the work and ideas in this chapter shed some 
light on current state-of-the-art methods in this rapidly evolving field while paving 
the way for further developments. 
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Chapter 2 
Diffusion Models for Histopathological 
Image Generation 

Aman Shrivastava and P. Thomas Fletcher 

Abstract Diffusion models have revolutionized artificial intelligence with their 
ability to generate unprecedentedly realistic imagery. This chapter explores the 
application of diffusion models for generating histopathological images, and their 
potential to address issues with limited high-quality and annotated pathology 
datasets. It highlights how diffusion models, with their iterative denoising process, 
create realistic and diverse synthetic images that can be conditioned on a semantic 
mask of nuclei locations. These models improve the diversity of the data set, 
support robust training for diagnostic algorithms, and mitigate the need for extensive 
annotated medical data. By examining foundational principles and recent advances, 
this chapter demonstrates the potential of diffusion models to improve diagnostic 
accuracy, assist pathologists, and transform the field of histopathology. Additionally, 
the chapter introduces a first-of-its-kind nuclei-aware semantic tissue generation 
framework (NASDM) which can synthesize realistic tissue samples given a seman-
tic instance mask of up to six different nuclei types, enabling pixel-perfect nuclei 
localization in generated samples. 

2.1 Introduction 

The advent of deep learning has revolutionized numerous fields, and histopathology 
is no exception. Histopathology is dependent on biopsies stained with hematoxylin 
and eosin (H&E) for microscopic inspection to identify visual evidence of diseases. 
Hematoxylin exhibits a deep blue-purple color, and acidic structures such as DNA 
in cell nuclei are stained by it. Alternatively, eosin is red-pink, and nonspecific 
proteins in the cytoplasm and the stromal matrix are stained by it. Highlighted tissue 
characteristics are then examined by pathologists to diagnose diseases, including 
different cancers. Therefore, the correct diagnosis depends on the pathologist’s 
training and prior exposure to a wide variety of disease subtypes [23]. One of 
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the primary challenges is the scarcity of certain disease subtypes, which makes 
visual identification difficult and dependent on the pathologist’s exposure to a wide 
variety of disease presentations. This has spurred interest in the development of 
computational methods to aid and enhance diagnostic accuracy. 

In recent years, generative models, particularly diffusion models, have emerged 
as powerful tools in the realm of image generation. These models have shown 
remarkable success in generating realistic images across various domains. In the 
context of histopathology, diffusion models offer a promising avenue to address 
some of the inherent challenges. Histopathological images with specific character-
istics, such as visual patterns that identify rare cancer subtypes, can be generated 
by generative models [5]. As such, generative models can be sampled to emphasize 
each disease subtype equally and more balanced datasets can be generated, thus 
preventing dataset biases from being amplified by the models [8]. The pedagogy, 
trustworthiness, generalization, and coverage of disease diagnosis in the field of 
histology can be improved by generative models by aiding both deep learning 
models and human pathologists. Privacy concerns surrounding medical data sharing 
can also be addressed by synthetic datasets. Further value is added to the proposition 
by conditional generation of annotated data, since tremendous time, labor, and 
training costs are involved in labeling medical images. Extraordinary success in the 
conditional and unconditional generation of real-world images has been achieved 
recently by denoising diffusion probabilistic models (DDPMs) [4, 10]. Diffusion 
models operate by iteratively refining a noisy image until a high-fidelity, realistic 
image is produced. This process, known as denoising, is particularly suited for the 
complexities of histopathological image generation, where fine details and subtle 
variations are critical. 

This chapter delves into the application of diffusion models for histopathological 
image generation. The chapter begins by exploring the foundational principles of 
diffusion models and their relevance to medical imaging. In addition, through a 
combination of theoretical insights and practical examples, this chapter aims to 
provide a comprehensive understanding of the transformative impact of diffusion 
models in histopathological image generation. The chapter demonstrates how the 
recently discovered capabilities of DDPMs can be leveraged to design a first-of-
its-kind nuclei-aware semantic diffusion model (NASDM) [19] that can generate 
realistic tissue patches given a semantic mask comprising multiple nuclei types. 
NASDM is trained on the Lizard dataset [7] consisting of colon histology images 
and achieves state-of-the-art generation capabilities, validated through extensive 
ablative, qualitative and quantitative analyzes to establish the proficiency of the 
framework on the histopathology generation task. 

2.2 Denoising Diffusion Probabilistic Models (DDPMs) 

Denoising diffusion probabilistic models (DDPMs) [10] represent a fairly recent 
and significant advance in generative modeling, harnessing a sequential denoising
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process inspired by principles of non-equilibrium thermodynamics to synthesize 
high-fidelity data. A DDPM comprises of a forward diffusion process that iteratively 
perturbs data with Gaussian noise, transforming it into a tractable noise distribution 
through a Markov chain of latent variables. The reverse diffusion process, which is 
the key innovation of DDPMs, involves training a neural network to approximate 
the reverse transitions, effectively learning to denoise the perturbed data step-by-
step. This reverse process is modeled as a series of Gaussian transitions conditioned 
on the current state, with the neural network effectively denoising the perturbed 
samples. This method ensures stable training dynamics, mitigating issues commonly 
encountered in Generative Adversarial Networks (GANs) [6], and achieves state-
of-the-art performance in various generative tasks, including high-resolution image 
synthesis, audio generation, and more. Consequently, DDPMs have established 
themselves as a robust and versatile framework for high-dimensional data gener-
ation with remarkable fidelity and diversity. The following subsections describe the 
formulations of the forward and the reverse diffusion process in detail. 

2.2.1 Forward Diffusion Process 

DDPMs are formulated from the variational perspective where the forward diffu-
sion systematically transforms data into a noise distribution through a series of 
incremental additions of Gaussian noise. Formally, this process yields a Markov 
Chain of latent variables {xt }Tt=0 ., which are of the same dimensionality as the 
original data, where x0 . is the original data sample, and xT . converges to an isotropic 
Gaussian distribution. The data is sampled from q(x0)., which represents the real 
data distribution. At each time step t , Gaussian noise is added to the data controlled 
by a predefined variance schedule controlled by parameters {β}Tt=1 .. Specifically, 
each step of the forward diffusion is defined as, 

.q(xt | xt−1) = N(xt ;
√
1 − βtxt−1, βt I), . (2.1) 

q(x1:T | x0) = 
TΠ

t=1 

q(xt | xt−1), (2.2) 

where {β}Tt=1 ∈ [0, 1). is the variance schedule across diffusion steps, I. is the identity 
matrix andN(x;μ, σ). represents a normal distribution with mean μ. and covariance 
σ .. Note that a key property of Gaussian distributions is that the composition of 
multiple Gaussian perturbations remains Gaussian. This means if we add Gaussian 
noise to a Gaussian-distributed variable, the resulting distribution is still Gaussian. 
This property allows us to combine the noise addition steps over multiple time 
steps into a single Gaussian distribution. Given the forward process transitions, 
we can derive the marginal distribution of xt . conditioned on the original data x0 . 
by recursively applying the transition probabilities. Due to the linear nature of the
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noise addition and the properties of Gaussian distributions, the marginal distribution 
q(xt | x0). can be expressed as a Gaussian distribution, 

.q(xt | x0) = N(xt ;
√

ᾱt x0, (1 − ᾱt )I), (2.3) 

where αt = (1− βt ). and ᾱt = Πt
s=1 αs .. This property is particularly advantageous, 

as it enables the efficient sampling of noisy data at any intermediate time step 
without requiring an iterative simulation from x0 . to xt .. 

2.2.2 Reverse Diffusion Process 

The reverse diffusion process in DDPMs is a generative mechanism which inverts 
the forward diffusion process through a sequence of learned denoising steps. This 
process is designed to transform samples from the noise distribution back into 
coherent data samples. Specifically, the reverse process aims to approximate the 
conditional distributions pθ(xt−1|xt ). through a neural network, where each xt−1 . 

depends only on xt .. The reverse transitions are modeled as Gaussian distributions 
as follows, 

.pθ(xt−1 | xt ) = N(xt−1;μθ(xt , t), ∑θ (xt , t)), . (2.4) 

pθ(x0:T ) = p(xT ) 
TΠ

t=1 

pθ(xt−1 | xt ), (2.5) 

where pθ . is a neural network that represents the learned reverse process with 
parameters θ .. During sampling, the model begins with a noise vector xT ∼ N(0, I). 
and iteratively applies the reverse transitions pθ(xt−1 | xt ). using the trained 
denoising neural network to generate a sequence of latent variables that culminate 
in the reconstructed data sample x0 .. This iterative process effectively denoises the 
initial noise, step by step, reconstructing the data distribution in reverse order. The 
success of the reverse diffusion process is contingent on a well-trained denoising 
network pθ . as it ensures that the final samples are realistic and diverse, closely 
matching the original data distribution. 

2.2.3 Training the Model 

Optimizing the parameters θ . of the denoising neural network involves minimizing 
a variational lower bound on the negative log-likelihood of the data,
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.E[− logpθ(x0)] ≤ Eq

l
− log

pθ(x0:T )

q(x1:T | x0)

l
. (2.6) 

≤ Eq 

⎡ 

⎣− log p (xT ) −
⎲

t≥1 

log 
pθ (xt−1 | xt ) 
q (xt | xt−1)

⎤

⎦ = L, (2.7) 

which decomposes into a series of Kullback-Leibler (KL) divergence terms between 
the true posterior of the forward process and the learned reverse process, along with 
a reconstruction term: 

.L = LT +
⎲

t>1

Lt−1 + L0, . (2.8) 

LT = DKL (q (xT | x0) ||p (xT )) , . (2.9) 

Lt−1 = DKL (q (xt−1 | xt ,  x0) ||pθ (xt−1 | xt )) , . (2.10) 

L0 = − log pθ (x0 | x1) . (2.11) 

Except for L0 ., each term of the decomposition in Eq. 2.8 is a KL-divergence 
between two Gaussian distributions and hence has a closed-form solution. The KL-
divergence terms ensure that the neural network accurately captures the denoising 
process by aligning the learned distributions pθ(xt−1|xt ). with the true posteriors 
q(xt−1|xt , x0).. Notice that LT . does not depend on the parameters θ . and can be 
ignored safely during optimization. Upon simplification via Bayes theorem, the 
posteriors q(xt−1|xt , x0). can be represented in terms of parameters βt . and ᾱt . as 
follows, 

.q (xt−1 | xt , x0) = N
(
xt−1; μ̃ (xt , x0) , β̃t I

)
, (2.12) 

where, 

.μ̃t (xt , x0) =
√

ᾱt−1βt

1 − ᾱt

x0 +
√

αt (1 − ᾱt−1)

1 − ᾱt

xt , . (2.13) 

β̃t = 
1 −  ̄αt−1 

1 −  ̄αt

βt . (2.14) 

For pθ(xt−1 | xt ) = N(xt−1;μθ(xt , t), ∑θ (xt , t))., the original DDPM work [10] 
suggests setting ∑θ (xt , t) = σ 2

t I. to untrained time-dependent constants. They find 
that both extremes of σ 2

t = βt . and σ 2
t = β̃t = 1−ᾱt−1

1−ᾱt
βt . performed similarly. Now 

with pθ(xt−1 | xt ) = N(xt−1;μθ(xt , t), σ
2
t I)., the loss terms can be calculated in a 

Rao-Blackwellized fashion with closed-form expressions as follows, 

.Lt−1 = Eq

l
1

2σ 2
t

||μ̃t (xt , x0) − μθ (xt , t)||2
l

+ C, (2.15)
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where C includes the constant terms independent of θ .. There are multiple other ways 
to parameterize μθ(xt , t).. For instance, the network could also predict the noise ϵ . 

added to x0 ., and this noise could be used to predict x0 . via 

.x0 = 1√
αt

(
xt − βt√

1 − ᾱt

ϵ

)
. (2.16) 

Ho et al. [10] found that predicting ϵ . works best with the following simplified 
loss function, 

.Lt−1 = Ex0,ϵ

l
β2

t

2σ 2
t αt (1 − ᾱt )

llllllϵ − ϵθ

(√
ᾱt x0 + √

1 − ᾱt ϵ, t
)llllll

2
l

. (2.17) 

The network is trained using stochastic gradient descent, where each training step 
involves adding noise to a data sample and then predicting the noise to minimize 
the objective function. The amount of noise added can be determined by uniformly 
sampling t for each image in each minibatch. Overall, the reverse process mean 
function approximator ,μθ ., can be used to predict μ̃t ., or, it can be reparameterized to 
instead predict ϵ ..  Ho  et  a  l. [10] report that the ϵ .-prediction parameterization not only 
resembles Langevin dynamics but also simplifies the diffusion model’s variational 
bound to an objective akin to denoising score matching [20]. Therefore, efficient 
training can be achieved by optimizing random terms of L using stochastic gradient 
descent.

2.2.4 Generating Samples 

Sampling from a diffusion model involves simulating the reverse denoising process 
to systematically transform noise into data through a sequence of learned probabilis-
tic steps. This process begins with an initial sample drawn from a standard Gaussian 
distribution which serves as the prior. Specifically, the process starts by initializing 
a noise vector xT ∼ N(0, I)., where T represents the total number of diffusion steps. 
The idea of the reverse diffusion process is to iteratively apply the reverse transition 
model to progressively denoise the sample. At each time step t , from T down to 1, 
the model computes xt−1 . using the following Gaussian distribution: 

.xt−1 ∼ pθ (xt−1 | xt ) = N (xt−1;μθ (xt , t) , ∑θ (xt , t)) . (2.18) 

Here, μθ(xt , t). and ∑θ(xt , t). are the mean and variance predicted by a neural 
network parameterized by θ .. As described above, typically, the neural network 
predicts the mean, while the variance can either be fixed or predicted by the network 
as well. Alternatively, when using the ϵ .-based parameterization involves predicting 
the noise added at each step, instead of predicting the mean directly. This approach 
can be formalized as:
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.μθ (xt , t) = 1√
αt

(
xt − βt√

1 − ᾱt

ϵθ (xt , t)

)
. (2.19) 

The iterative denoising process involves repeating the sampling step for each 
time step, gradually refining xt .until x0 . is obtained. This stepwise process effectively 
removes the noise added during the forward diffusion, reconstructing a sample from 
the data distribution. By the end of the iterations, the final output, x0 ., represents 
a sample from the learned data distribution. Due to the stochastic nature of each 
reverse transition, each run of this process can generate a unique data sample. 

In summary, the diffusion model uses the learned reverse transitions to convert 
initial noise into high-quality data samples, effectively reversing the forward 
diffusion process. This ensures that the generated samples are consistent with the 
original data distribution, showcasing the model’s ability to produce realistic and 
diverse outputs. 

2.2.5 Conditional Sampling from Diffusion Models Using 
Guidance 

Diffusion models can be used to generate samples conditioned on desired informa-
tion such as class labels, text descriptions, or other attributes. This is achieved by 
incorporating a mechanism known as guidance in the sampling process. Guidance-
based sampling in diffusion models is a technique designed to enhance the fidelity 
and controllability of the generated samples by incorporating additional information 
or constraints into the sampling process. This approach modifies the reverse diffu-
sion process to include guidance from an auxiliary model or a predefined condition, 
which can steer the generative model towards more desirable outputs. One common 
implementation of guidance-based sampling involves using a classifier to guide the 
diffusion model, where the gradients from the classifier are combined with the 
reverse diffusion steps to bias the sample generation towards specific classes or 
features. Another approach, known as classifier-free guidance, directly conditions 
the diffusion model on the desired attributes, enabling the generation of samples that 
adhere to specified conditions without requiring an explicit classifier. By integrating 
these guidance mechanisms, diffusion models can produce higher quality, more 
targeted samples, thereby expanding their applicability in tasks requiring controlled 
generation such as conditional image synthesis, text-to-image generation, and other 
domains where adherence to specific criteria is crucial. Following sections describe 
both these mechanisms in further detail.



32 A. Shrivastava and P. T. Fletcher

2.2.5.1 Classifier Guidance 

Classifier guidance [4] is a mechanism used in diffusion probabilistic models 
to perform conditional generation by incorporating gradients from a pretrained 
classifier into the sampling process. This method involves using a separate classifier 
to guide the diffusion model towards generating samples that satisfy specific 
conditions, such as class labels. The primary objective of classifier guidance is 
to bias the reverse diffusion process such that the generated samples adhere to a 
desired condition. This is achieved by using the gradient of an independently trained 
classifier’s output with respect to the input data, effectively steering the generation 
towards higher probability regions of the conditioned distribution. 

Training For classifier guidance, the training phase of the diffusion model remains 
unchanged. The model is trained to learn the reverse denoising processes without 
any conditioning. The forward process progressively adds noise to the data, while 
the reverse process learns to denoise, reconstructing the original data distribution 
as described above. Critically, a separate classifier pφ(y | xt )., with parameters φ ., 
is trained to predict the condition y (e.g., a class label) given a noisy sample xt . 

from the diffusion process. Note that this classifier needs to be trained on noisy data 
generated by the forward diffusion process at various time steps t in order to provide 
meaningful guidance.

Sampling During the sampling phase, classifier guidance modifies the standard 
reverse diffusion process to incorporate guidance signal from the classifier using 
its gradients. Specifically, the sampling process begins with initializing an initial 
noise vector xT ∼ N(0, I).. Then for each time step t from T down to 1, the reverse 
transition is adjusted from the one highlighted in Eq. 2.18 using the gradient of the 
classifier’s log-probability with respect to xt ., resulting in 

.xt−1 ∼ pθφ(xt−1 | xt , y), (2.20) 

where, 

.pθφ(xt−1 | xt , y) = N(xt−1;μθ(xt , t)+α∇xt logpφ(y | xt ),∑θ (xt , t)). (2.21) 

Here, α . is a scaling factor that determines the strength of the guidance, μθ(xt , t). 

and ∑θ(xt , t). are the mean and variance predicted by the diffusion model, and 
∇xt logpφ(y|xt ). is the gradient provided by the classifier. 

Overall, the classifier pφ . predicts the probability of the condition y given the 
current noisy sample xt .. Hence, the gradient ∇xt logpφ(y|xt ). indicates the direction 
in which the sample xt . should be adjusted to increase the probability of the desired 
condition y. This computed gradient is scaled by a hyper-parameter α . and added 
to the predicted mean μθ(xt , t). of the reverse transition. This adjustment effectively 
biases the sample generation process towards samples that the classifier deems more 
likely to belong to the desired condition y.
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Conclusion Classifier guidance enables the generation of high-quality conditional 
samples without needing to retrain the entire diffusion model with the conditions. 
However, there are some considerations. The scaling factor α . must be carefully 
tuned. If α . is too high, the guidance may overly distort the samples, leading to 
poor quality. If too low, the guidance may be insufficient to influence the sampling 
effectively. Additionally, the effectiveness of this method depends on the robustness 
of the classifier. The classifier must accurately predict conditions from noisy data 
at various time steps. Finally, computing the gradients for each time step adds 
computational overhead, making the sampling process more resource-intensive. 

2.2.5.2 Classifier-Free Guidance 

Classifier-free guidance [9] is a technique used to generate conditional samples 
without relying on an explicit classifier to provide gradients. Instead, the model 
itself is trained to handle both conditional and unconditional sampling, allowing 
for a more integrated and flexible approach to conditional generation. This method 
involves training the model with and without conditioning, allowing it to take 
advantage of both types of information during sampling. 

Training For classifier-free guidance, during the training phase, the diffusion 
model is trained on both conditioned and unconditioned data. Specifically, the 
model learns to predict the reverse diffusion steps for samples with and without 
a given condition. This dual training approach involves augmenting the dataset with 
conditions (e.g., class labels or other attributes) and also training on the same data 
without these conditions to allow the model to generalize effectively. Formally, 
this involves training the model with two formulations both pθ(xt−1 | xt , y). and 
pθ(xt−1 | xt ). where y is the condition. The model is trained to minimize the 
loss for both conditioned and unconditioned predictions, thereby learning to handle 
both scenarios. Practically, this is done by randomly dropping the condition during 
training for a certain percentage (e.g., ∼ 10.%) of optimization iterations. 

Sampling During sampling, classifier-free guidance combines the predictions from 
the conditional and unconditional models to guide the generation process. The key 
idea is to leverage the unconditioned model to adjust the conditioned generation, 
ensuring that the samples adhere to the desired attributes while maintaining high 
quality. After starting with an initial noise vector xT ∼ N(0, I)., for each time step 
t from T down to 1, compute the reverse transition for both the conditioned and 
unconditioned models,

.x
(cond)
t−1 ∼ pθ(xt−1 | xt , y), . (2.22) 

x (uncond) 
t−1 ∼ pθ(xt−1 | xt ). (2.23) 

These transitions are then combined using a guidance scale factor w to control 
the influence of the condition as,
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.xt−1 ∼ x
(cond)
t−1 + w

(
x

(cond)
t−1 − x

(uncond)
t−1

)
, (2.24) 

where w adjusts the strength of the guidance, effectively interpolating between the 
conditioned and unconditioned predictions.

Conclusion The combination of the conditioned and unconditioned predictions 
allows the model to generate samples that adhere to the desired conditions while 
leveraging the unconditioned model’s ability to produce high-quality samples. 
By adjusting the guidance scale w, the generation process can be fine-tuned to 
balance adherence to the condition with overall sample quality. Classifier-free 
guidance offers several advantages over classifier-based methods. By integrating 
the condition directly into the model, it eliminates the need for a separate classifier, 
simplifying the overall architecture and reducing the potential for mismatches 
between the classifier and the diffusion model. Additionally, this method provides 
more flexibility in handling various types of conditions, including those that may be 
difficult to encode with a classifier. However, careful tuning of the guidance scale w 
is essential to achieve the desired balance between conditional fidelity and sample 
quality. If w is too high, the generated samples may become distorted; if too low, 
the samples may not adequately reflect the desired conditions.

2.3 DDPMs For Histopathological Image Generation 

This section will demonstrate the use of DDPMs for conditional histopathological 
image generation. Histopathological images require intricate details and accurate 
representation of tissue structures. Traditional methods for generating synthetic 
images often fall short in capturing the complex textures and patterns characteristic 
of histopathological samples. The step-by-step denoising in a DDPM allows it 
to generate highly realistic synthetic histopathological images from pure noise. 
When trained on large datasets, DDPMs generate new images that are virtually 
indistinguishable from real samples. The conditional sampling capabilities of 
DDPMs allow for the generation of images with specific attributes, such as a nuclei 
semantic mask. In this section, a conditional DDPM is described that leverages the 
detailed spatial information encoded in a nuclei segmentation mask, which outlines 
the positions and shapes of cell nuclei within a tissue sample. By inputting this mask 
as a condition, a diffusion model can learn to synthesize the surrounding histological 
context, filling in the cytoplasm, extracellular matrix, and other tissue components 
with realistic textures and colors that align with the given nuclei arrangement. This 
method is particularly useful for augmenting datasets in computational pathology, as 
it allows for the generation of diverse and anatomically accurate histological images 
tailored to specific cellular configurations. These synthetic images can enhance the 
training of machine learning algorithms for tasks such as disease classification, 
anomaly detection, and biomarker discovery, ultimately improving the robustness 
and accuracy of automated diagnostic tools.
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This section demonstrates a framework for generating tissue patches conditioned 
on semantic layouts of nuclei. Given a nuclei segmentation mask, the model aims 
to generate realistic synthetic patches. For this demonstration, (1) the first-of-its-
kind Nuclei-Aware Semantic Diffusion Model (NASDM) [19] is described that 
can generate realistic tissue patches given a semantic mask comprising multiple 
nuclei types, (2) it is trained on the Lizard dataset [7] consisting of colon histology 
images, achieving state-of-the-art generation capabilities, and (3) extensive ablative, 
qualitative, and quantitative analyses are provided to establish the proficiency of the 
framework on this semantics driven tissue generation task. 

2.3.1 Data Description 

The Lizard dataset [7] is used to demonstrate the NASDM method. This dataset 
comprises histology image regions of colon tissue from six different data sources 
at 20×. objective magnification. Full segmentation annotation for different types 
of nuclei—namely, epithelial cells, connective tissue cells, lymphocytes, plasma 
cells, neutrophils, and eosinophils accompanies the images. A generative model 
trained on this dataset can be employed to effectively synthesize colonic tumor 
micro-environments. The dataset includes 238 image regions, with an average 
size of 1055 × 934. pixels. Due to substantial visual variations across images, a 
representative test set is constructed by randomly sampling a 7.5.% area from each 
image and its corresponding mask to be held out for testing. The test and train 
image regions are further divided into smaller image patches of 128 × 128. pixels 
at two different objective magnifications: (1) at 20×., the images are directly split 
into 128 × 128. pixel patches, whereas (2) at 10×., 256 × 256. patches are generated 
and resized to 128 × 128. for training. To utilize the data exhaustively, patching is 
performed with a 50%. overlap in neighboring patches. Consequently, at (1) 20×.,  a  
total of 54,735 patches are extracted for training, with 4991 patches held out, while 
at (2) 10×. magnification, 12,409 training patches are generated, and 655 patches 
are held out. 

2.3.2 Stain Normalization 

A common issue in training models with H&E stained histopathology slides is the 
visual bias introduced by variations in the staining protocol and the raw materials of 
chemicals, leading to different colors across slides prepared at different labs [1]. To 
address this, several stain-normalization methods have been proposed to normalize 
all tissue samples to mimic the stain distribution of a given target slide. The earliest 
approaches to stain normalization mainly involved basic style transfer techniques. 
One such method, histogram specification, aimed to match the histogram statistics
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of the source image with those of the target image [3]. This technique is effective 
only when the source and target images have similar color distributions. Enforcing 
this normalization can introduce artifacts that compromise the structural integrity of 
the source image. Reinhard [18] further demonstrated that color transfer using his-
togram specification could be conducted in the decorrelated CIELAB color space, 
which approximates the human visual system. For H&E stained histology images, 
the appropriate color space should accurately represent the presence or absence 
of each stain in each pixel. Researchers developed advanced stain normalization 
methods that surpass the performance of the histogram specification technique by 
utilizing stain separation. These methods begin by converting an RGB image into 
Optical Density (OD), using the formula OD = log I0

I
., where I0 . represents the 

maximum possible illumination intensity of the image and I is the RGB image. In 
the OD space, color deconvolution (CD) becomes more straightforward because the 
stains exhibit a linear relationship with the OD values. The CD process is typically 
represented as OD = V S ., where V is the matrix of stain vectors and S is the stain 
density map. The stain density map preserves the cell structures of the source image, 
while the stain vectors are adjusted to match the stain colors of the target image. One 
such method, the structure-preserving color normalization scheme introduced by 
Vahadane et al. [21] is used for its effectiveness and simplicity in this demonstration, 
to transform all slides to match the stain distribution of an empirically chosen slide 
from the training dataset. 

Fig. 2.1 Graphical model of the described conditional diffusion model
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2.3.3 Nuclei-Aware Semantic Diffusion Model 

The formulation of NASDM derives from conditional diffusion models. A condi-
tional diffusion model aims to maximize the likelihood pθ(x0 | y)., where data x0 . 
are sampled from the conditional data distribution, x0 ∼ q(x0 | y)., and y represents 
the conditioning signal. As discussed above, a diffusion model consists of two 
intrinsic processes. The forward diffusion process that systematically destroys the 
information in a given sample and the reverse diffusion process which incrementally 
adds information by denoising a corrupted sample. When formulating a conditional 
diffusion model, the forward diffusion process can ignore the conditioning signal 
and Gaussian noise can be incrementally added to corrupt the data sample x0 . using 
the same description in Sect. 2.2.1. However, the denoising process is designed to 
incorporate the conditioning signal and is defined as a Markov chain with learned 
Gaussian transitions starting from pure noise, p(xT ) ∼ N(0, I). and is parameterized 
as a neural network with parameters θ . as 

.pθ(x0:T | y) = p(xT )

TΠ

t=1

pθ(xt−1 | xt , y). (2.25) 

Hence, for each denoising step from t to t − 1., 

.pθ(xt−1 | xt , y) = N(xt−1;μθ(xt , y, t), ∑θ (xt , y, t)). (2.26) 

It has been shown that the combination of q and p here is a form of a variational 
auto-encoder [12], and hence the variational lower bound (VLB) can be described 
as a sum of independent terms, Lvlb := L0 + . . . + LT −1 + LT ., where each 
term corresponds to a noising step as described earlier in Eq. 2.8. As described 
in previous sections, the time step t is randomly sampled during training, and the 
expectation Et,x0,y,ϵ . is used to estimate the loss Lvlb . and optimize the parameters θ .. 
The denoising neural network, as discussed, can be parameterized in various ways. 
In NASDM, a noise prediction-based formulation results in superior image quality. 
Consequently, the NASDM denoising model is trained to predict the noise added 
to the input image given the semantic layout y and the time step t using the loss 
described belo w:

.Lsimple = Et,x,ϵ

l||ϵ − ϵθ (xt , y, t)||2
l
. (2.27) 

It is important to note that the given simplified loss function does not provide 
a training signal for ∑θ(xt , y, t).. To address this, following the improved DDPMs 
strategy [16], a network is trained to predict an interpolation coefficient v for each 
dimension. This coefficient is then converted into va riances,

.∑θ(xt , y, t) = exp
(
v logβt + (1 − v) log ~βt

)
. (2.28)
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This is then directly optimized using Lvlb ., which is the KL divergence between the 
estimated distribution pθ(xt−1 | xt , y). and the diffusion posterior q(xt−1 | xt , x0)., 
formulated as, 

.Lvlb = DKL(pθ (xt−1 | xt , y) || q(xt−1 | xt , x0)) (2.29) 

During this optimization, a stop gradient is applied to ϵ(xt , y, t)., allowing overall 
Lvlb . to guide ∑θ(xt , y, t)., while Lsimple . in Eq. 2.27 primarily guides ϵ(xt , y, t)..  The  
overall loss is then a weighted sum of these two objectives, as follo ws:

.Lhybrid = Lsimple + λLvlb. (2.30) 

2.3.4 Conditioning on a Semantic Mask 

NASDM requires our neural network noise predictor ϵθ (xt , y, t). to effectively 
process the information from the nuclei semantic map. For this purpose, we leverage 
a modified U-Net architecture described in Wang et al. [22], where the time step 
is injected into the encoder of the denoising network via scaling and shifting 
features, while the semantic information is injected into the decoder using multi-
layer, spatially-adaptive normalization operators. 

Encoder The encoder of the network processes the noisy image with stacked 
semantic diffusion encoder resblocks and attention blocks. These resblocks consists 
of convolution, SiLU and group normalization. Where SiLU [17] is a non-linearity 
of the form f (x) = x · sigmoid(x). which tends to work better than ReLU [15] 
on deeper models. In order to inject the time step t at different time steps, the 
resblock involves scaling and shifting the intermediate activation with learnable 
weight w(t) ∈ R. and bias b(t) ∈ R. formulated as, fi+1 = w(t) · fi + b(t). where 
fi, fi+1 ∈ R. are the input and output features. 

Decoder The semantic label map is injected into the decoder of the denoising 
network by the semantic diffusion decoder resblock in multi-layer spatially adaptive 
manner. Different from the resblocks in the encoder, here the spatially-adaptive 
normalization is used instead of the group normalization. This normalization layer 
injects the semantic label map into the denoising streams by regulating the feature 
in a spatially-adaptive, learnable transformation, which is formulated as follows, 

.f i+1 = γ i(x) · Norm
(
f i

)
+ βi(x), (2.31) 

where f i
. and f i+1

. are the input and output features and Norm(·). refers to the 
parameter-free group normalization. γ i(x), βi(x). are the spatially-adaptive weight 
and bias learned from the semantic layout, respectively.
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In the NASDM model, the conditioning signal is constructed using the semantic 
mask such that each channel of the signal corresponds to a unique nuclei type. In 
addition, a mask comprising of the edges of all nuclei to further demarcate nuclei 
instances is also concatenated to the signal. 

2.3.5 Experimental Results 

In this section, the specifics of the NASDM implementation and training process 
are described first. Subsequently, an ablative study over the objective magnification 
and the scale of classifier-guidance is conducted, serving to affirm the robustness of 
the model. The prowess of our model, specifically designed for generating nuclei-
aware semantic histopathology patches, is then illustrated through both qualitative 
and quantitative evaluations. All subsequent experiments involve the generation of 
images using the semantic masks belonging to a subset of the dataset that is set 
aside at two different objective magnifications. The calculation and comparision of 
metrics such as Fréchet Inception Distance (FID) and Inception Score (IS) between 
the synthesized and actual images within the isolated group is then carried out. 

2.3.5.1 Implementation Details 

The NASDM model is implemented using a UNet architecture with conditional 
resblocks (Sect. 2.3.4) and trained using the objective in Eq. (2.30). Following 
previous works [16], the trade-off parameter λ. is set as 0.001.. The AdamW 
optimizer is used to train the model. Following DDPM [10], the total number of 
diffusion steps is set to 1000, and linear noising schedule with respect to time step t 
for the forward process is used. After normal training with a learning rate of 1e − 4., 
the learning rate is decayed to 2e − 5. to further finetune the model with a drop 
rate of 0.2. to enhance the classifier-free guidance capability during sampling. The 
whole framework is implemented using Pytorch and trained on 4 NVIDIA Tesla 
A100 GPUs with a batch-size of 40 per GPU. Code is available at https://github. 
com/4m4n5/NASDM. 

2.3.5.2 Quantitative Analysis 

NASDM is the only model that possesses the capability to synthesize histology 
images given a semantic mask, which presents a challenge for direct quantitative 
comparison with other methods. Nevertheless, the standard generative metric, 
Fréchet Inception Distance (FID), which measures the divergence between the 
distributions of synthetic and real images within the latent space of the Inception-
V3 [13] model. Smaller FID score denotes the model’s ability to create images 
highly similar to the actual data. Consequently, a comparison of FID and IS metrics

https://github.com/4m4n5/NASDM
https://github.com/4m4n5/NASDM
https://github.com/4m4n5/NASDM
https://github.com/4m4n5/NASDM
https://github.com/4m4n5/NASDM
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Table 2.1 Quantitative assessment: the performance of the NASDM method is demonstrated 
using Fréchet Inception Distance (FID) and Inception Score (IS) against the metrics reported in 
existing works. (–) denotes that corresponding information was not reported in original work. 
*Note that performance reported for best competing method on the colon data is from a custom 
implementation, performances for both this and NASDM should improve with better tuning 

Method Tissue type Conditioning FID( ↓.) IS( ↑.) 

BigGAN [2] Bladder None 158.4 – 

AttributeGAN [24] Bladder Attributes 53.6 – 

ProGAN [11] Glioma Morphology 53.8 1.7 

Morph-Diffusion [14] Glioma Morphology 20.1 2.1 

Morph-Diffusion* [14] Colon Morphology 18.8 2.2 

NASDM (Ours) Colon Semantic mask 14.1 2.7 

is made against the values cited in original works [14, 24] (refer to Table 2.1), 
maintaining their respective conditions. It can be observed that the NASDM 
approach surpasses all previous methods, which encompass both GANs-based 
techniques and the recently introduced morphology-centered generative diffusion 
model. 

2.3.5.3 Qualitative Analysis 

A review of the model-generated patches was conducted by 3 expert pathologists. 
For this review, a total of 30 patches are utilized, comprising 17 synthetic and 13 
real ones. The assessment of the overall medical quality of the patches and their 
consistency with the associated nuclei masks on a Likert scale is carried out by 
two experts. A public Google survey, which was employed for the review, can 
be accessed via the provided link1 From this survey (Fig. 2.3), it can be inferred 
that the model-generated patches are deemed more realistic than the patches in our 
real set. A qualitative discussion is now undertaken regarding our model’s ability 
to generate realistic visual patterns in synthetic histopathology images (refer to 
Fig. 2.2). Evidence shows that the model can successfully reproduce convincing 
visual structure for each type of nuclei. In the synthetic images, it is observed 
that lymphocytes are accurately circular, while neutrophils and eosinophils exhibit a 
more lobed structure. Additionally, the model’s ability to emulate accurate nucleus-
to-cytoplasm ratios for each type of nuclei is noted. Epithelial cells, which are 
less dense, possess a distinct chromatin structure, and are larger compared to other 
white blood cells, are the most challenging to generate convincingly. However, it is 
observed that the model can well capture these complexities and accurately replicate 
chromatin distributions.

1 https://forms.gle/1dLAdk9XKhp6FWMY6. 

https://forms.gle/1dLAdk9XKhp6FWMY6
https://forms.gle/1dLAdk9XKhp6FWMY6
https://forms.gle/1dLAdk9XKhp6FWMY6
https://forms.gle/1dLAdk9XKhp6FWMY6
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Fig. 2.2 Qualitative results: the generated synthetic images are shown with the semantic masks 
with each type of nuclei in different environments to demonstrate the proficiency of the model to 
generate realistic nuclei arrangements. Legend at bottom denotes the mask color for each type of 
nuclei 
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Fig. 2.3 Qualitative review: compiled results from a pathologist review. Experts assess patches 
for, their overall medical quality (left), as well as, their consistency with the associated mask (right). 
It can be observed that the patches generated by the model do better on all metrics and majority 
are imperceptible from real patches 

Obj. Mag. FID( ↓.) IS( ↑.) 

10 ×. 38.1 2.3 

20 ×. 20.7 2.5 

2.3.5.4 Ablation Over Objective Magnification 

As outlined in Sect. 2.3.1, patches are produced at two distinct objective magnifica-
tions: 10×. and 20×.. This section describes the generative capabilities of the models 
individually trained at these magnification levels. It is discernible from Table on the 
right that superior generative metrics are yielded by the model trained at an objective 
magnification of 20×.. It should be noted that training is confined to a subset at 
20×. magnification in order to maintain a consistent volume of training data when 
compared to the training set at magnification 10×..
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2.4 Conclusion 

This chapter explored diffusion models which have emerged as a transforma-
tive approach in the field of histopathology, offering unprecedented capabilities 
in controllable image generation. These models provide high-quality synthetic 
histopathological images that can enhance diagnostic accuracy, support educational 
efforts, and facilitate robust research. The ability to generate realistic and diverse 
pathological images addresses the limitations of limited data availability, enabling 
better training of machine learning models and more comprehensive studies. The 
chapter presented NASDM, a nuclei-aware semantic tissue generation framework 
which was demonstrated on a colon dataset and qualitatively and quantitatively 
establish the proficiency of the framework at this task. Future work in this domain 
can explore conditioning on properties like stain-distribution, tissue-type, disease-
type, etc. which would enable patch generation in varied histopathological settings. 
As the field progresses, the integration of diffusion models into histopathological 
workflows holds promise for improving patient outcomes, streamlining pathology 
processes, and advancing our understanding of various diseases. The continued 
refinement and adoption of these models will undoubtedly play a crucial role in 
the future of digital pathology. 
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Chapter 3 
Generative AI Techniques for Ultrasound 
Image Reconstruction 

Zixia Zhou, Wei Guo, Yi Guo, and Yuanyuan Wang 

Abstract In recent years, ultrasound imaging equipment has developed in diverse 
ways to meet the needs of various clinical applications. However, the in-herent 
characteristics of ultrasound imaging, including phenomena like diffraction, atten-
uation, interference, and refraction, as well as issues like speckle, artifacts, and 
noise, adversely affect spatial resolution. This signifi-cantly impacts the accuracy of 
clinical diagnosis and poses an obstacle to its widespread application. To improve 
the quality of ultrasound imaging, traditional methods have focused mainly on hard-
ware enhancements and reconstruction method optimization. However, hardware 
improvements increase manufacturing difficulty and cost, while reconstruction algo-
rithm optimization often comes at the expense of temporal resolution. Therefore, 
finding more exquisite methods to break through the spatio-temporal resolution lim-
its of ultrasound imaging, promoting the preci-sion, intelligence, miniaturization, 
and cost-effectiveness of medical ultra-sound equipment, and ensuring accurate 
diagnosis are foundational keys to advancing precision intelligent ultrasound health-
care. In this chapter, we introduced advanced deep learning techniques applied to 
ultrasound image reconstruction and explored the challenges and potential future 
trends in this evolving field. 
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3.1 Introduction 

Ultrasound imaging has been utilized in the medical field for nearly seventy years 
and is widely adopted for clinical diagnosis [1]. Compared to other medical imaging 
modalities such as MRI and CT, ultrasound imaging offers several advantages: it is 
non-invasive, radiation-free, real-time, and cost-effective. These features make it 
a important tool in clinical diagnosis and disease detection. However, ultrasound 
imaging has long been plagued by issues related to low image quality. Specifically, 
it faces challenges such as poor signal noise ratio, blurred lesion boundaries, and 
posterior echo interference [2]. These issues significantly impact the accuracy 
of clinical applications, including diagnosis and prognosis, based on ultrasound 
images. To achieve reliable diagnostic results, higher imaging quality is required 
from ultrasound devices. Recent years have seen a diversification in ultrasound 
imaging equipment to cater to different clinical applications, such as ultrafast 
imaging, 3D/4D imaging, and portable imaging devices [3–6]. However, these 
devices often sacrifice imaging quality to meet specific application requirements, 
significantly affecting their clinical usability. Therefore, research into high-quality 
ultrasound imaging is crucial for enhancing the diagnostic capabilities of medical 
ultrasound devices. Traditional methods to improve imaging quality generally fall 
into hardware improvements and reconstruction method optimizations. Hardware 
improvements typically involve replacing affordable or compact components with 
expensive or larger ones, increasing manufacturing difficulty and cost while reduc-
ing portability. On the other hand, beamformer and postprocessing optimizations 
often come at the expense of temporal resolution and may not adequately address 
the diverse problems for low imaging quality in ultrasound systems. With the 
advance of AI technology [7–9], regression-based deep learning techniques have 
been proposed to tackle various factors leading to low-quality imaging in ultrasound 
systems, potentially offering cost-effective, robust, and highly generalizable high-
quality ultrasound imaging solutions. 

3.2 Ultrasound Imaging System and Imaging Quality 
Trade-Offs 

Medical ultrasound devices emit ultrasound pulses through transducers and receive 
echo signals reflected from tissue boundaries [10]. The strength of these echo signals 
is proportional to the difference in acoustic impedance between two media. If 
adjacent tissues have identical acoustic impedance, no echo signal is generated at 
their boundary. Conversely, if the tissues have similar impedance, a low-intensity 
echo signal is produced, while a significant difference in impedance (e.g., between 
soft tissue and bone) results in a very strong echo signal. In clinical, ultrasound 
devices utilize this characteristic to create images or videos of the inside of the 
body. Generally, these devices consist of several key components that are highly 
correlated with imaging quality as shown in Fig. 3.1.
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Fig. 3.1 Key components that are highly correlated with ultrasound imaging quality 

3.2.1 Ultrasound Scanning Control 

The frequency, pulse length, and mode of emitted ultrasound waves are critical 
for determining imaging resolution and penetration depth. High-frequency waves 
offer better resolution but limited depth, while low-frequency waves penetrate 
deeper with reduced resolution [11]. The shape and duration of the pulse affect 
axial resolution and signal-to-noise ratio (SNR); shorter pulses improve resolution 
but may decrease SNR, requiring optimized pulse parameters for balanced imag-
ing performance. Additionally, the choice of transmission mode affects imaging 
resolution [12]. The commonly used focused line-scan emission mode provides 
high-quality imaging during static scans but requires multiple signal transmissions 
and receptions, significantly reducing temporal resolution and making it unsuit-
able for clinical applications requiring high frame rates (e.g., elastography and 
echocardiography). Thus, research has suggested using plane wave emissions for 
ultrafast imaging. While plane wave modes significantly increase frame rates, they 
suffer from poor imaging quality. Coherent plane wave compounding (CPWC), 
an algorithm that integrates information from multiple angles, addresses this 
challenge by enhancing overall imaging quality at the cost of reducing frame rate. 
Other emission modes include wide beam/weak focus and multi-line transmission 
techniques, which aim to balance between frame rate and image quality, but each 
comes with its own trade-offs and specific application contexts. 

3.2.2 Ultrasound Hardware Configuration 

The materials, process and design of the transducer significantly influence the 
efficiency and sensitivity of ultrasound wave emission and reception. Piezoelectric 
materials, for instance, are commonly used due to their effectiveness in converting 
electrical signals to mechanical waves and vice versa [13]. The design includes 
considerations for transducer shape and array configuration, impacting imaging 
capabilities [14]. The sensitivity of the transducer impacts the overall SNR of the 
imaging system. Highly sensitive transducers can detect weaker echoes, which
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is essential for providing good contrast and detail, especially in deeper tissues. 
Likewise, the number of channels in an ultrasound system impacts the richness of 
the data that can be processed, rather than the system’s signal processing capability. 
Increasing the number of channels enhances resolution and reduces noise, resulting 
in clearer and more detailed images. However, this also leads to greater complexity, 
higher power consumption, and increased hardware costs. Owing to these specific 
hardware details, there is a significant difference between low-cost and high-
end ultrasound devices. High-end systems typically offer superior image quality, 
more advanced features, and greater flexibility in clinical applications. Conversely, 
portable ultrasound devices, as a new emerging technology, have advantages 
such as low cost, ease of use, and quick imaging, making them promising for 
rural, community, and remote medical care [15]. However, these devices often 
compromise on image resolution and depth penetration compared to their high-end 
counterparts. 

3.2.3 Reconstruction Algorithms 

The backend algorithms used in signal processing, such as beamforming, filtering, 
image enhancement, and speckle suppression, play a significant role in enhancing 
image clarity and contrast. Among these, beamforming algorithms are in the core 
position, as they remap and focus the signals received from transducers to produce 
the fundamental image, thereby directly influencing the eventual ultrasound imaging 
quality [16]. The traditional yet most widely used delay-and-sum (DAS) beam-
former is relatively simple and computationally efficient. However, the quality of its 
beamforming results is often suboptimal, with limited spatial resolution and higher 
side-lobe artifacts. Advanced beamforming algorithms, including adaptive and 
coherence beamforming, improve the focusing and steering of ultrasound beams. 
These algorithms contribute to better spatial resolution and reduced side-lobe 
artifacts [17, 18] but also require higher computational burdens for implementation. 

3.2.4 Combined Impact and Other Factors 

The interplay between transmission setup, hardware configuration, and reconstruc-
tion algorithms determines the overall performance of the ultrasound imaging 
system. Synchronizing these aspects through techniques like harmonic imaging can 
enhance image quality by improving contrast and reducing noise. Additionally, 
the ultrasound imaging quality may also be affected by operator-dependent and 
environmental factors. The skill and experience of the operator in positioning the 
transducer, adjusting settings, and interpreting images greatly affect the quality of 
the ultrasound images. The interaction with the patient, including their body habitus, 
the degree of respiratory and cardiac motion, and the ability to maintain a proper
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acoustic window during scanning, all influences image quality. Environmental 
factors such as the presence of acoustic windows can also affect imaging quality. 
Structures like bone or air-filled organs can block or scatter ultrasound waves, 
reducing image quality for structures behind these barriers. Tissue characteristics, 
including variations in density and composition, can affect the propagation and 
reflection of ultrasound waves, impacting image quality. 

In conclusion, understanding and addressing the combined impact of these 
factors, along with considering other influential aspects, is crucial for achieving the 
best possible imaging performance in clinical practice. 

3.3 Integrating Deep Learning for Enhanced Ultrasound 
Reconstruction 

Given that deep learning has demonstrated its applicability across various fields in 
recent years, it has also emerged as a powerful tool for enhancing ultrasound image 
reconstruction and improving diagnostic accuracy with minimal trade-offs. Various 
deep learning-based methods have been proposed, focusing on different modules of 
the ultrasound system. These techniques aim to address the limitations of ultrasound 
imaging, offering solutions that enhance image quality while retaining the inherent 
benefits of ultrasound technology, such as real-time imaging, portability, and cost-
effectiveness. In this section, we will explore existing works that utilize deep 
learning techniques to address the trade-offs in ultrasound imaging. 

3.3.1 Quality Enhancement via Ultrasound Scanning Control 

Before the advent of deep learning algorithms, ultrasound transmit control focused 
on meeting the specific requirements of different medical applications, develop-
ing different wave scan modes to cater to diverse diagnostic needs. However, 
conventional methods still suffer from trade-offs. Deep learning techniques have 
revolutionized this trend, allowing for significant enhancements in imaging quality 
without compromising the inherent benefits of ultrasound technology. By leveraging 
prior information, deep learning models can map quality enhancement rules while 
maintaining specific ultrasound wave emission settings. Traditional focused line-
scan mode is the most commonly used scanning mode but requires hundreds of 
transmissions and receptions of sound beams, resulting in a frame rate typically 
less than 50 frames per second (fps). To address this limitation, ultrafast ultrasound 
imaging technology has emerged. Prada et al. [19] introduced plane wave ultrasound 
imaging to improve temporal resolution, achieving full-field imaging with a single 
pulse transmission by utilizing all array elements to transmit and receive simulta-
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Fig. 3.2 Quality enhancement via ultrasound emission end. (a) Plane wave imaging: Comparison 
between conventional focused line scan mode, single-angle plane wave mode, and compounded 
plane wave mode. (b) Workflow of the conventional multi-angle compounding method for plane 
wave imaging. (c) An example network for deep learning-based compounding 

neously. This approach can raise frame rates up to 5000 fps but suffers from high 
side-lobe noise, leading to poor image quality. 

To enhance plane wave imaging quality, Montaldo et al. [20] proposed the CPWC 
method, which sequentially transmits ultrasound signals at multiple angles and 
integrates the received multi-frame echo signals to obtain a high-quality composite 
image as shown in Fig. 3.2b. Figure 3.2c compares the results of plane wave 
compounding with traditional focused imaging. While this method significantly 
improves image quality, it reduces temporal resolution, making it unsuitable for 
applications requiring extremely high frame rates. Deep learning methods have been 
proposed to overcome the limitations of plane wave imaging while maintaining 
high frame rates as exampled in Fig. 3.2d. For instance, Zhou et al. [21] proposed 
a multichannel multiscale convolutional neural network (MMCNN) to reconstruct 
high-quality images from single plane-wave ultrasound images. The multiscale 
network architecture captures both local and global features, significantly improving 
spatial and temporal resolution, preserving speckle information through wavelet 
postprocessing. In [22], Qi et al. proposed a Deep Neural Network (DNN) to 
convert RF channel data of plane-wave imaging to those of focused ultrasound 
scanning, maintaining high imaging quality and frame rate. Another approach, 
proposed by Senouf et al. [23] uses an convolutional neural network (CNN) to
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improve cardiac ultrasound MLA image quality, achieving single-line acquisition-
like decorrelation while maintaining multi-line acquisition's high frame rate. Chen 
et al. [24] introduced ApodNet for high frame rate synthetic transmit aperture (STA) 
ultrasound imaging, providing optimized binarized apodizations to guide plane 
wave transmissions. 

In summary, by considering the aspect of scanning control, deep learning-based 
techniques can achieve high frame-rate imaging without compromising spatial 
resolution. 

3.3.2 Quality Enhancement for Hardware Complement 

In the realm of ultrasound equipment, hardware configuration significantly impacts 
imaging quality, especially when it comes to cost-effective and portable solutions. 
Portable ultrasound devices offer several unique advantages, including being user-
friendly, rapid, cost-effective, and lightweight. These attributes make portable 
ultrasound devices an excellent choice in specific scenarios compared to large-scale 
ultrasound equipment. For instance, in community healthcare, portable ultra-
sound devices can serve as valuable tools for pre-check, sub-check and early 
disease screening. In developing countries or rural areas where high-end ultra-
sound equipment is prohibitively expensive, affordable portable devices present a 
viable alternative. In telemedicine, these devices facilitate convenient home health 
management, while in emergency rescue and intensive care situations, they enable 
quick preliminary diagnoses of critical patients. Despite their extended applications, 
portable ultrasound devices are limited by their compact size and specs, resulting 
in lower imaging resolution and higher noise artifacts compared to high-end 
equipment, as illustrated in Fig. 3.3a. This weakness in imaging quality significantly 
diminishes the diagnostic reliability of portable devices, emphasizing the need to 
enhance imaging quality in clinical settings. 

Deep learning methods have emerged as a powerful solution to this challenge, 
offering the potential to improve ultrasound imaging quality without compromising 
portability or increasing costs. Specifically, Zhou et al. [25] proposed a two-stage 
generative adversarial network (GAN) together with transfer learning to enhance 
the image quality of hand-held ultrasound devices, improving tissue structure and 
detail while minimizing artifacts and deformation impacts. With a similar goal, 
Dong et al. [26] introduced a feature-guided denoising convolutional neural network 
for portable ultrasound images improvement, utilizing a hierarchical denoising 
framework with a feature masking layer and an explainable feature extraction 
algorithm to remove noise while preserving critical features. Wang et al. [27]  also  
proposed a sparse skip connection U-Net, combining encoder-decoder and U-Net 
models with a novel loss function to enhance portable ultrasound image quality by 
preserving more details and improving spatial resolution. Further, researchers have 
extended these advancements from static images to video, as video can provide 
more comprehensive information about lesion details under dynamic physiological
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Fig. 3.3 Quality enhancement for hardware complement. (a) Comparison between ultrasound 
images generated handheld device and high-end device. (b) Overview of the transfer learning 
concept in Zhou et al. [25]. (c) An example of handheld ultrasound video reconstruction predicted 
by Zhou et al. [25] 

processes. To achieve this goal, Zhou et al. [28] proposed a multi-pathway GAN 
to reconstruct high-quality video from handheld ultrasound devices, effectively 
addressing the challenges of low resolution and high noise. This approach combines 
low-rank representation with GAN-based reconstruction and incorporates adjacent 
neighborhood information to improve the continuity of the reconstructed video. 
A brief workflow and an example of the generated ultrasound video is shown in 
Fig 3.3b, c. With a more targeted objective, Mamistvalov et al. [29] focused on 
reducing the dependency on high-cost hardware by using deep learning to recon-
struct images from sub-Nyquist channel data, thereby lowering overall system costs. 
Similarly, Xiao et al. [30] addressed the challenge of maintaining image quality 
after reducing the number of channels in plane-wave ultrasound. By leveraging 
deep learning, this method reconstructs high-quality images with fewer channels, 
thereby reducing computational load and data storage requirements, making it a 
cost-effective solution for high-quality imaging. 

Briefly, low-cost imaging methods through deep learning are crucial for expand-
ing access to high-quality ultrasound imaging in resource-limited settings.
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3.3.3 Quality Enhancement with Low-Complexity 
Beamforming 

In ultrasound systems, the beamforming module plays a crucial role in determining 
imaging quality. Currently, the most widely used beamforming method is the 
non-adaptive DAS approach, known for its low complexity and high robustness. 
However, DAS often comes along with high sidelobe, leading to low imaging 
resolution and poor contrast. In recent years, several adaptive beamforming methods 
have been proposed to enhance ultrasound imaging quality, such as the Coherence 
Factor (CF) method and the Minimum Variance (MV) method. The CF method 
suppresses sidelobes and clutter based on the relative proportion of noise in the 
array signals, but its performance is unstable and can easily oversuppress speckle 
and cause signal distortion. The MV method improves imaging resolution by 
minimizing the desired output energy of the beamformer, yet still requires better 
noise suppression. The Eigen-Space Minimum Variance (ESBMV) method further 
enhances MV contrast by projecting the weights of the MV method into the eigen-
space. Despite these advancements, the high complexity of adaptive beamforming 
methods makes them difficult to implement on cart, underscoring the need for 
a low-complexity method that achieves high imaging quality. To address this, 
Vignon et al. [31] proposed an imaging method that uses only a subset of the 
transmit or receive array elements to simplify computational complexity. However, 
this reduction in complexity comes at the cost of imaging resolution. Asl et al. 
[32] suggested optimizing the computation of the spatial covariance matrix using 
Toeplitz matrices to reduce the runtime of the MV method. Nonetheless, since the 
eigen-decomposition of the covariance matrix is the most time-consuming part of 
the ESBMV method, this approach offers limited improvement in computational 
complexity. 

To overcome these complexity challenges in use, deep learning regression 
networks have proven to be a promising solution for reducing the time required 
for beamforming by learning its rules. Deep learning methods generally achieve 
higher computational efficiency, for instance, Wiacek et al. [33] develop CohereNet, 
a deep learning model that estimates spatial coherence functions for ultrasound 
beamforming, achieving enhanced image quality and computational efficiency 
compared to traditional CPU and GPU implementations. Similarly, Nair et al. 
[34] present a deep learning approach that simultaneously generates ultrasound 
images and segmentation maps from raw channel data, enhancing image quality 
and segmentation accuracy without traditional beamforming. In [35], Luijten et 
al. demonstrate that deep neural networks can efficiently perform fast high-quality 
adaptive ultrasound beamforming, maintaining image quality with reduced data-
rates and undersampled array design. Further, Khan et al. [36] explore deep learning 
methods for adaptive and compressive beamforming in medical ultrasound, achiev-
ing high-resolution images with low computational burden and robust performance 
under varying data conditions. Building on these advancements, Zhou et al. [37] 
introduce a multiconstrained hybrid GAN for ultrasound adaptive beamforming,
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achieving high-quality imaging by fusing RF-based and image-based features, 
enhancing spatial resolution and contrast while reducing computational complexity. 
Additionally, Huang et al. [38] addresses defocusing and distortion in flexible array 
transducers with deep learning techniques, enhancing lateral resolution and contrast 
in ultrasound images by learning proper time delays from RF data. 

In conclusion, current deep learning-based methods demonstrate significant 
potential to revolutionize ultrasound beamforming, providing high-resolution, high-
contrast imaging with reduced complexity and less processing time. 

3.3.4 Ultrasound Domain Transfer for Higher Adaptability 

Variations in ultrasound image collection and reconstruction settings can lead to 
discrepancies in data distribution, which hinders the effective application of pre-
trained networks. Thus, research on multi-source or multi-configuration domain 
adaptation is essential to ensure broader applicability of these models. Generative 
AI models have been applied to transform within different ultrasound domains, 
addressing issues of dataset bias and enhancing the adaptability of diagnostic 
algorithms. 

To address these issues, several studies have been conducted, yielding promising 
results. Huang et al. [39] introduced a stability-enhanced CycleGAN for normaliz-
ing ultrasound images across medical centers, reducing database bias and improving 
deep learning analysis by preserving details and ensuring training stability. Building 
on this, Huang et al. [40] also proposed M2O-DiffGAN (see Fig. 3.4), a domain 
transformation model addressing domain shift in ultrasound images, achieving 
high-fidelity image synthesis and improved generalizability across multiple clin-
ical datasets using a cycle-consistent adversarial learning architecture. To further 
enhance image quality, Liu et al. [41] proposed aself-supervised CycleGAN for 
ultrasound image super-resolution. This approach addresses low spatial resolution 
without paired training data, ensures perceptual consistency, and demonstrates 
superior performance on benchmark datasets. Similarly, Zhou et al. [42] developed 
an ultrasound-transfer GAN to perform domain transfer from the plane wave 
domain to the more frequently used line-scan domain, significantly extending 
potential applications and improving frame rates. Tierney et al. [43] proposed a 
domain adaptation scheme using cycle-consistent GANs, leveraging simulated and 
unlabeled in vivo data to improve image quality consistently. For specific clinical 
applications, Wildeboer et al. [44] introduced synthetic shear-wave elastography 
(sSWE) using deep learning to generate SWE images from conventional B-mode 
ultrasound, achieving accurate elasticity estimates and demonstrating potential for 
broader clinical applications. 

In summary, generative AI models offer great potential in enhancing the adapt-
ability of ultrasound imaging algorithms across different domains.
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Fig. 3.4 Ultrasound domain transfer for higher adaptability. (a) Performance degradation of 
image analysis methods tailored for the target domain is caused by domain shifts; however, high 
performance is achieved by the synthesized images after the domain transfer method. (b)  Overview  
of the M2O-DiffGAN proposed by Huang et al. [40] 

3.4 Technical Summary and Analysis 

Technically, deep learning-based ultrasound imaging methods can be categorized 
into three main classes: image-to-image, RF-to-image generation, and fusion-style 
techniques. 

The image-to-image approach typically operates in a post-processing manner, 
learning an end-to-end mapping between low-quality and high-quality images or 
across different ultrasound imaging domains. This kind of method commonly 
employs U-Net based CNN networks. For instance, Lu and Liu [45] introduced
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Fig. 3.5 Overview of perceptual loss network. An example ultrasound specific loss proposed in 
[28] 

an unsupervised super-resolution (USSR) framework that leverages multi-scale 
contextual information and dilated convolution to enhance ultrasound image res-
olution without prior training or external data. Similarly, Cammarasana et al. 
[46] developed a deep learning framework that incorporates a tuned version of 
Weighted Nuclear Norm Minimization (WNNM) for real-time ultrasound image 
denoising, achieving image quality improvement and feature preservation. Above 
reconstruction approaches are fairly straightforward. Multiple published studies 
have shown that while these methods perform well in reconstructing low-frequency 
information, their ability to reconstruct high-frequency information is rather limited, 
likely resulting in blurring effects. Specifically, the reconstruction results can 
produce good contrast but fail to accurately predict speckle texture. Research 
has proved that GAN structures, compared to CNNs, offer stronger predictive 
generation capabilities due to the continually adversarial interaction between the 
generator and discriminator, which can better generate high-frequency information 
and thus become a promising improvement direction. For example, Khor et al. 
[47] proposed a wavelet-based generative adversarial network (WGAN-DUS) that 
incorporates wavelet residual channel attention blocks and a wavelet-based dis-
criminator, significantly enhancing de-speckling performance while preserving fine 
image details. Some research efforts focus on enhancing ultrasound reconstruction 
performance by introducing more powerful regression-based loss functions. For 
instance, in [28], Zhou et al. proposed an ultrasound perceptual loss function, which 
better extracts ultrasound-specific features. As illustrated in Fig. 3.5, the ultrasound-
specific perceptual loss is obtained using an a pretrained classification CNN model. 
This pretrained model was forced to differentiate between low-end and high-end 
device images using a large, unpaired ultrasound dataset. 

The RF-to-Image approach, on the other hand, inputs raw or initially time-delay-
corrected RF signals and utilizes networks to learn the mapping relationships from 
RF to beamformed images. Some studies have employed multilayer perceptron 
(MLP) to sequentially process each channel or depth [48], while others have used
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generative AI models to predict multi-channel or global images [49, 50]. Compared 
to the image-to-image approach, RF-to-Image methods that sequentially process 
each channel typically require less network memory but can be time-consuming 
due to the iterative generation for different channels/depths. Additionally, the lack 
of spatial texture information from neighboring regions may limit the results. 
Conversely, global image generation does not require iteration and is relatively 
straightforward but demands more network memory resources and longer train-
ing time. Multi-channel/depth generation is a compromise between these two 
approaches. 

Furthermore, some studies have employed RF-to-RF conversion, such as pre-
dicting more channels of RF signals from fewer channels, followed by traditional 
beamforming based on multi-channel RF. Another type of study involves predicting 
the weight matrix of adaptive beamforming algorithms from raw RF signals, 
replacing the most time-consuming algorithmic part with mapping. For instance, 
in [37] (see Fig. 3.6), a hybrid generator processes the raw RF signal using two 
distinct learning modules: an intrinsic learning module that determines the 3D 
adaptive weights, and a perceptual learning module that generates 2D adaptive 
beamformed images. These outputs are then combined through a fusion module 
to produce high-quality beamformed ultrasound images. This fusion-style method 
considers multimodal features in both the image and signal domains, offering higher 
interpretability compared to purely black-box deep learning methods. 

3.5 Clinical Usability and Reliability 

To fully realize the potential of deep learning in clinical practice, integrating it 
with specific clinical scenarios is crucial. Recent studies have increasingly targeted 
specialized applications of deep learning in ultrasound reconstruction, underscoring 
the importance of clinical usability. For example, Bar-Shira et al. [51]  used  a  
deep neural network for super-resolution ultrasound localization microscopy in 
breast cancer detection, achieving rapid microvasculature imaging without prior 
knowledge of the point spread function. Another study by Blanken et al. [52] 
presented a one-dimensional dilated CNN for super-resolution imaging with direct 
deconvolution of RF signals, significantly improving detection-localization in dense 
microbubble environments. Yan et al. [53] integrated microbubble image features 
into a Kalman tracking framework with sparsity-based deconvolution, enhancing 
the accuracy of microbubble localization in deep tissue imaging. Sloun et al. [54] 
introduced Deep-ULM, a deep learning-based enhancement of ultrasound local-
ization microscopy, enabling real-time analysis of high-density contrast-enhanced 
ultrasound data, making it suitable for clinical applications. 

Transitioning from promising research to practical clinical tools requires rigorous 
validation. This involves extensive testing across diverse patient populations and 
clinical settings to ensure robustness and generalizability. While these studies have 
shown the potential of deep learning in specific imaging applications, a general-
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Fig. 3.6 An example method of reconstruction between raw RF data and an intermediate refined 
RF data. (a) A brief workflow of the MC-HGAN beamformer [37]. (b) Detailed network structure 
of MC-HGAN beamformer 

specific-general transformation approach is necessary. This involves validating the 
potential efficacy and generalizability of technologies, applying them to specialized 
scenarios, and confirming their reliability across diverse scenarios. Currently, there 
is a lack of comprehensive clinical multi-scenario systematic evaluation studies for 
ultrasound reconstruction. Advanced models like GANs and diffusion models have 
expanded the applications of generative AI in natural image generation. However, 
the medical field demands a higher standard of precision and detail due to its close 
link to human health. Reliability analysis of medical generative AI is crucial, espe-
cially in reconstructing speckle patterns in ultrasound imaging. Speckles provide 
essential information but can also introduce noise and artifacts, posing a unique 
challenge. Accurately reconstructing speckles without compromising image quality
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is essential for trustworthy ultrasound reconstruction. Moreover, usability studies 
should address integrating these technologies into existing clinical workflows, 
emphasizing user-friendliness for sonographers and technicians. 

3.6 Limitations and Future Directions 

Despite the advancements from deep learning for ultrasound reconstruction, several 
challenges remain that need to be solved to fully realize its potential. 

3.6.1 Explainability and Effectiveness of Deep Learning 
Models 

The explainability and effectiveness of deep learning models in ultrasound recon-
struction remain significant concerns. Many current models operate as “black 
boxes,” providing little insight into how they arrive at their conclusions. This lack 
of transparency can hinder clinical adoption, as practitioners need to trust and 
understand the tools they use. Future research should prioritize developing models 
with built-in explainability features, such as attention mechanisms or interpretability 
modules, to provide clearer insights into the decision-making process and enhance 
clinician confidence in these technologies. 

3.6.2 Public Data Collection and Diversity 

The effectiveness of deep learning models depends on diverse and comprehensive 
datasets. Many researchers use proprietary datasets, which leads to resource wastage 
as models need retraining for different datasets. Establishing a robust, public ultra-
sound dataset that covers a wide range of conditions and imaging scenarios would 
streamline research efforts, foster collaboration, and enhance model performance 
and generalizability. 

3.6.3 Comprehensive Clinical Reliability Validation 

Ensuring the clinical reliability of reconstructed images across various diseases is 
paramount. Various pathologies present unique challenges in image reconstruction, 
and the reliability of deep learning models must be thoroughly validated across a 
spectrum of conditions. Future research should focus on extensive clinical trials
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and validation studies to evaluate the performance of these models in reconstructing 
images of diverse lesions. A comprehensive analysis of the model’s ability to handle 
different types of pathological features is essential to ensure its robustness and 
reliability in clinical practice. 

3.6.4 Unbalance in Training Data 

Class imbalance in training datasets can significantly impact the performance of 
deep learning models. In ultrasound reconstruction, rare conditions or features may 
be underrepresented, leading to biased models that perform poorly on these cases. 
Addressing this imbalance through data augmentation, synthetic data generation, or 
weighted loss functions can improve model training. 

Generally, future research should continue to explore avenues that advance ultra-
sound reconstruction technologies towards greater effectiveness and wider adoption. 
Key directions include enhancing model explainability, establishing comprehensive 
public datasets, and conducting thorough clinical reliability validation, all of which 
are crucial challenges to address. Additionally, incorporating continuous learning 
concepts will be valuable to research, enabling models to adapt and improve over 
time with new data. The potential of large models for medical image reconstruction 
may also be investigated, as their capacity for handling complex patterns and large 
datasets could significantly enhance diagnostic accuracy and robustness. 

References 

1. Rumack CM, Levine D (2023) Diagnostic ultrasound. Elsevier, Amsterdam 
2. Contreras Ortiz SH, Chiu T, Fox MD (2021) Ultrasound image enhancement: a review. Biomed 

Signal Process Control 7(5):419–428. https://doi.org/10.1016/j.bspc.2012.02.002 
3. Tanter M, Fink M (2014) Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason 

Ferroelectr Freq Control 61(1):102–119. https://doi.org/10.1109/TUFFC.2014.6689779 
4. Liebgott H, Molares AR, Jensen JA, Cervenansky F, Jensen JA, Bernard O (2016) Plane-wave 

imaging challenge in medical ultrasound: 2016 IEEE international ultrasonics symposium. 
In: Proceedings of 2016 IEEE international ultrasonics symposium. https://doi.org/10.1109/ 
ULTSYM.2016.7728908 

5. Fenster A, Parraga G, Bax J (2011) Three-dimensional ultrasound scanning. Interface Focus 
1(4):503–519. https://doi.org/10.1098/rsfs.2011.0019 

6. Kimura BJ, Amundson SA, Willis CL, Gilpin EA, DeMaria AN (2002) Usefulness of a hand-
held ultrasound device for bedside examination of left ventricular function. Am J Cardiol 
90(9):1038–1039. https://doi.org/10.1016/s0002-9149(02)02699-1 

7. Amisha MP, Pathania M, Rathaur VK (2019) Overview of artificial intelligence in medicine. J 
Family Med Prim Care 8(7):2328–2331. https://doi.org/10.4103/jfmpc.jfmpc_440_19 

8. Ahishakiye E, Bastiaan Van Gijzen M, Tumwiine J, Wario R, Obungoloch J (2021) A survey 
on deep learning in medical image reconstruction. Intell Med 01(03):118–127. https://doi.org/ 
10.1016/j.imed.2021.03.003

https://doi.org/10.1016/j.bspc.2012.02.002
https://doi.org/10.1016/j.bspc.2012.02.002
https://doi.org/10.1016/j.bspc.2012.02.002
https://doi.org/10.1016/j.bspc.2012.02.002
https://doi.org/10.1016/j.bspc.2012.02.002
https://doi.org/10.1016/j.bspc.2012.02.002
https://doi.org/10.1016/j.bspc.2012.02.002
https://doi.org/10.1016/j.bspc.2012.02.002
https://doi.org/10.1016/j.bspc.2012.02.002
https://doi.org/10.1016/j.bspc.2012.02.002
https://doi.org/10.1109/TUFFC.2014.6689779
https://doi.org/10.1109/TUFFC.2014.6689779
https://doi.org/10.1109/TUFFC.2014.6689779
https://doi.org/10.1109/TUFFC.2014.6689779
https://doi.org/10.1109/TUFFC.2014.6689779
https://doi.org/10.1109/TUFFC.2014.6689779
https://doi.org/10.1109/TUFFC.2014.6689779
https://doi.org/10.1109/TUFFC.2014.6689779
https://doi.org/10.1109/ULTSYM.2016.7728908
https://doi.org/10.1109/ULTSYM.2016.7728908
https://doi.org/10.1109/ULTSYM.2016.7728908
https://doi.org/10.1109/ULTSYM.2016.7728908
https://doi.org/10.1109/ULTSYM.2016.7728908
https://doi.org/10.1109/ULTSYM.2016.7728908
https://doi.org/10.1109/ULTSYM.2016.7728908
https://doi.org/10.1109/ULTSYM.2016.7728908
https://doi.org/10.1098/rsfs.2011.0019
https://doi.org/10.1098/rsfs.2011.0019
https://doi.org/10.1098/rsfs.2011.0019
https://doi.org/10.1098/rsfs.2011.0019
https://doi.org/10.1098/rsfs.2011.0019
https://doi.org/10.1098/rsfs.2011.0019
https://doi.org/10.1098/rsfs.2011.0019
https://doi.org/10.1098/rsfs.2011.0019
https://doi.org/10.1016/s0002-9149(02)02699-1
https://doi.org/10.1016/s0002-9149(02)02699-1
https://doi.org/10.1016/s0002-9149(02)02699-1
https://doi.org/10.1016/s0002-9149(02)02699-1
https://doi.org/10.1016/s0002-9149(02)02699-1
https://doi.org/10.1016/s0002-9149(02)02699-1
https://doi.org/10.1016/s0002-9149(02)02699-1
https://doi.org/10.1016/s0002-9149(02)02699-1
https://doi.org/10.4103/jfmpc.jfmpc_440_19
https://doi.org/10.4103/jfmpc.jfmpc_440_19
https://doi.org/10.4103/jfmpc.jfmpc_440_19
https://doi.org/10.4103/jfmpc.jfmpc_440_19
https://doi.org/10.4103/jfmpc.jfmpc_440_19
https://doi.org/10.4103/jfmpc.jfmpc_440_19
https://doi.org/10.4103/jfmpc.jfmpc_440_19
https://doi.org/10.4103/jfmpc.jfmpc_440_19
https://doi.org/10.4103/jfmpc.jfmpc_440_19
https://doi.org/10.1016/j.imed.2021.03.003
https://doi.org/10.1016/j.imed.2021.03.003
https://doi.org/10.1016/j.imed.2021.03.003
https://doi.org/10.1016/j.imed.2021.03.003
https://doi.org/10.1016/j.imed.2021.03.003
https://doi.org/10.1016/j.imed.2021.03.003
https://doi.org/10.1016/j.imed.2021.03.003
https://doi.org/10.1016/j.imed.2021.03.003
https://doi.org/10.1016/j.imed.2021.03.003
https://doi.org/10.1016/j.imed.2021.03.003


3 Generative AI Techniques for Ultrasound Image Reconstruction 61

9. Rajpurkar P, Chen E, Banerjee O, Topol EJ (2022) AI in health and medicine. Nat Med 
28(1):31–38. https://doi.org/10.1038/s41591-021-01614-0 

10. Wells PNT (2006) Ultrasound imaging. Phys. Med. Biol. 51(13):R83. https://doi.org/10.1088/ 
0031-9155/51/13/R06 

11. R Lg (1996) Applications of high-frequency ultrasound imaging. IEEE Eng. Med. Biol. 
15(6):60–71 

12. Abu-Zidan FM, Hefny AF, Corr P (2011) Clinical ultrasound physics. J. Emerg Trauma Shock 
4(4):501 (2011). https://doi.org/10.4103/0974-2700.86646 

13. Li J, Ma Y, Zhang T, Shung KK, Zhu B (2022) Recent advancements in ultrasound transducer: 
from material strategies to biomedical applications. BME Front 2022, 9764501. https://doi.org/ 
10.34133/2022/9764501 

14. La TG, Le LH (2022) Flexible and wearable ultrasound device for medical applications: 
a review on materials, structural designs, and current challenges. Adv Mater Technol 
7(3):2100798. https://doi.org/10.1002/admt.202100798 

15. Becker DM, Tafoya CA, Becker SL, Kruger GH, Tafoya MJ, Becker TK (2016) The use of 
portable ultrasound devices in low- and middle-income countries: a systematic review of the 
literature. Tropical Med. Int. Health 21(3):294–311. https://doi.org/10.1111/tmi.12657 

16. Matrone G, Savoia AS, Caliano G, Magenes G (2015) The delay multiply and sum beamform-
ing algorithm in ultrasound B-mode medical imaging. IEEE Trans Med Imag 34(4):940–949. 
https://doi.org/10.1109/TMI.2014.2371235 

17. Zeng X, Wang Y, Yu J, Guo Y (2013) Beam-domain eigenspace-based minimum variance 
beamformer for medical ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 
60(12):2670–2676. https://doi.org/10.1109/tuffc.2013.2866 

18. Sasso M, Cohen-Bacrie C (2005) Medical ultrasound imaging using the fully adaptive 
beamformer. In: Proceedings. (ICASSP’05). IEEE international conference on acoustics, 
speech, and signal processing. https://doi.org/10.1109/icassp.2005.1415448 

19. Prada C, Wu F, Fink M (1991) The iterative time reversal mirror: a solution to self-focusing in 
the pulse echo mode. J. Acoust Soc Am 90(2):1119–1129. https://doi.org/10.1121/1.402301 

20. Montaldo G, Tanter M, Bercoff J, Benech N, Fink M (2009) Coherent plane-wave compound-
ing for very high frame rate ultrasonography and transient elastography. IEEE Trans Ultrason 
Ferroelectr Freq Control 56(3):489–506. https://doi.org/10.1109/tuffc.2009.1067 

21. Zhou Z, Wang Y, Yu J, Guo Y, Guo W, Qi Y (2018) High spatial-temporal resolution 
reconstruction of plane-wave ultrasound images with a multichannel multiscale convolutional 
neural network. IEEE Trans Ultrason Ferroelectr Freq Control 65(11):1983–1996. https://doi. 
org/10.1109/tuffc.2018.2865504 

22. Lu JY, Lee PY, Huang CC (2022) Improving image quality for single-angle plane wave 
ultrasound imaging with convolutional neural network beamformer. IEEE Trans Ultrason 
Ferroelectr Freq Control 69(4):1326–1336. https://doi.org/10.1109/tuffc.2022.3152689 

23. Senouf O, et al (2018) High frame-rate cardiac ultrasound imaging with deep learning. In: 
Frangi AF, Schnabel JA, Davatzikos C, Alberola-López C, Fichtinger G (eds), Medical image 
computing and computer assisted intervention – MICCAI 2018. Springer, Cham, pp. 126–134. 
https://doi.org/10.1007/978-3-030-00928-1_15 

24. Chen Y, Liu J, Luo X, Luo J (2021) ApodNet: learning for high frame rate synthetic transmit 
aperture ultrasound imaging. IEEE Trans Med Imag 40(11):3190–3204. https://doi.org/10. 
1109/tmi.2021.3084821 

25. Zhou Z, Wang Y, Guo Y, Qi Y, Yu J (2020) Image quality improvement of hand-held ultrasound 
devices with a two-stage generative adversarial network. IEEE Trans Biomed Eng 67(1):298– 
311. https://doi.org/10.1109/TBME.2019.2912986 

26. Dong G, Ma Y, Basu A (2021) Feature-guided CNN for denoising images from portable ultra-
sound devices. IEEE Access 9:28272–28281. https://doi.org/10.1109/ACCESS.2021.3059003 

27. Wang R, et al (2019) High-resolution image reconstruction for portable ultrasound imaging 
devices. EURASIP J Adv Signal Process 2019(1):56. https://doi.org/10.1186/s13634-019-
0649-x

https://doi.org/10.1038/s41591-021-01614-0
https://doi.org/10.1038/s41591-021-01614-0
https://doi.org/10.1038/s41591-021-01614-0
https://doi.org/10.1038/s41591-021-01614-0
https://doi.org/10.1038/s41591-021-01614-0
https://doi.org/10.1038/s41591-021-01614-0
https://doi.org/10.1038/s41591-021-01614-0
https://doi.org/10.1038/s41591-021-01614-0
https://doi.org/10.1038/s41591-021-01614-0
https://doi.org/10.1088/0031-9155/51/13/R06
https://doi.org/10.1088/0031-9155/51/13/R06
https://doi.org/10.1088/0031-9155/51/13/R06
https://doi.org/10.1088/0031-9155/51/13/R06
https://doi.org/10.1088/0031-9155/51/13/R06
https://doi.org/10.1088/0031-9155/51/13/R06
https://doi.org/10.1088/0031-9155/51/13/R06
https://doi.org/10.1088/0031-9155/51/13/R06
https://doi.org/10.1088/0031-9155/51/13/R06
https://doi.org/10.1088/0031-9155/51/13/R06
https://doi.org/10.4103/0974-2700.86646
https://doi.org/10.4103/0974-2700.86646
https://doi.org/10.4103/0974-2700.86646
https://doi.org/10.4103/0974-2700.86646
https://doi.org/10.4103/0974-2700.86646
https://doi.org/10.4103/0974-2700.86646
https://doi.org/10.4103/0974-2700.86646
https://doi.org/10.4103/0974-2700.86646
https://doi.org/10.34133/2022/9764501
https://doi.org/10.34133/2022/9764501
https://doi.org/10.34133/2022/9764501
https://doi.org/10.34133/2022/9764501
https://doi.org/10.34133/2022/9764501
https://doi.org/10.34133/2022/9764501
https://doi.org/10.34133/2022/9764501
https://doi.org/10.1002/admt.202100798
https://doi.org/10.1002/admt.202100798
https://doi.org/10.1002/admt.202100798
https://doi.org/10.1002/admt.202100798
https://doi.org/10.1002/admt.202100798
https://doi.org/10.1002/admt.202100798
https://doi.org/10.1002/admt.202100798
https://doi.org/10.1111/tmi.12657
https://doi.org/10.1111/tmi.12657
https://doi.org/10.1111/tmi.12657
https://doi.org/10.1111/tmi.12657
https://doi.org/10.1111/tmi.12657
https://doi.org/10.1111/tmi.12657
https://doi.org/10.1111/tmi.12657
https://doi.org/10.1109/TMI.2014.2371235
https://doi.org/10.1109/TMI.2014.2371235
https://doi.org/10.1109/TMI.2014.2371235
https://doi.org/10.1109/TMI.2014.2371235
https://doi.org/10.1109/TMI.2014.2371235
https://doi.org/10.1109/TMI.2014.2371235
https://doi.org/10.1109/TMI.2014.2371235
https://doi.org/10.1109/TMI.2014.2371235
https://doi.org/10.1109/tuffc.2013.2866
https://doi.org/10.1109/tuffc.2013.2866
https://doi.org/10.1109/tuffc.2013.2866
https://doi.org/10.1109/tuffc.2013.2866
https://doi.org/10.1109/tuffc.2013.2866
https://doi.org/10.1109/tuffc.2013.2866
https://doi.org/10.1109/tuffc.2013.2866
https://doi.org/10.1109/tuffc.2013.2866
https://doi.org/10.1109/icassp.2005.1415448
https://doi.org/10.1109/icassp.2005.1415448
https://doi.org/10.1109/icassp.2005.1415448
https://doi.org/10.1109/icassp.2005.1415448
https://doi.org/10.1109/icassp.2005.1415448
https://doi.org/10.1109/icassp.2005.1415448
https://doi.org/10.1109/icassp.2005.1415448
https://doi.org/10.1109/icassp.2005.1415448
https://doi.org/10.1121/1.402301
https://doi.org/10.1121/1.402301
https://doi.org/10.1121/1.402301
https://doi.org/10.1121/1.402301
https://doi.org/10.1121/1.402301
https://doi.org/10.1121/1.402301
https://doi.org/10.1121/1.402301
https://doi.org/10.1109/tuffc.2009.1067
https://doi.org/10.1109/tuffc.2009.1067
https://doi.org/10.1109/tuffc.2009.1067
https://doi.org/10.1109/tuffc.2009.1067
https://doi.org/10.1109/tuffc.2009.1067
https://doi.org/10.1109/tuffc.2009.1067
https://doi.org/10.1109/tuffc.2009.1067
https://doi.org/10.1109/tuffc.2009.1067
https://doi.org/10.1109/tuffc.2018.2865504
https://doi.org/10.1109/tuffc.2018.2865504
https://doi.org/10.1109/tuffc.2018.2865504
https://doi.org/10.1109/tuffc.2018.2865504
https://doi.org/10.1109/tuffc.2018.2865504
https://doi.org/10.1109/tuffc.2018.2865504
https://doi.org/10.1109/tuffc.2018.2865504
https://doi.org/10.1109/tuffc.2018.2865504
https://doi.org/10.1109/tuffc.2022.3152689
https://doi.org/10.1109/tuffc.2022.3152689
https://doi.org/10.1109/tuffc.2022.3152689
https://doi.org/10.1109/tuffc.2022.3152689
https://doi.org/10.1109/tuffc.2022.3152689
https://doi.org/10.1109/tuffc.2022.3152689
https://doi.org/10.1109/tuffc.2022.3152689
https://doi.org/10.1109/tuffc.2022.3152689
https://doi.org/10.1007/978-3-030-00928-1_15
https://doi.org/10.1007/978-3-030-00928-1_15
https://doi.org/10.1007/978-3-030-00928-1_15
https://doi.org/10.1007/978-3-030-00928-1_15
https://doi.org/10.1007/978-3-030-00928-1_15
https://doi.org/10.1007/978-3-030-00928-1_15
https://doi.org/10.1007/978-3-030-00928-1_15
https://doi.org/10.1007/978-3-030-00928-1_15
https://doi.org/10.1007/978-3-030-00928-1_15
https://doi.org/10.1007/978-3-030-00928-1_15
https://doi.org/10.1007/978-3-030-00928-1_15
https://doi.org/10.1109/tmi.2021.3084821
https://doi.org/10.1109/tmi.2021.3084821
https://doi.org/10.1109/tmi.2021.3084821
https://doi.org/10.1109/tmi.2021.3084821
https://doi.org/10.1109/tmi.2021.3084821
https://doi.org/10.1109/tmi.2021.3084821
https://doi.org/10.1109/tmi.2021.3084821
https://doi.org/10.1109/tmi.2021.3084821
https://doi.org/10.1109/TBME.2019.2912986
https://doi.org/10.1109/TBME.2019.2912986
https://doi.org/10.1109/TBME.2019.2912986
https://doi.org/10.1109/TBME.2019.2912986
https://doi.org/10.1109/TBME.2019.2912986
https://doi.org/10.1109/TBME.2019.2912986
https://doi.org/10.1109/TBME.2019.2912986
https://doi.org/10.1109/TBME.2019.2912986
https://doi.org/10.1109/ACCESS.2021.3059003
https://doi.org/10.1109/ACCESS.2021.3059003
https://doi.org/10.1109/ACCESS.2021.3059003
https://doi.org/10.1109/ACCESS.2021.3059003
https://doi.org/10.1109/ACCESS.2021.3059003
https://doi.org/10.1109/ACCESS.2021.3059003
https://doi.org/10.1109/ACCESS.2021.3059003
https://doi.org/10.1109/ACCESS.2021.3059003
https://doi.org/10.1186/s13634-019-0649-x
https://doi.org/10.1186/s13634-019-0649-x
https://doi.org/10.1186/s13634-019-0649-x
https://doi.org/10.1186/s13634-019-0649-x
https://doi.org/10.1186/s13634-019-0649-x
https://doi.org/10.1186/s13634-019-0649-x
https://doi.org/10.1186/s13634-019-0649-x
https://doi.org/10.1186/s13634-019-0649-x
https://doi.org/10.1186/s13634-019-0649-x


62 Z. Zhou et al.

28. Zhou Z, Guo Y, Wang Y (2021) Handheld ultrasound video high-quality reconstruction using 
a low-rank representation multipathway generative adversarial network. IEEE Trans Neural 
Netw Learn Syst 32(2), 575–588. https://doi.org/10.1109/TNNLS.2020.3025380 

29. Mamistvalov A, Amar A, Kessler N, Eldar YC (2022) Deep-learning based adaptive ultrasound 
imaging from sub-nyquist channel data. IEEE Trans Ultrason Ferroelectr Freq Control 
69(5):1638–1648. https://doi.org/10.1109/TUFFC.2022.3160859 

30. Xiao D, Pitman WMK, Yiu BYS, Chee AJY, Yu ACH (2022) Minimizing image quality loss 
after channel count reduction for plane wave ultrasound via deep learning inference. IEEE 
Trans Ultrason Ferroelectr Freq Control 69(10):2849–2861. https://doi.org/10.1109/tuffc.2022. 
3192854 

31. Vignon F, Burcher MR (2008) Capon beamforming in medical ultrasound imaging with 
focused beams. IEEE Trans Ultrason Ferroelectr Freq Control 55(3):619–628. https://doi.org/ 
10.1109/tuffc.2008.686 

32. Asl BM, Mahloojifar A (2012) A low-complexity adaptive beamformer for ultrasound imaging 
using structured covariance matrix. IEEE Trans Ultrason Ferroelectr Freq Control 59(4):660– 
667. https://doi.org/10.1109/tuffc.2012.2244 

33. Wiacek A, González E, Bell MAL (2020) CohereNet: a deep learning architecture for 
ultrasound spatial correlation estimation and coherence-based beamforming. IEEE Trans 
Ultrason Ferroelectr Freq Control 67(12):2574–2583. https://doi.org/10.1109/TUFFC.2020. 
2982848 

34. Nair AA, Washington KN, Tran TD, Reiter A, Lediju Bell MA (2020) Deep learning to 
obtain simultaneous image and segmentation outputs from a single input of raw ultrasound 
channel data. IEEE Trans Ultrason Ferroelectr Freq Control 67(12):2493–2509. https://doi. 
org/10.1109/TUFFC.2020.2993779 

35. Luijten B, et al (2020) Adaptive ultrasound beamforming using deep learning. IEEE Trans Med 
Imag 39(12):3967–3978. https://doi.org/10.1109/TMI.2020.3008537 

36. Khan S, Huh J, Ye JC (2020) Adaptive and compressive beamforming using deep learning for 
medical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 67(8):1558–1572. https:// 
doi.org/10.1109/TUFFC.2020.2977202 

37. Zhou Z, Guo Y, Wang Y (2021) Ultrasound deep beamforming using a multiconstrained hybrid 
generative adversarial network. Med Image Anal 71:102086. https://doi.org/10.1016/j.media. 
2021.102086 

38. Huang X, Lediju Bell MA, Ding K (2021) Deep learning for ultrasound beamforming in 
flexible array transducer. IEEE Trans Med Imag 40(11):3178–3189. https://doi.org/10.1109/ 
TMI.2021.3087450 

39. Huang L, Zhou Z, Guo Y,Wang Y (2022) A stability-enhanced CycleGAN for effective domain 
transformation of unpaired ultrasound images. Biomed Signal Process Control 77:103831. 
https://doi.org/10.1016/j.bspc.2022.103831 

40. Huang L, et al (2024) Standardization of ultrasound images across various centers: M2O-
DiffGAN bridging the gaps among unpaired multi-domain ultrasound images. Med Image Anal 
95:103187. https://doi.org/10.1016/j.media.2024.103187 

41. Liu H, Liu J, Hou S, Tao T, Han J (2023) Perception consistency ultrasound image super-
resolution via self-supervised CycleGAN. Neural Comput Appl 35(17):12331–12341. https:// 
doi.org/10.1007/s00521-020-05687-9 

42. Zhou Z, Wang Y, Guo Y, Jiang X, Qi Y (2020) Ultrafast plane wave imaging with line-scan-
quality using an ultrasound-transfer generative adversarial network. IEEE J Biomed Health Inf 
24(4):943–956. https://doi.org/10.1109/JBHI.2019.2950334 

43. Tierney J, Luchies A, Khan C, Byram B, Berger M (2020) Domain adaptation for ultrasound 
beamforming. In: Martel AL, Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, 
Racoceanu D, Joskowicz L (eds) Medical image computing and computer assisted intervention 
– MICCAI 2020. Springer, Cham, pp. 410–420. https://doi.org/10.1007/978-3-030-59713-9_ 
40 

44. Wildeboer RR, et al (2020) Synthetic elastography using b-mode ultrasound through a 
deep fully convolutional neural network. IEEE Trans Ultrason Ferroelectr Freq Control 
67(12):2640–2648. https://doi.org/10.1109/TUFFC.2020.2983099

https://doi.org/10.1109/TNNLS.2020.3025380
https://doi.org/10.1109/TNNLS.2020.3025380
https://doi.org/10.1109/TNNLS.2020.3025380
https://doi.org/10.1109/TNNLS.2020.3025380
https://doi.org/10.1109/TNNLS.2020.3025380
https://doi.org/10.1109/TNNLS.2020.3025380
https://doi.org/10.1109/TNNLS.2020.3025380
https://doi.org/10.1109/TNNLS.2020.3025380
https://doi.org/10.1109/TUFFC.2022.3160859
https://doi.org/10.1109/TUFFC.2022.3160859
https://doi.org/10.1109/TUFFC.2022.3160859
https://doi.org/10.1109/TUFFC.2022.3160859
https://doi.org/10.1109/TUFFC.2022.3160859
https://doi.org/10.1109/TUFFC.2022.3160859
https://doi.org/10.1109/TUFFC.2022.3160859
https://doi.org/10.1109/TUFFC.2022.3160859
https://doi.org/10.1109/tuffc.2022.3192854
https://doi.org/10.1109/tuffc.2022.3192854
https://doi.org/10.1109/tuffc.2022.3192854
https://doi.org/10.1109/tuffc.2022.3192854
https://doi.org/10.1109/tuffc.2022.3192854
https://doi.org/10.1109/tuffc.2022.3192854
https://doi.org/10.1109/tuffc.2022.3192854
https://doi.org/10.1109/tuffc.2022.3192854
https://doi.org/10.1109/tuffc.2008.686
https://doi.org/10.1109/tuffc.2008.686
https://doi.org/10.1109/tuffc.2008.686
https://doi.org/10.1109/tuffc.2008.686
https://doi.org/10.1109/tuffc.2008.686
https://doi.org/10.1109/tuffc.2008.686
https://doi.org/10.1109/tuffc.2008.686
https://doi.org/10.1109/tuffc.2008.686
https://doi.org/10.1109/tuffc.2012.2244
https://doi.org/10.1109/tuffc.2012.2244
https://doi.org/10.1109/tuffc.2012.2244
https://doi.org/10.1109/tuffc.2012.2244
https://doi.org/10.1109/tuffc.2012.2244
https://doi.org/10.1109/tuffc.2012.2244
https://doi.org/10.1109/tuffc.2012.2244
https://doi.org/10.1109/tuffc.2012.2244
https://doi.org/10.1109/TUFFC.2020.2982848
https://doi.org/10.1109/TUFFC.2020.2982848
https://doi.org/10.1109/TUFFC.2020.2982848
https://doi.org/10.1109/TUFFC.2020.2982848
https://doi.org/10.1109/TUFFC.2020.2982848
https://doi.org/10.1109/TUFFC.2020.2982848
https://doi.org/10.1109/TUFFC.2020.2982848
https://doi.org/10.1109/TUFFC.2020.2982848
https://doi.org/10.1109/TUFFC.2020.2993779
https://doi.org/10.1109/TUFFC.2020.2993779
https://doi.org/10.1109/TUFFC.2020.2993779
https://doi.org/10.1109/TUFFC.2020.2993779
https://doi.org/10.1109/TUFFC.2020.2993779
https://doi.org/10.1109/TUFFC.2020.2993779
https://doi.org/10.1109/TUFFC.2020.2993779
https://doi.org/10.1109/TUFFC.2020.2993779
https://doi.org/10.1109/TMI.2020.3008537
https://doi.org/10.1109/TMI.2020.3008537
https://doi.org/10.1109/TMI.2020.3008537
https://doi.org/10.1109/TMI.2020.3008537
https://doi.org/10.1109/TMI.2020.3008537
https://doi.org/10.1109/TMI.2020.3008537
https://doi.org/10.1109/TMI.2020.3008537
https://doi.org/10.1109/TMI.2020.3008537
https://doi.org/10.1109/TUFFC.2020.2977202
https://doi.org/10.1109/TUFFC.2020.2977202
https://doi.org/10.1109/TUFFC.2020.2977202
https://doi.org/10.1109/TUFFC.2020.2977202
https://doi.org/10.1109/TUFFC.2020.2977202
https://doi.org/10.1109/TUFFC.2020.2977202
https://doi.org/10.1109/TUFFC.2020.2977202
https://doi.org/10.1109/TUFFC.2020.2977202
https://doi.org/10.1016/j.media.2021.102086
https://doi.org/10.1016/j.media.2021.102086
https://doi.org/10.1016/j.media.2021.102086
https://doi.org/10.1016/j.media.2021.102086
https://doi.org/10.1016/j.media.2021.102086
https://doi.org/10.1016/j.media.2021.102086
https://doi.org/10.1016/j.media.2021.102086
https://doi.org/10.1016/j.media.2021.102086
https://doi.org/10.1016/j.media.2021.102086
https://doi.org/10.1109/TMI.2021.3087450
https://doi.org/10.1109/TMI.2021.3087450
https://doi.org/10.1109/TMI.2021.3087450
https://doi.org/10.1109/TMI.2021.3087450
https://doi.org/10.1109/TMI.2021.3087450
https://doi.org/10.1109/TMI.2021.3087450
https://doi.org/10.1109/TMI.2021.3087450
https://doi.org/10.1109/TMI.2021.3087450
https://doi.org/10.1016/j.bspc.2022.103831
https://doi.org/10.1016/j.bspc.2022.103831
https://doi.org/10.1016/j.bspc.2022.103831
https://doi.org/10.1016/j.bspc.2022.103831
https://doi.org/10.1016/j.bspc.2022.103831
https://doi.org/10.1016/j.bspc.2022.103831
https://doi.org/10.1016/j.bspc.2022.103831
https://doi.org/10.1016/j.bspc.2022.103831
https://doi.org/10.1016/j.bspc.2022.103831
https://doi.org/10.1016/j.media.2024.103187
https://doi.org/10.1016/j.media.2024.103187
https://doi.org/10.1016/j.media.2024.103187
https://doi.org/10.1016/j.media.2024.103187
https://doi.org/10.1016/j.media.2024.103187
https://doi.org/10.1016/j.media.2024.103187
https://doi.org/10.1016/j.media.2024.103187
https://doi.org/10.1016/j.media.2024.103187
https://doi.org/10.1016/j.media.2024.103187
https://doi.org/10.1007/s00521-020-05687-9
https://doi.org/10.1007/s00521-020-05687-9
https://doi.org/10.1007/s00521-020-05687-9
https://doi.org/10.1007/s00521-020-05687-9
https://doi.org/10.1007/s00521-020-05687-9
https://doi.org/10.1007/s00521-020-05687-9
https://doi.org/10.1007/s00521-020-05687-9
https://doi.org/10.1007/s00521-020-05687-9
https://doi.org/10.1007/s00521-020-05687-9
https://doi.org/10.1109/JBHI.2019.2950334
https://doi.org/10.1109/JBHI.2019.2950334
https://doi.org/10.1109/JBHI.2019.2950334
https://doi.org/10.1109/JBHI.2019.2950334
https://doi.org/10.1109/JBHI.2019.2950334
https://doi.org/10.1109/JBHI.2019.2950334
https://doi.org/10.1109/JBHI.2019.2950334
https://doi.org/10.1109/JBHI.2019.2950334
https://doi.org/10.1007/978-3-030-59713-9_40
https://doi.org/10.1007/978-3-030-59713-9_40
https://doi.org/10.1007/978-3-030-59713-9_40
https://doi.org/10.1007/978-3-030-59713-9_40
https://doi.org/10.1007/978-3-030-59713-9_40
https://doi.org/10.1007/978-3-030-59713-9_40
https://doi.org/10.1007/978-3-030-59713-9_40
https://doi.org/10.1007/978-3-030-59713-9_40
https://doi.org/10.1007/978-3-030-59713-9_40
https://doi.org/10.1007/978-3-030-59713-9_40
https://doi.org/10.1007/978-3-030-59713-9_40
https://doi.org/10.1109/TUFFC.2020.2983099
https://doi.org/10.1109/TUFFC.2020.2983099
https://doi.org/10.1109/TUFFC.2020.2983099
https://doi.org/10.1109/TUFFC.2020.2983099
https://doi.org/10.1109/TUFFC.2020.2983099
https://doi.org/10.1109/TUFFC.2020.2983099
https://doi.org/10.1109/TUFFC.2020.2983099
https://doi.org/10.1109/TUFFC.2020.2983099


3 Generative AI Techniques for Ultrasound Image Reconstruction 63

45. Lu J, Liu W (2018) Unsupervised super-resolution framework for medical ultrasound images 
using dilated convolutional neural networks. In: 2018 IEEE 3rd international conference 
on image, vision and computing (ICIVC), pp. 739–744. https://doi.org/10.1109/ICIVC.2018. 
8492821 

46. Cammarasana S, Nicolardi P, Patanè G (2022) Real-time denoising of ultrasound images based 
on deep learning. Med Biol Eng Comput 60(8):2229–2244. https://doi.org/10.1007/s11517-
022-02573-5 

47. Khor HG, Ning G, Zhang X, Liao H (2022) Ultrasound speckle reduction using wavelet-based 
generative adversarial network. IEEE J Biomed Health Inf 26(7):3080–3091. https://doi.org/ 
10.1109/jbhi.2022.3144628 

48. Perdios D, Besson AGJ, Arditi M, Thiran JP (Eds) (2017) A deep learning approach to 
ultrasound image recovery. In: 2017 IEEE International Ultrasonics Symposium (IUS). https:// 
doi.org/10.1109/ULTSYM.2017.8092746 

49. Yoon YH, Khan S, Huh J, Ye JC (2019) Efficient b-mode ultrasound image reconstruction from 
sub-sampled RF data using deep learning. IEEE Trans Med Imag 38(2):325–336. https://doi. 
org/10.1109/tmi.2018.2864821 

50. Khan S, Huh J, Ye JC (2022) Switchable and tunable deep beamformer using adaptive instance 
normalization for medical ultrasound. IEEE Trans Med Imag 41(2):266–278. https://doi.org/ 
10.1109/TMI.2021.3110730 

51. Bar-Shira O, et al (2021) Learned super resolution ultrasound for improved breast lesion 
characterization. In: Medical image computing and computer assisted intervention – MICCAI 
2021. Springer, Cham, pp. 109–118. https://doi.org/10.1007/978-3-030-87234-2_11 

52. Blanken N, Wolterink JM, Delingette H, Brune C, Versluis M, Lajoinie G (2022) Super-
resolved microbubble localization in single-channel ultrasound RF signals using deep learning. 
IEEE Trans Med Imag 41(9):2532–2542. https://doi.org/10.1109/tmi.2022.3166443 

53. Yan J, Zhang T, Broughton-Venner J, Huang P, Tang MX (2022) Super-resolution ultrasound 
through sparsity-based deconvolution and multi-feature tracking. IEEE Trans Med Imag 
41(8):1938–1947. https://doi.org/10.1109/TMI.2022.3152396 

54. van Sloun RJG, Solomon O, Bruce M, Khaing ZZ, Eldar YC, Mischi M (2019) Deep learning 
for super-resolution vascular ultrasound imaging. In: 2019 IEEE international conference on 
acoustics, speech, and signal processing, ICASSP 2019 - proceedings, pp. 1055–1059. https:// 
doi.org/10.1109/ICASSP.2019.8683813

https://doi.org/10.1109/ICIVC.2018.8492821
https://doi.org/10.1109/ICIVC.2018.8492821
https://doi.org/10.1109/ICIVC.2018.8492821
https://doi.org/10.1109/ICIVC.2018.8492821
https://doi.org/10.1109/ICIVC.2018.8492821
https://doi.org/10.1109/ICIVC.2018.8492821
https://doi.org/10.1109/ICIVC.2018.8492821
https://doi.org/10.1109/ICIVC.2018.8492821
https://doi.org/10.1007/s11517-022-02573-5
https://doi.org/10.1007/s11517-022-02573-5
https://doi.org/10.1007/s11517-022-02573-5
https://doi.org/10.1007/s11517-022-02573-5
https://doi.org/10.1007/s11517-022-02573-5
https://doi.org/10.1007/s11517-022-02573-5
https://doi.org/10.1007/s11517-022-02573-5
https://doi.org/10.1007/s11517-022-02573-5
https://doi.org/10.1007/s11517-022-02573-5
https://doi.org/10.1109/jbhi.2022.3144628
https://doi.org/10.1109/jbhi.2022.3144628
https://doi.org/10.1109/jbhi.2022.3144628
https://doi.org/10.1109/jbhi.2022.3144628
https://doi.org/10.1109/jbhi.2022.3144628
https://doi.org/10.1109/jbhi.2022.3144628
https://doi.org/10.1109/jbhi.2022.3144628
https://doi.org/10.1109/jbhi.2022.3144628
https://doi.org/10.1109/ULTSYM.2017.8092746
https://doi.org/10.1109/ULTSYM.2017.8092746
https://doi.org/10.1109/ULTSYM.2017.8092746
https://doi.org/10.1109/ULTSYM.2017.8092746
https://doi.org/10.1109/ULTSYM.2017.8092746
https://doi.org/10.1109/ULTSYM.2017.8092746
https://doi.org/10.1109/ULTSYM.2017.8092746
https://doi.org/10.1109/ULTSYM.2017.8092746
https://doi.org/10.1109/tmi.2018.2864821
https://doi.org/10.1109/tmi.2018.2864821
https://doi.org/10.1109/tmi.2018.2864821
https://doi.org/10.1109/tmi.2018.2864821
https://doi.org/10.1109/tmi.2018.2864821
https://doi.org/10.1109/tmi.2018.2864821
https://doi.org/10.1109/tmi.2018.2864821
https://doi.org/10.1109/tmi.2018.2864821
https://doi.org/10.1109/TMI.2021.3110730
https://doi.org/10.1109/TMI.2021.3110730
https://doi.org/10.1109/TMI.2021.3110730
https://doi.org/10.1109/TMI.2021.3110730
https://doi.org/10.1109/TMI.2021.3110730
https://doi.org/10.1109/TMI.2021.3110730
https://doi.org/10.1109/TMI.2021.3110730
https://doi.org/10.1109/TMI.2021.3110730
https://doi.org/10.1007/978-3-030-87234-2_11
https://doi.org/10.1007/978-3-030-87234-2_11
https://doi.org/10.1007/978-3-030-87234-2_11
https://doi.org/10.1007/978-3-030-87234-2_11
https://doi.org/10.1007/978-3-030-87234-2_11
https://doi.org/10.1007/978-3-030-87234-2_11
https://doi.org/10.1007/978-3-030-87234-2_11
https://doi.org/10.1007/978-3-030-87234-2_11
https://doi.org/10.1007/978-3-030-87234-2_11
https://doi.org/10.1007/978-3-030-87234-2_11
https://doi.org/10.1007/978-3-030-87234-2_11
https://doi.org/10.1109/tmi.2022.3166443
https://doi.org/10.1109/tmi.2022.3166443
https://doi.org/10.1109/tmi.2022.3166443
https://doi.org/10.1109/tmi.2022.3166443
https://doi.org/10.1109/tmi.2022.3166443
https://doi.org/10.1109/tmi.2022.3166443
https://doi.org/10.1109/tmi.2022.3166443
https://doi.org/10.1109/tmi.2022.3166443
https://doi.org/10.1109/TMI.2022.3152396
https://doi.org/10.1109/TMI.2022.3152396
https://doi.org/10.1109/TMI.2022.3152396
https://doi.org/10.1109/TMI.2022.3152396
https://doi.org/10.1109/TMI.2022.3152396
https://doi.org/10.1109/TMI.2022.3152396
https://doi.org/10.1109/TMI.2022.3152396
https://doi.org/10.1109/TMI.2022.3152396
https://doi.org/10.1109/ICASSP.2019.8683813
https://doi.org/10.1109/ICASSP.2019.8683813
https://doi.org/10.1109/ICASSP.2019.8683813
https://doi.org/10.1109/ICASSP.2019.8683813
https://doi.org/10.1109/ICASSP.2019.8683813
https://doi.org/10.1109/ICASSP.2019.8683813
https://doi.org/10.1109/ICASSP.2019.8683813
https://doi.org/10.1109/ICASSP.2019.8683813


Chapter 4 
Conditional Image Synthesis Using 
Generative Diffusion Models: Application 
to Pathological Prostate MR Image 
Generation 

Shaheer U. Saeed and Yipeng Hu 

Abstract In this work, we propose an image synthesis mechanism based on 
diffusion, which models the reversal of the sequential addition of noise to an 
image. We further develop conditioning mechanisms for this approach, such that 
image synthesis can be conditioned on information relevant to the clinical tasks-of-
interest. We demonstrate the conditional synthesis capabilities of such models via an 
example application of multi-sequence prostate MR image synthesis, conditioned on 
text, to control lesion presence and sequence, and on images, to generate paired MR 
sequences e.g., generating diffusion-weighted MR from T2-weighted MR, which 
are two challenging tasks in pathological image synthesis. We validate our method 
using 2D image slices from real suspected prostate cancer patients. The realism of 
the synthetic images was validated through a blind evaluation by an expert radiolo-
gist, specialising in urological MR with 4 years of experience. The radiologist was 
able to distinguish between real and fake images with an accuracy of 59.4%, only 
slightly above the random chance of 50%. For the first time, we also evaluate the 
realism of the generated pathology by blind expert identification of the presence of 
suspected lesions. We find that the clinician performs similarly for both real and 
synthesised images, with a 2.9 percentage point difference in lesion identification 
accuracy between real and synthesised images, demonstrating the potentials for 
radiological training. Additionally, we demonstrated that a machine learning model 
trained for lesion identification exhibited improved performance (76.2% vs 70.4%, 
a statistically significant increase) when augmented with synthesised data compared 
to training solely on real images, highlighting the utility of synthesised images in 
enhancing model performance. 
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4.1 Introduction 

4.1.1 Image Synthesis in Medical Imaging 

Image synthesis plays a pivotal role in medical imaging for a variety of applications 
[13]. For training machine learning models, image synthesis is used to augment 
exisiting real training data, to ensure robustness and generalisability of the models 
to varied appearances of anatomical and pathological regions-of-interest [2, 8]. This 
is especially beneficial for training, or adapting existing models, when training data 
for the application-of-interest is scarce. Under these data-constrained scenarios it 
can alleviate issues with generalisability by training models with a large breadth 
of samples, of the kinds that may be encountered at inference [2, 8]. In such 
applications, synthetic training data, in conjunction with real data, often leads to 
improved task performance for automated tasks like organ segmentation [2, 8]. 
In addition to machine learning model training, image synthesis has also been 
proposed for radiological simulations, to enhance training experiences or pre-
procedure planning [7]. 

4.1.2 Necessity of Conditional Image Synthesis 

While these applications benefit from realistic synthetic data, it is important to 
ensure that synthesised images have features of-interest that are relevant to the 
clinical application [13, 32]. Conditioning image synthesis on such features-of-
interest, known as conditional image synthesis, ensures that the information relevant 
to the clinical context is adequately captured in the synthetic data [13, 32]. 

4.1.3 Types of Conditional Image Synthesis 

Various approaches have been adopted for conditional image synthesis, to capture 
features-of-interest in synthesised images. Examples of these sythesis techniques 
are outlined below. 

4.1.3.1 Physics-Based Simulations 

Physics-based simulators, often inspired by the underlying physics of the imag-
ing process, have continually been proposed for medical image synthesis since 
before the advent of deep learning [3, 23, 29]. Models of features-of-interest 
either artificially constructed, or derived from pre-operative images, are used to
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capture clinically-relevant information. The synthesis then involves the simulation 
of the imaging process for these modelled structures. An example of this type of 
simulation-based synthesis is generating intra-operative ultrasound data from larger 
and higher-resolution pre-operative images such as computed tomography (CT) 
images [3, 29]. These types of simulation methods are strongly conditioned on 
the modelled features-of-interest, where models are derived from higher-resolution 
pre-operative data. While useful for generating intra-operative data, utility of these 
methods for generating pre-operative data is limited, as model construction for 
features-of-interest is often infeasible without pre-operative images. 

4.1.3.2 Generative Adversarial Networks (GAN) 

Machine learning approaches for medical image synthesis have largely focused on 
using GANs, or conditional GANs (cGANs). The adversarial setup of cGANs is 
based on two functions: (1) the generator to generate an image, given a specific 
condition; and (2) the discriminator to distinguish between real and generated 
images. The training is conducted by first training the discriminator using real 
samples and synthetic samples created by the generator, such that it can discriminate 
between the two, with higher scores for real samples. The generator is then trained 
by maximising the discriminator score, such that it aims to produce more realistic 
samples. This adversarial training leads to the generator being able to produce more 
realistic samples as training progresses. 

Such cGANs have extensively been used for both pre- and intra-operative image 
synthesis, without relying on patient anatomy being available for synthesis [13, 31, 
32]. They have also been utilised to condition the synthesis on features-of-interest 
e.g., blood vessels [4, 5, 9, 12, 35] and tumours [16, 19], where complete model of 
the features are not a pre-requisite. Another common use-case is for learning inter-
modality correspondence e.g. for generating CT from MR or vice versa [2, 21, 33, 
34]. 

Despite realistic synthesis, GANs often suffer from problems such as under-
represented features of interest [13], poor performance on class-imbalanced data-
sets [13], especially for under-represented classes, and other common problems 
encountered during training, e.g. unstable training, mode collapse and diminishing 
gradients [28], which prevent them from being widely usable [17]. Preliminary 
experiments for our application of prostate cancer synthesis on magnetic resonance 
images (see Fig. 4.2) were consistent with these identified limitations, with uncon-
vincing results including broken anatomical or in-painted anatomical structures, 
lacking details (see Fig. 4.2). These results show lack of generative modelling ability 
or ineffective conditioning, for challenging applications such as prostate cancer 
image synthesis, with often subtle and sometimes radiologically undetermined 
pathology.
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4.1.3.3 Diffusion Probabilistic Models (DPM) 

Recent work on DPMs has demonstrated their generative capabilities on a variety 
of image synthesis tasks [11, 20, 25, 27]. These models are based on the idea of 
‘diffusion’ in computer vision, which refers to the sequential addition of Gaussian 
noise to an image, for a fixed number of steps. DPMs then learn to reconstruct the 
original (un-noised) image at the first step by reversing the noise addition processes. 
The data for learning such a reversion is derived from the forward noise addition 
process itself. The reverse diffusion process, of synthesising an image from random 
noise, is then used at inference to generate new synthetic images. 

Compared to cGANs, DPMs have shown improved image synthesis capabilities 
for a wide array of problems while incorporating both image-based and text-
based conditioning [11, 20, 24, 25, 27]. Their use in medical image synthesis 
remains limited, with studies mostly focusing on either unconditional synthesis or 
conditioning only on text-based variables. 

4.1.4 Conditional Image Synthesis for Prostate Cancer 

In this chapter we investigate an example application of synthesising abdominal 
magnetic resonance (MR) images showing pathological regions-of-interest such as 
tumours or lesions within the prostate gland. The generation of pathological images 
can potentially aid the training of radiologists and clinicians, and the development 
of machine learning models, which are often hindered by the low sample availability 
to diversity ratio in disease conditions such as prostate cancer. 

4.1.4.1 Challenging Synthesis of Pathological Images 

In such applications, where pathologies are diverse, under-represented in the data, 
and difficult to manually localise, conditioning directly on local pathology may 
be under-specific. Instead, conditioning on other image sequences, e.g., multi-
parametric MR for the prostate, where subtle features or different appearances 
of such pathology may be captured, is beneficial or even inevitably required. 
This conditional synthesis for pathological prostate MR images, based on other 
sequences, is further supported by modern uro-radiological guidelines such as 
PiRADS. For example, peripheral zone lesions are primarily graded on DW images, 
while transition zone cancers are predominantly determined on T2 images but 
their risk may be upgraded with positive findings on DW images. The ability to 
model the conditional distribution of these paired image data and to synthesise 
diffusion images, given other complementary sequences are essential for the, above-
discussed, machine learning data augmentation and clinical training applications. 

To this end, we investigate the example application of conditional prostate MR 
image synthesis. Since models of anatomy or pathology are not available to us
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prior to imaging, physics-based simulators prove infeasible to implement. GANs, 
while able to generate synthetic images, suffer from broken or in-painted anatomical 
structures, lacking details, as discussed in Sect. 4.1.3.2. This motivates the use of 
conditional DPMs for the synthesis of pathological prostate MR images. 

4.1.4.2 Using DPM for Conditional Image Synthesis of Prostate MR 
Images 

We present a DPM approach for synthesis of prostate MR images, conditioned not 
only on text to control variables such as the presence of cancer and sequence of 
MR acquisition, i.e. T2-weighted (T2W), apparent diffusion contrast (ADC), or 
diffusion-weighted (DW), but on images to facilitate generation of corresponding 
image pairs by generating DW images conditioned on T2W images. Our text-
and image-based conditional synthesis for DPMs, presents flexible conditional 
synthesis, compared to the previous unconditional generation, only text-based 
conditioning, or image modification e.g., in-painting or super-resolution. 

We evaluate our conditional DPM approach for our application of prostate cancer 
MR image synthesis by: (1) presenting images to a clinician to identify synthesised 
images, to test the efficacy of the image synthesis, to demonstrate the realism of 
the synthesised images; (2) presenting corresponding T2-weighted and diffusion-
weighted, generated and real, images to a clinician for a cancer detection task, to 
test the realism of the generated lesions; and (3) testing the segmentation accuracy 
for a neural network-based multi-parametric MR lesion identification task with 
real data versus with a dataset augmented using synthesised images. The image 
synthesis is thus evaluated for both the clinical training and machine learning model 
development applications. 

4.1.5 Summary of Contributions 

The contributions of this chapter are summarised: 

1. We present a conditional DPM for synthesis of prostate MR images with 
challenging pathology. 

2. We propose conditioning the synthesis on text-based inputs to control presence 
of lesions and MR sequence. 

3. We propose conditional image synthesis to generate DW images from corre-
sponding T2W images as a means of generating corresponding multi-sequence 
images. 

4. We conduct an evaluation to demonstrate the effectiveness of the synthesised 
images not only for clinical training use cases but also for machine learning 
model training for a task carried out with the MR images i.e. lesion identification.
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4.2 Methods 

A DPM relies on diffusion—the sequential addition of Gaussian noise to an image. 
The synthesis is learnt as a reverse diffusion process—sequentially removing noise 
from an image until the image is completely de-noised. The forward and reverse 
diffusion processes are described in the sections below along with conditioning 
mechanisms to enable conditional synthesis. An overview of the entire framework 
is presented in Fig. 4.1. 

4.2.1 Forward Diffusion Process 

Assume that a forward diffusion adds noise in sequential steps, to a given input 
image x0 ∼ q(x|y). sampled from a data distribution of real samples q(x)., the  
distribution to be modelled. The conditioning variable y is used to condition the 
data. At each step t , for t ∈ {1, T }., the added Gaussian noise follows a Markov 

Fig. 4.1 An overview of the diffusion process. The text and image encoders provide a mechanism 
to condition image synthesis on either text prompts or other images, respectively. In our 
application, text prompts control aspects such as presence of pathology and MR image sequence, 
and image conditioning controls paired MR sequence generation i.e., generating one sequence 
conditioned on another
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chain with T steps, with variance βt ., and only depends on the sample from the 
previous step and the variable used for conditioning. The distribution can then be 
written as q(xt |xt−1, y)., with xt . as a latent variable. 

The forward diffusion process is thus formulated as: 

.q(xt |xt−1, y) = N(xt ;μt = √
1 − βtxt−1, σ t = βt I) (4.1) 

In a closed form, going from sample x0 . to the sample xT . can be denoted as: 

.q(x1:T |x0, y) =
TΠ

t=1

q(xt |xt−1, y) (4.2) 

This formulation, however, requires t time-steps of applying q to get sample xt .. 
We can re-parameterise to allow computation of xt . without requiring computa-

tion of all samples at previous steps. As detailed in previous works [11, 20, 25], it 
can be shown that by defining αt = 1 − βt ., ᾱt = Πt

s=0 αs ., a sample  xt . may be 
sampled as follows: 

.xt ∼ q(xt |xt−1, y) = N(xt ;
√

ᾱtx0, (1 − ᾱt )I (4.3) 

A cosine schedule is adopted for β . [20], increasing from 10−4
. to 0.02. over T 

steps, where the cosine schedule may formally be defined as:

.f (t) = cos
t/T + s

1 + s
· π

2
(4.4) 

where s is configured as s = 0.008., empirically [20]. 

4.2.2 Additional Inputs for Conditioning 

An encoder τγ ., with weights γ ., may be used for any conditioning variables y. The  
conditioning variables could take any form that can be used to condition the image 
synthesis. In our work, we use text to condition the image synthesis on factors such 
as presence of pathology and on images to condition synthesis of a particular MR 
image sequence on another MR sequence. The encoder maps to an intermediate 
representation τγ (y) ∈ R

M×dτ ., which is then mapped to the intermediate layers 
of the diffusion-reversing network (as outlined in the next section). For sample xt ., 
conditioned on y (e.g., consisting of the image and text conditioning) this gives u s
xt ∼ q(xt |xt−1, τγ (y)).. For notational brevity, however, we use y in-place of τγ (y)., 
in the remaining analysis. The specific text- and image-conditioning are discussed 
further in Sects. 4.3.1.1 and 4.3.1.2.
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4.2.3 Reverse Diffusion Process 

The distribution approaches an isotropic Gaussian with a sufficiently large T [11]. 
The data distribution q(x). can, therefore, be modelled by reversing the noise adding 
process from unit Gaussian distribution N(0, I). samples. However, the reverse 
q(xt−1|xt , y). is not known and cannot be statistically estimated since any statistical 
estimates would involve knowing the data distribution [11]. 

Approximations of q(xt−1|xt , y)., however, can be learnt, using a parameterised 
function eθ (xt , t, y).. This can be interpreted as a sequence of de-noising auto-
encoders with additional conditioning on the time-step t . 

In practice, it is easier to parameterise a Gaussian and then remove the predicted 
Gaussian noise manually. Thus for sample xt−1 . we have: 

.pθ(xt−1|xt , t, y) = N(xt−1;μθ(xt , t), σθ (xt , t)) (4.5) 

Then applying the reverse process for all time-steps: 

.pθ(x0:T , 0 : T , y) = pθ(xT , T , y)

TΠ

t−1

pθ(xt−1|xt , t, y) (4.6) 

We summarise the entire de-noising process as a de-noising function eθ (xt , t, y). 

which is trained to predict a de-noised version of its input i.e. x0 . from xt .. 
To incorporate the encoder τ . used to pre-process the conditioning variable we 

may re-write this de-noising function as eθ (xt , t, τγ (y)).. 
Note that in actuality the de-noising is a two-step process: (1) predicting the noise 

in a noised image; (2) subtracting the noise from the noised image. This two-step 
process ensures stable optimisation as explored in previous works [20]. As shown 
in previous works [11, 20, 25], the objective for the first step can be simplified to: 

.L = Ex,e∼N(0,1),t,y

l
||e − eθ (xt , t, y)||11

l
(4.7) 

This objective can be used to train a neural network to predict noise in a noised 
image, which can then be subtracted from the image to obtain a de-noised version. 
Nonetheless, for notational simplicity in further analyses, we summarise the two-
step de-noising process as a de-noising function x0 = eθ (xt , t, τγ (y))., which 
predicts the de-noised image from a noised version xt .. 

4.2.4 Sampling from the Trained Diffusion Model 

Synthesising images from the diffusion model consists of first sampling noise 
xT ∼ N(0, I).and then computing the de-noised sample using our reverse de-noising



4 Conditional Image Synthesis Using Generative Diffusion Models:. . . 73

function x0 = eθ (xt , t, τγ (y)).. However, it is practically more efficient to add back 
a portion of the noise using a noise schedule and then de-noise the sample again 
using the de-noising function, repeating until the noise schedule exhausts. In more 
concrete terms this means that after the first de-noising of the sample, we add back 
noise until step t − 1., and then use the de-noising function to again de-noise the 
sample. Then add back noise until step t − 2. and again use the de-noising function 
to de-noise the sample. This is repeated until t − t .. 

4.3 Experiments 

4.3.1 Model Implementation and Training 

We closely follow the implementation used in [25]. Hyper-parameters are sum-
marised in Table 4.2. 

4.3.1.1 Text Conditioning 

For text conditioning, a transformer architecture is used as the encoder τγ ., i.e., the 
BERT tokeniser together with the provided encoder for encoding text prompts [25]. 
BERT was chosen due to the vast prior research into BERT-based text encoding for 
diffusion models. For constructing text prompts, we used the presence of cancer 
together with MR sequence. Prompts were randomly generated from a list of 8 
phrases with the MR sequence or lesion presence being inserted into each of the 
phrases as appropriate. Example phrases are presented in Table 4.1. Variability in 
these text prompts may promote learning higher-level concepts such as ‘prostate’, 
‘lesion’ etc. This BERT-based text prompt encoding allows us to avoid training 
a binary variable encoder, which may be difficult since auto-encoders have not 
demonstrated to be suitable to map to dimensions higher than the input as they 
mostly rely on bottlenecks with lower dimensions compared to the input for 
encoding. 

Table 4.1 Examples of text 
prompts used 

Text prompts 

‘A T2 image of a prostate with a lesion’ 

‘Prostate DW image with a lesion’ 

‘ADC image of a prostate with no lesion’ 

‘Image of ADC prostate without lesion’
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Table 4.2 Hyperparameters 
used for training the diffusion 
model which are set 
empirically based on 
experiments from [25] 

Hyperparameter Value 

Diffusion steps (train) 1000 

Number of parameters 396M 

Channels 192 

Depth 2 

Channel multiplier 1, 1, 2, 2 , 4, 4 

Batch size 7 

Embedding dimension 512 

Convergence criterion Minimum-delta (1e-6) 

4.3.1.2 Image Conditioning 

For image conditioning, we use a latent representation from a trained auto-
encoder as the encoder τγ .. This is implemented as a convolutional neural network 
with 3 down-sampling and 3 up-sampling layers, with a 128-dimensional latent 
representation, which acts as our image encoding. The image encoding is used for 
cross-sequence translation i.e., T2W to DW. 

4.3.1.3 The De-Noising Function 

The de-noising function adopts a U-net architecture as in [25] with other hyper-
parameters summarised in Table 4.2. The encodings for both text conditioning and 
image conditioning are mapped to the intermediate layers of the U-net as in [25]. 
As in [25], we also use compressed representations from a ‘perceptual compression 
model’ as inputs to the U-net, for computational efficiency (for further details refer 
to [25]). 

For obtaining a sample, we iterate diffusion reversal 50 times by first generating 
xT . randomly, obtaining an estimate for x0 . using the reverse diffusion network and 
then adding back 49/50-th of the noise back. Then we repeat reverse diffusion and 
add back 48/50th of the noise. We run this for 50 steps until we add back 0/50-th of 
the noise and obtain our final sample. 

4.3.2 Datasets 

We used two datasets for training, a large open dataset to train the model and a 
smaller in-house dataset to fine-tune the model for the paired sequence translation. 
These datasets are described below. Even though these datasets consist of 3D 
images, we train all models on individual slices i.e., on slice-level 2D data, for 
computational/ development efficiency and for use of robust training strategies 
and hyper-parameter values from previous work, which may not generalise to 3D 
samples.
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4.3.2.1 Open-Source Prostate MR Data 

The PICAI dataset [26] had 1285 samples of 3D prostate MR images with both T2W 
and ADC available. From these, 190 were removed after a semi-manual process, 
due to porr quality and unclear conformity to radiological reporting standards. 10 
central slices from all remaining volumes were used to form our data for training at 
the 2D slice-level, as these slices contain the majority of the prostate volume. 200 
such patient cases were held out from training, to be used for evaluation (details in 
Sect. 4.3.3). 

This dataset was used to generate ADC and T2W images used in Sect. 4.3.3. 

4.3.2.2 Closed-Source Multi-Sequence Prostate MR Data 

Multi-parametric 3D MR images were acquired from 850 patients undergoing 
prostate biopsy and therapy as part of trials at University College London Hospitals 
[1, 6, 10, 18, 22, 30]. The dataset consisted of paired T2W and DW sequences for 
each patient. Cancerous lesions were delineated manually by a radiologist and used 
to generate slice-level binary labels of lesion presence. Similar to the open dataset, 
10 central slices were used for training the model on the 2D slice-level, due to the 
majority of the prostate volume existing within these slices. For the purpose of slice-
level cancer presence, we deemed all slices with lesions visible with PIRADS ≥. 3 
as containing a lesion. Similar to the open dataset, 200 patient cases were held out 
from training, for evaluation (details in Sect. 4.3.3). 

This data was used to train the model for paired synthesis i.e., paired T2W and 
DW images, as described in Sect. 4.3.3. The model trained on the open-source data 
was fine-tuned for this dataset, rather than training from scratch. 

4.3.3 Usability Study 

4.3.3.1 Expert Identification of Synthesised ADC and T2W Images 

The aim of this experiment is to demonstrate the realism of the synthesised images. 
This is done by a clinician, with 4 years experience reading prostate MR images, 
conducting a comparison of synthesised versus real images, without any prior 
knowledge of the model, images, labels and synthesis. For this experiment we used 
32 2D T2W and 32 2D DW slices from the held-out set (not necessarily from the 
same patient). These slices had an equal ratio of real to synthetic samples, as well 
as positive to negative ratio for lesion presence, however, the clinician remained 
blind to these ratios. The clinician was asked to identify synthesised images from a 
mixture of real and synthetic images, regardless of lesion presence.
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4.3.3.2 Expert Identification of Lesions on ADC and T2W Images 

The aim of this experiment is to demonstrate the realism of lesions on synthesised 
images. With the same data as the above synthesised identification task, we asked 
the clinician to identify 2D slices that contain a suspected cancerous lesion with 
PIRADS ≥. 3, regardless of the images being real or synthetic. 

4.3.3.3 Expert Identification of Lesions on Paired T2W-DW Images 

The aim of this experiment is to demonstrate the realism of lesions on paired 
data, synthesised using conditional synthesis with DW images generated based on 
synthetic T2W. We used 32 paired T2W-DW slices, with equal ratio of real to 
synthetic samples, as well as positive to negative ratio for lesion presence, blind 
to the clinician. The clinician was asked to identify images with a suspected lesion, 
PIRADS ≥. 3, regardless of images being real or synthesised. 

4.3.3.4 Machine Learning-Automated Lesion Detection 

The aim of this experiment is to determine whether the use of synthetic data 
while training machine learning models aids generalisability and improves model 
performance. For this experiment we use an automated task of slice-level binary 
classification of lesion presence. 

The machine learning model trained for this task is an AlexNet (4 convolutional 
and 4 fully connected layers). We note that based on this architecture, performance 
reported in Table 4.3 is consistent with those reported in similar applications, e.g. 
[15], therefore justifies the choice of the widely established baseline, which is also 
competitive in a wide variety of other tasks [14]. 

We trained two models for comparison, one with only real data and the other 
with real data augmented by synthetic samples. 

For the real case, we used the closed-source dataset with train, validation and 
holdout sets, with 510, 170 and 170 patients, respectively, resulting in a total of 
5100, 1700 and 1700 2D slices in respective sets. 

For the dataset augmented with synthetic samples, we added 1600 synthesised 
2D images with lesions and 1600 without to the dataset. These were added to the 
train and validation sets, resulting in a total of 7500, 2500 slices in each of the sets, 
respectively. 

For comparison, the holdout set remains the same with 1700 real samples, with 
this set being used to report performance for both models to compare the difference 
between training with and without augmented synthesised images.
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4.4 Results 

Results for the described experiments are summarised in Table 4.3 and Fig. 4.2. Our  
stable diffusion model took approximately 8 days to train on a single Nvidia Tesla 
V100 GPU, with an average of 10 seconds for sample synthesis on the same GPU. 

4.4.1 Expert Identification of Synthesised Images 

As summarised in Table 4.3, an expert clinician was only able to identify synthesised 
images from a mixture of real and synthetic samples with an average accuracy of 
0.594, averaged over all ADC and T2W images, where random chance is 0.500. 

Table 4.3 Results for both expert clinician and machine learning model experiments, with details 
described in Sect. 4.3.3. ‘  Nset .’ indicates the set size in terms of images 

Task Data Accuracy 

Clinician—synthesised identification 
Ntrain = 8950. 
Nusability study = 32 T2W, 32 ADC. 

ADC (overall) 0.563 

ADC (w/ cancer) 0.625 

ADC (w/o cancer) 0.500 

T2W (overall) 0.625 

T2W (w/ cancer) 0.688 

T2W (w/o cancer) 0.563 

Clinician—lesion identification 
Ntrain = 8950. 
Nusability study = 32 T2W, 32 ADC. 

ADC (overall) 0.688 

ADC (real) 0.625 

ADC (synthesised) 0.750 

T2W (overall) 0.594 

T2W (real) 0.625 

T2W (synthesised) 0.563 

Clinician—lesion identification 
Ntrain = 6500. 
Nusability study = 32 T2W-DW. 

T2W-DW paired (overall) 0.563 

T2W-DW paired (real) 0.563 

T2W-DW paired (synthesised) 0.563 

ML model—lesion identification Trained with real 0.704 ± 0.035. 

Trained with real + synthesised 0.762 ± 0.042.
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Fig. 4.2 Examples of generated and real images, with keys as follows. Blue: synthesised using 
DPM, Green: real, Red: synthesised using cGAN. Left: no cancer, Right: cancer (arrows indicating 
suspected lesions, w.r.t. PIRADS ≥.3). Top block: ADC, middle block: T2W, Bottom block: paired 
T2W-DW (left-right) 

4.4.2 Expert Identification of Lesions on Real Versus 
Synthesised Images 

From Table 4.3, comparing the lesion identification accuracy, averaged over ADC, 
T2W and paired T2W-DWI, between real versus synthetic images, we observe 
similar values of 60.4% for real images versus 62.5% for synthetic images.
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This means only a small difference of 2.1 percentage points between the lesion 
identification performance of the expert for real versus synthesised images. 

4.4.3 Machine Learning-Automated Lesion Identification 

Summarised in Table 4.3, we observe an improvement of 5.8 percentage points, 
with statistical significance (p-value=0.004), for the lesion identification task for the 
model trained with real data augmented with synthetic data, compared to a model 
trained only with real data. 

4.5 Discussion 

Based on the presented results, we observed: (1) only marginal improvement over 
random chance in the expert identification of synthesised versus real images, and 
(2) similar accuracy in the lesion identification between real and synthetic data. 
This leads us to conclude that the proposed diffusion-based image synthesis is 
able to effectively generate realistic synthetic samples that may enable a variety of 
applications including training tools for radiological or clinical trainees. Due to the 
paired synthesis or sequence translation, challenging radiological tasks such as DW 
reading following positive findings from T2W images for a transition-zone prostate 
lesion, have potential to be simulated using our proposed framework. 

Furthermore, performance improvement in lesion identification performance 
using machine learning models with synthetic data versus those without, suggests a 
promising approach for data augmentation for clinical tasks. 

Our proposed method is currently limited in terms of which areas of prostate can 
be synthesised since mostly central parts are synthesised by the trained network, 
partly due to random sampling without explicit positional conditioning. To mitigate 
this in future work, investigations need to be conducted into further conditioning 
mechanisms controlling regions of the gland to synthesise e.g., apical, peripheral 
etc., which are enabled by our flexible text and image-based conditioning. Addi-
tionally, investigating conditioning on cancer severity i.e., PIRADS scores would 
also be an additional mechanism to ensure fine-grained control over the synthetic 
images. These future directions would indeed be interesting for targeted sample 
synthesis and could potentially aid both the radiological training and automated 
machine learning applications discussed. 

4.6 Conclusion 

In this work we presented a diffusion-based image synthesis method, together 
with a flexible conditioning mechanism that allows generation of realistic synthetic
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prostate MR images, with lesion presence, MR sequence and data pairing may 
be controlled. Experimental findings demonstrate the utility of the presented 
approach for two applications of radiological training simulation as well as for data 
augmentation of machine learning models, to improve their task performance. 
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Chapter 5 
Analyzing Tumors by Synthesis 

Qi Chen, Yuxiang Lai, Xiaoxi Chen, Qixin Hu, Alan Yuille, 
and Zongwei Zhou 

Abstract Computer-aided tumor detection has shown great potential in enhancing 
the interpretation of over 80 million CT scans performed annually in the United 
States. However, challenges arise due to the rarity of CT scans with tumors, 
especially early-stage tumors. Developing AI with real tumor data faces issues 
of scarcity, annotation difficulty, and low prevalence. Tumor synthesis addresses 
these challenges by generating numerous tumor examples in medical images, aiding 
AI training for tumor detection and segmentation. Successful synthesis requires 
realistic and generalizable synthetic tumors across various organs. This chapter 
reviews AI development on real and synthetic data and summarizes two key 
trends in synthetic data for cancer imaging research: modeling-based and learning-
based approaches. Modeling-based methods, like Pixel2Cancer, simulate tumor 
development over time using generic rules, while learning-based methods, like 
DiffTumor, learn from a few annotated examples in one organ to generate synthetic 
tumors in others. Reader studies with expert radiologists show that synthetic tumors 
can be convincingly realistic. We also present case studies in the liver, pancreas, 
and kidneys reveal that AI trained on synthetic tumors can achieve performance 
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comparable to, or better than, AI only trained on real data. Tumor synthesis holds 
significant promise for expanding datasets, enhancing AI reliability, improving 
tumor detection performance, and preserving patient privacy. 

5.1 Introduction 

Medical image analysis aims to derive detailed information non-invasively about 
a patient’s medical condition, including the disease’s origin, precise location, 
and its relationship with adjacent tissues. Specifically, for symptoms that cannot 
be directly diagnosed, medical professionals employ various imaging devices to 
capture detailed images of target organs for disease screening, diagnosis, and 
treatment. Therefore, medical imaging systems generate vast amounts of medical 
image data daily. This data may encompass different organs of the body, as well as 
tissues and pathological regions associated with diseases. 

Medical images come from modalities like X-ray, CT, MRI, and PET. This data, 
referred to as real data in this chapter, can be analyzed using post-processing and 
artificial intelligence (AI) to reveal details not visible to the naked eye, aiding in 
disease detection such as detecting tumors at their early stage. However, managing 
real-world data for AI-driven diagnostics is challenging. Synthetic data offers a 
promising alternative, potentially allowing AI to generalize better to real-world 
scenarios and overcome the difficulties of using real data for training. Generally, 
synthetic data refer to artificially generated data that mimic the characteristics 
and structure of real data without being directly derived from actual observations 
(Fig. 5.1). 

5.1.1 Why Synthetic Data? 

Synthetic data are vital in AI research due to the challenges of acquiring real data, 
including time constraints, high costs, patient privacy concerns, and manual effort 
[24, 31, 32, 122]. They provide significant advantages by saving time and reducing 
the need for extensive manual annotation. The use of AI-generated content (AIGC) 
has proven effective across various domains, including medical imaging, where it 
serves both as a training resource for AI models and as a means of evaluating their 
performance with realistic yet hard-to-obtain data (see Table 5.1). Synthetic data 
offer precise control over properties such as shape, texture, and location, which is 
particularly valuable in medical applications. This control enables the creation of 
diverse and representative datasets for model training and provides useful exam-
ples for medical education and patient communication. Additionally, controllable 
synthetic tumors facilitate AI debugging and model diagnostics, enhancing the 
interpretability of AI behavior. Increasing evidence supports that synthetic data can
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Fig. 5.1 Can you distinguish synthetic data from real data in different modalities? (a) X-ray image 
examples [26]. (b) CT image examples [33]. (c) MR image examples [78]. (d) PET image example. 
(e) Endoscopy image example [64]. (f) Histopathology image example [4] 

improve AI performance, making it a powerful tool for advancing research and 
improving outcomes in fields like oncology. 

5.1.2 Real vs. Synthetic Data 

Unlike real data, which are collected from real-world imaging devices and represent 
true observations, synthetic data are created using algorithms, simulations, or mod-
els designed to replicate the properties of real data. We summarize the differences 
between real data and synthetic data as follows: First, real data are collected from 
actual imaging devices (e.g., X-ray, CT, MRI, PET, ultrasound, histopathology). 
Synthetic data are generated artificially using computational methods and simu-
lations [43, 59]. Second, real data are often limited by practical constraints such 
as patient privacy, the cost of imaging, and the time required for data collection 
and annotation [13]. Synthetic data can be produced in large quantities without the 
ethical and logistical issues associated with real data collection [10]. Third, real data 
require manual annotation by experts, which is time-consuming [77] and prone to



Table 5.1 A summary of existing synthesis methods for medical imaging encompasses various 
aspects: body part, disease type, imaging modality, dataset utilized, and generative model type. 
Additionally, we are maintaining a webpage to track the latest publications and corresponding code 
repositories on data synthesis in medicine more comprehensively 

Reference Body part Disease Modality Dataset Generative 
model 

Teixeira et al. [97] Whole body Anomaly 
detection 

X-ray Private dataset GAN 

Wu et al. [107] Chest Breast cancer X-ray DDSM [37] GAN 

Gao et al. [26] Bone & 
chest 

COVID-19 
lesion 

X-ray COVID-19 CXR [101] GAN 

Jin et al. [48] Chest Lung nodule CT LIDC [3] GAN 

Yao et al. [113] Chest COVID-19 CT LUNA16 [87] Hand-crafted 
designs 

Jiang et al. [47] Chest Covid-19 CT COVID [112] GAN 

Jin et al. [49] Abdomen Liver & 
Kidney tumors 

CT LiTS [8]  &  KiT  S  [38] GAN 

Wei et al. [105] Abdomen Pancreatic 
tumors 

CT Private dataset GAN 

Lyu et al. [70] Abdomen Liver tumors CT LiTS [8] GAN 

Hu et al. [43] Abdomen Liver tumors CT LiTS [8] Hand-crafted 
designs 

Li et al. [63] Abdomen Pancreatic 
tumors 

CT MSD [2] Hand-crafted 
designs 

Chen et al. [9] Abdomen Tumors in 
liver, pancreas 
and kidney 

CT MSD [2]  &  KiT  S  [38] Diffusion 
model 

Lai et al. [59] Abdomen Tumors in 
liver, pancreas 
and kidney 

CT MSD [2]  &  KiT  S  [38] Hand-crafted 
designs 

Yu et al. [117] Brain Brain tumors MRI BraTS [72] GAN 

Han et al. [34] Brain Brain tumors MRI BraTS [72] GAN 

Zhao et al. [119] Abdomen Liver tumors MRI Private dataset GAN 

Mukherkjee et 
al. [73] 

Brain Brain tumors MRI BraTS [72] GAN 

Basaran et al. [6] Brain Brain tumors MRI WMH [54] Hand-crafted 
designs 

Wang et al. [103] Brain – PET Private dataser GAN 

Luo et al. [69] Brain – PET Private dataset GAN 

Sharan et al. [88] Mitral valve Landmark 
detection 

Endo. surgical simulator [23] GAN 

Yoon et al. [116] Colon Polyp 
detection 

Endo. Private dataset GAN 

Hou et al. [41] Tissue Cancer Histo. Kumar [55] GAN 

Xue et al. [110] Tissue Cancer Histo. PCam [100] GAN 

Aversa et al. [4] Tissue Cancer Histo. Private dataset Diffusion 
Model 

Du et al. [19] Skin Dermatoscopic 
lesion 

Dermo. ISIC [17] Diffusion 
model 

GAN stands for Generative Adversarial Network 
Endo. refers to Endoscopy, Histo. refers to Histopathology, and Dermo. refers to dermoscopy.
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human error [65]. Annotations of synthetic data can be automatically generated as 
part of the data creation process, ensuring consistency and accuracy [80]. 

5.2 Detecting Real Tumors in CT Scans 

5.2.1 Tumors in Solid Organs 

Solid tumors in organs like the liver, kidneys, and brain—such as hepatocellular 
carcinoma, renal cell carcinoma, and glioma—typically show well-defined margins 
and growth patterns [85], illustrated in Fig. 5.2. In CT images, early-stage tumors 
appear as small nodules with slightly blurred edges and homogeneous texture. 

Fig. 5.2 Tumors in solid organs. (a) Hepatocellular carcinoma. (b) Thymoma. (c) Solid pseu-
dopapillary tumor of the pancreas. (d) Pancreatic mucinous cystadenoma. (e) Pancreatic mucinous 
cystadenocarcinoma. (f) Pancreatic adenocarcinoma. (g) Neuroendocrine tumor in liver. (h) 
Meningioma. (i) Mediastinal lymphoma
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As tumors advance, they grow larger, become irregular in shape, and exhibit 
significant mass effect and infiltrative growth [20]. Advanced tumors may also show 
hemorrhage, necrosis, and fibrosis, leading to a heterogeneous appearance [89]. 

• Liver tumors: Hepatocellular carcinoma (HCC) is the most common malignant 
liver tumor. Early HCC presents as a small, well-differentiated nodule with a 
good prognosis and low metastatic potential [25]. CT imaging may show mass 
effect extending beyond the liver, displacement of blood vessels, intrahepatic 
venous thrombosis, and bile duct obstruction [82]. HCCs often exhibit intense 
arterial-phase enhancement due to neoangiogenesis and reduced portal triads, 
and typically appear hypoattenuating on venous phase scans [5]. 

• Pancreatic tumors: Pancreatic ductal adenocarcinoma (PDAC) constitutes the 
majority of malignant pancreatic tumors and is associated with a very poor 
prognosis and high morbidity. In the early stages, PDACs typically appear as 
homogeneous small nodules with blurred edges. Secondary findings associated 
with advanced PDACs include contour abnormalities, abrupt termination of 
the biliary or pancreatic duct, pancreatic atrophy upstream from the mass, 
vascular encasement, etc. [57]. PDACs typically exhibit poor enhancement, 
appearing hypoattenuating relative to the surrounding pancreatic parenchyma. 
This hypoenhancement is attributed to the development of a dense fibroblastic 
stromal component in PDACs [22]. 

• Kidney tumors: Renal cell carcinoma (RCC) is the most common adult renal 
epithelial cancer, accounting for more than 90% of all renal malignancies [61]. 
The most prevalent subtype, clear cell RCC, presents as a homogeneously 
enhancing lesion during the corticomedullary phase and as a hypoattenuating 
renal lesion surrounded by homogenously enhancing renal parenchyma in the 
nephrographic phase. Advanced clear cell RCC often appears heterogeneous 
in imaging due to the presence of hemorrhage, necrosis, and cysts, along with 
invasion into the renal pelvis, perirenal fat, or renal vessels [104]. 

5.2.2 Tumors in Tubular Organs 

Tumors in tubular organs, illustrated in Fig. 5.3, have distinct growth patterns [74]: 
exophytic, where the tumor expands into the lumen, and invasive, where it penetrates 
the organ wall into adjacent structures. For instance, colon cancer progresses from 
stage 0, confined to the lining, to stage I, invading the submucosa, and stage II, 
extending through the wall without nearby invasion [21]. Stage III involves spread 
to lymph nodes, and stage IV features metastasis to distant organs such as the liver 
or lungs. We also highlight unique characteristics of representative tubular tumors 
to illustrate their specific behaviors and progression. 

• Esophageal tumors, though rare, have a poor prognosis if malignant unless 
detected early and surgically removed [45]. Imaging studies include X-ray
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Fig. 5.3 Tumors in tubular organs. (a) Gastrointestinal stromal tumor. (b) Sigmoid colon cancer. 
(c) Gastric cancer. (d) Lung metastases. (e) Intestinal carcinoid tumor. (f) Gallbladder carcinoma. 
(g) Gallbladder adenocarcinoma. (h) Colon cancer. (i) Cholangiocarcinoma 

esophagography, CT, endoscopic ultrasound, and PET. Malignant strictures 
often show asymmetric narrowing with abrupt margins and irregular, nodular, 
or ulcerated surfaces. X-ray esophagography helps evaluate invasion of the 
muscularis mucosae for early-stage cancers. Key CT features are eccentric or 
circumferential wall thickening over 5 mm and periesophageal soft tissue and fat 
stranding [62, 94]. 

• Stomach tumors, primarily adenocarcinoma, are common and often asymp-
tomatic when superficial. Up to 50% of patients may have nonspecific gas-
trointestinal symptoms like dyspepsia. Endoscopy is the most sensitive method 
for diagnosis, allowing direct visualization and biopsy. Initial detection is often 
through radiological methods, with CT imaging using negative contrast to reveal 
common features such as polypoid masses, wall thickening, or ulceration [18, 62, 
93]. 

• Colorectal tumors are a leading gastrointestinal malignancy. Contrast-enhanced 
CT of the chest, abdomen, and pelvis is used for staging, detecting metastases,
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evaluating surgical options, and assessing treatment response. Colorectal cancers 
typically appear as soft tissue masses that narrow the bowel lumen. Larger tumors 
often show ulceration, mucinous tumors may appear as low-density masses 
with low-density lymph nodes, and psammomatous calcifications can be seen 
in mucinous adenocarcinoma [30, 92]. 

5.2.3 High Similarity in Early-Stage Tumors 

Early-stage tumors ( <. 2 cm) frequently exhibit similar imaging characteristics in 
CT scans, regardless of whether they originate in the liver, pancreas, or kidneys [12]. 
Should this finding be validated, it could carry profound implications for the 
application of generative AI in medical imaging. This implies that both modeling-
based and learning-based approaches could be developed on a single tumor type 
with readily available annotated data and subsequently applied to synthesize various 
tumor types in other organs, for which data/annotation acquisition is more arduous. 

A study involving three expert radiologists was conducted to assess their ability 
to recognize the organ class of early-stage cancers [9]. Three expert radiologists, 
certified in accordance with the Quality Standards Act, participated in the reader 
study. Recognition results are presented in Fig. 5.4b. The results were sufficiently 
compelling that medical professionals, boasting over five years of experience, could 
potentially mistake the synthetic tumors for genuine ones. The precision and recall 
scores, which approximate randomness, imply that the similarity in the appearance 
of early-stage tumors is such that even seasoned radiologists encounter difficulties 
when attempting to distinguish the organ types of these tumors. 

The similarity of early-stage tumors can be evidenced by their Radiomics 
Feature1 profiles [9]. From a qualitative standpoint, Fig. 5.4a depicts the feature 
mapping in a two-dimensional space via t-SNE. The appearance features of early-
stage tumors manifest within a joint feature space, with no discernible segregation 
among different organ types. From a quantitative perspective, we trained a support 
vector machine (SVM) classifier to identify the organ types of early-stage tumors. 
To infer a general conclusion, we conducted ten repeated experiments and computed 
the precision and recall metrics of the SVM classifier for both the training and 
test sets. The final results indicate that both the precision and recall metrics for 
the training set are close to 1.0, demonstrating that the SVM is effectively trained 
and has established a robust decision boundary for the training set. However, 
the precision scores for the test set approximate random chance, as illustrated in

1 Utilization of the official radiomics feature repository [99] enables the extraction of appearance 
features, comprising 3D shape-based features, gray level co-occurrence matrix, gray level run 
length matrix, gray level size zone matrix, neighboring gray-tone difference matrix, and gray level 
dependence matrix. 
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Fig. 5.4 Feature analysis and reader study. The left panel features a t-SNE (t-distributed 
stochastic neighbor embedding) visualization that maps the multidimensional Radiomics features 
of tumors from the liver, pancreas, and kidneys onto a two-dimensional space. This visualization 
underscores the substantial overlap in features among early-stage tumors from different organs, 
which may contribute to the challenges in correctly identifying their organ types. Complementing 
these findings, this study evaluates the efficacy of a support vector machine (SVM) classifier, 
which utilizes Radiomics Features [16, 102], in differentiating the organ types for the cropped 
tumors. The SVM classifier is trained to classify each tumor as originating from either the liver, 
pancreas, or kidneys—a three-way classification challenge. Parallel to the assessment of the SVM 
classifier, three expert radiologists conducted a similar evaluation by reviewing the original CT 
scans containing these tumors. The results displayed on the right panel reveal significant difficulties 
faced by both the SVM classifier and the radiologists when it comes to accurately pinpointing the 
origin of early-stage tumors. The precision and recall metrics for both the machine and human 
methods approximate the performance expected from random selection. (a) Feature analysis. (b) 
Reader studies 

Fig. 5.4b. This implies that even an effectively trained SVM classifier encounters 
difficulty in recognizing the organ types of unseen early-stage tumors. 

5.3 Technical Barriers and Clinical Needs 

5.3.1 Technical Barriers 

AI development for real tumors faces key technical barriers: First, data scarcity: 
High-performance models need extensive annotated data, which is limited due to 
the time and expertise required for medical image and genomic annotation. Rare 
cancers further exacerbate this issue, leading to poor model performance on less 
common types [14, 96, 120, 121]. Second, generalization to different organs:  AI  
models struggle to generalize across organs due to distinct anatomical structures 
and imaging modalities. Models trained on one organ, like the lung, perform poorly 
on others, such as the liver, due to differing tissue compositions and imaging 
techniques [68, 118]. Third, generalization to different demographics:  Privacy  
laws restrict access to diverse datasets, impacting model robustness. Variations in
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imaging protocols and genetic differences across populations can lead to biased 
models that perform poorly on underrepresented groups [66]. 

5.3.2 Clinical Needs 

Cancer research addresses critical clinical needs to improve patient outcomes 
and advance oncology. Key objectives include early cancer detection, developing 
effective treatments, and personalizing care strategies to enhance treatment success 
and system efficiency. 

Early Detection and Diagnosis Early detection and diagnosis of cancer are crucial 
for improving patient outcomes, as identifying cancer at an early stage often leads 
to more effective treatment and better survival rates. There is a critical need for 
screening methods with high sensitivity (ability to correctly identify those with 
cancer) and high specificity (ability to correctly identify those without cancer). 
Improved accuracy reduces false positives and false negatives, which are common 
issues in current screening practices. Besides, enhanced accuracy can help avoid 
overdiagnosis, where non-life-threatening cancers are treated unnecessarily, causing 
undue stress and potential harm to patients. 

Health System Efficiency For effective training in tumor detection across multiple 
organs, AI models traditionally require numerous annotated real tumor examples 
from each organ [51, 67, 79, 123]. However, these AI models often face difficulties 
in generalizing their ability to interpret images from different hospitals, a challenge 
compounded by varying imaging protocols, patient demographics, and scanner 
manufacturers [75, 111]. While the challenge of domain generalization could be 
alleviated if the AI is trained on a considerable number of annotated data from 
various domains [109, 114], it could take up to 25 human years for just annotating 
tumors in a specific organ [1, 108]. Collecting and annotating a comprehensive 
dataset that includes tumor examples from several organs (N ) and numerous 
hospitals (M) is a formidable task, denoted by the complexity (N × M .). We 
hypothesize that tumor synthesis could address this challenge by creating various 
tumor types across non-tumor images from multiple hospitals, even if only one type 
of tumor is available and annotated. This approach can simplify the complexity 
from N ×.M to 1×.M . 

Personalized Treatment Planning Tumors within the same type of cancer can 
vary significantly at the genetic and molecular levels. Personalized treatment plan-
ning requires comprehensive genomic profiling to identify specific mutations, gene 
expression patterns, and other molecular characteristics that drive an individual’s 
cancer. This information helps in selecting targeted therapies that are more likely to 
be effective for that particular tumor profile. Understanding the diversity of cancer 
cells within a tumor can inform treatment strategies that target multiple pathways 
and cell populations simultaneously.
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5.4 Technology Trend I: Modeling-Based Approaches 

Hand-crafted tumor synthesis has been conducted in [42–44, 63]. This approach 
applies a sequence of hand-crafted morphological image-processing operations, 
including local selection, texture generation, shape generation, and post-processing, 
to generate realistic tumors for training AI models. The intrinsic observation about 
these operations is clinical knowledge. Taking liver tumors as an example, the 
mean HU intensity of hepatocellular carcinomas (tumors grown from liver cells) 
was 106 HU (with a range of 36–162 HU) [60]. Milder carcinomas usually lead to 
smaller, fewer spherical lesions, while multi-focal lesions (which means scattered 
small tumors) only appear in rare cases. Additionally, larger tumors usually display 
evident mass effects and are accompanied by capsule appearances that separate the 
tumor from the liver parenchyma [71]. This medical guidance, together with visual 
clues, determines the parameters and pipeline of this method. 

Cellular Automata are computational models used to simulate complex systems 
through simple rules and interactions. They employ a grid of cells (pixels), where 
each cell is initially assigned a state between zero and ten to represent the tumor 
population. The basic element is the cell, which refers to a single pixel in the 
computed tomography (CT) image. Tumor growth and behavior are modeled based 
on specific rules that simulate processes such as proliferation, invasion, and death. 
These rules are derived from medical knowledge and are guided by an idealized 
tumor model that reflects real-world characteristics. The tumor state can then be 
integrated into the original CT images to generate synthetic tumors in different 
organs. This tumor synthesis approach allows for sampling tumors at various 
stages and analyzing tumor-organ interactions. Motivated by this, Lai et al. [59] 
proposed Pixel2Cancer to simulate tumor growth (Fig. 5.6). Tumors generated by 
Pixel2Cancer are illustrated in Fig. 5.5. 

5.4.1 Property of Pixel2Cancer 

(i) Label-free. Pixel2Cancer can be applied as a label-free data synthesis 
approach, eliminating the need for manual per-voxel annotation. Previous 
learning-based approaches, such as GANs [28] and Diffusion models [40], are 

Fig. 5.5 Synthetic liver, pancreatic, and kidney tumors generated by Cellular Automata [59]
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designed to learn the representation and distribution of tumors. While these 
approaches excel in generating natural images, synthesizing tumors in CT 
scans still requires significant amounts of paired tumor data. Moreover, when 
generating synthetic tumors, generative models also need masks to indicate 
the tumor locations and shapes [49], necessitating extensive manual efforts for 
training and synthesis. 

(ii) Tumor development. Pixel2Cancer incorporates specific medical knowledge 
regarding tumor growth and appearance, enabling the simulation of realistic 
tumors. None of the existing synthetic approaches can adequately simulate 
tumor development in abdominal CT, and the primary challenges in current 
synthetic methods are the proliferation and invasion of tumors [36]. These 
processes in tumor growth are complex and interconnected, highly influenced 
by the surrounding environment [95, 106]. Consequently, synthetic tumors 
generated using current methods may conflict with normal organ structures 
and pose challenges when adapting them to different organs. 

(iii) Early tumor detection and boundary segmentation. Early detection of small 
tumors is critical for timely cancer diagnosis. However, real datasets often lack 
sufficient instances due to the asymptomatic nature of early-stage patients. 
Pixel2Cancer can generate more small tumors to improve the sensitivity of 
segmentation models for small tumor detection. Additionally, Pixel2Cancer 
generates synthetic tumors with precise tumor masks, whereas real data 
annotations are often inaccurate at the boundaries, leading to label noise in 
boundary segmentation accuracy. 

5.4.2 Clinical Perspectives 

Tumors and genetic disorders from DNA mutations in single cells undergo com-
plex growth processes [56]. Mutations during cell division lead to uncontrolled 
proliferation, forming neoplastic lesions that can be benign or malignant [27]. 
While both types follow similar growth principles, they differ in growth rate 
and invasiveness. Malignant tumors often grow rapidly, secreting growth factors 
or inducing surrounding stromal cells to do so, as seen in pancreatic IPMN 
lesions which grow larger and faster than benign ones [50]. Slow growth rates in 
renal tumors and hepatocellular carcinoma correlate with lower malignancy [91]. 
Malignant tumors are invasive, gradually penetrating and destroying surrounding 
tissues, whereas benign tumors remain confined to their original sites. Even slowly 
growing malignant tumors can infiltrate neighboring structures. Tumor necrosis, 
caused by rapid proliferation exceeding vascular supply [39], appears as irregular 
hypo-attenuating areas in CT images and serves as a poor prognostic indicator [25]. 
The death rule models this necrosis. A hybrid cellular automaton model is proposed 
to simulate tumor development from single cells to invasive tumors, capturing their 
continuous progression and interactions within the microenvironment (Fig. 5.6).
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Fig. 5.6 ① Tumor development: The cellular automata simulate tumor growth from a single pixel 
to various sizes and even tumor death, producing synthetic tumors with diverse sizes, shapes, and 
textures. An idealized tumor is created to quantify development, with dead cells in the gray region, 
living quiescent cells in the inactive region, and proliferative cells in the active outer shell. ② Tissue 
quantification: The organ map in blue transforms CT images into distinct intensity levels affecting 
tumor development rate, while the red tumor map assigns values representing the tumor cell 
population. ③ Tumor interaction with boundaries and vessels: The tumor grows and exerts pressure 
against organ boundaries and deforms as it interacts with vessels. ④ Mapping synthetic tumors to 
CT images: A mapping function correlates the synthetic tumor with CT values, integrating the 
tumor’s state with the original CT intensity. ⑤ Training segmentation models with synthetic data: 
Pixel2Cancer generates new synthetic data for each epoch to train the s egmentation model

5.5 Technology Trend II: Learning-Based Approaches 

Generative Adversarial Networks (GANs) [29] have been extensively explored 
for generating synthetic tumors. Zhao et al. [119] introduced Tripartite-GAN, which 
simultaneously achieves contrast-enhanced magnetic resonance imaging synthesis 
and tumor detection. Mukherkjee et al. [73] proposed AGGrGAN to generate 
synthetic MRI scans of brain tumors. However, the training process of GANs is 
often unstable, making it challenging to achieve convergence. Additionally, GANs 
can suffer from issues such as mode collapse, where the model generates limited 
diversity in outputs. 

Diffusion Models [52, 76] provide more stable and reliable training compared 
to GANs, as they gradually denoise data, making the optimization process easier 
to control. Additionally, Diffusion Models are capable of generating high-quality,
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Fig. 5.7 Examples of synthetic tumors generated by DiffTumor [9] on the liver, pancreas, and 
kidney 

Fig. 5.8 Overview of DiffTumor framework. In pursuit of achieving generalizable tumor synthesis, 
DiffTumor encompasses three stages. ① The first stage is the training of an Autoencoder Model— 
comprising an encoder and a decoder—to learn comprehensive latent features. The learning 
objective in this stage entails image reconstruction conducted on 9262 unlabeled three-dimensional 
CT volumes. Both the trained encoder and decoder are integral to subsequent stages. ② The 
second stage involves training a Diffusion Model—a specialized generative model—by utilizing 
latent features and tumor masks as conditions. Once trained, the model is capable of generating 
the requisite latent features for the reconstruction of CT volumes with tumors, utilizing arbitrary 
masks. ③ The third stage entails training a Segmentation Model with CT volumes of synthetic 
tumors, reconstructed by the decoder. Armed with a considerable repository of healthy CT 
volumes, DiffTumor has the capacity to generate an extensive collection of synthetic tumors, which 
vary in location, size, shape, texture, and intensity, thus contributing to the enhancement of AI 
models for tumor detection a nd segmentation

diverse samples with fewer issues related to mode collapse. DiffTumor [9]  is  
the first to explore tumor synthesis in abdominal organs using Diffusion Models 
and demonstrates an efficient method for achieving generalizable tumor synthesis. 
Tumors generated by DiffTumor are illustrated in F ig. 5.7. The network architecture 
of DiffTumor is shown in Fig. 5.8.
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5.5.1 Property of DiffTumor 

(i) Reduced annotations for Diffusion Model. The quality of synthetic data 
produced by a generative model typically depends heavily on the quantity and 
diversity of the paired training data used during the training phase [11, 46]. 
Nevertheless, the relationship between the number of annotated real tumors 
required for training the Diffusion Model and the performance of the Seg-
mentation Model has not been extensively studied. DiffTumor found that 
the relationship between the amount of paired training data and the quality 
of synthetic data is not necessarily linear. Remarkably, it requires only one 
annotated tumor to train the Diffusion Model and to generate synthetic tumors 
for the subsequent training of the Segmentation Model. This finding is in 
contrast to the conventional wisdom in computer vision [81], which often 
necessitates extensive datasets for training generative models. The results 
suggest that a smaller number of real tumors may suffice for training the 
Diffusion Model, particularly for early-stage tumors. Such a discovery could 
have profound implications for improving efficiency and reducing the costs 
associated with training generative models in the field of medical imaging. 

(ii) Accelerated tumor synthesis. The speed at which synthetic tumors are 
generated is critical for the practical use of synthetic data, particularly for 
accelerating the training of segmentation models. The synthesis speed of 
DiffTumor is significantly affected by the choice of timestep (T ). An inves-
tigation into the influence of timestep on the segmentation performance of the 
Segmentation Model has been conducted. It is observed that using DDPM [40] 
with one-step sampling, DiffTumor cannot synthesize realistic textures for both 
organ and tumor, which negatively affects the training of the Segmentation 
Model. Conversely, by setting T higher than 1, DiffTumor can produce more 
realistic textures, leading to an enhanced performance of the segmentation 
model. Taking into account the balance between performance and synthesis 
efficiency, DiffTumor selects a timestep of T = 4. as the default setting for 
early tumor synthesis. This selection strikes a balance that allows for the 
generation of high-quality synthetic data while maintaining an acceptable level 
of efficiency. 

5.5.2 Clinical Perspectives 

This learning-based approach can be widely applied because of the similar growth 
dynamics observed in tumors across various types and locations. Tumorigenesis is 
a complex, multistage process involving cellular and histological transformations, 
from precancerous lesions to malignant tumors. This progression, driven by genetic 
mutations and functional changes known as the ‘hallmarks of cancer,’ is consistent 
across tumor types [12, 35, 58]. Early-stage tumors typically consist of well-to-
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moderately differentiated cells with mild atypia and invasiveness, showing rare 
hemorrhage and necrosis. They often appear as homogeneous nodules with slightly 
indistinct margins and small diameters in CT images [15, 90]. In contrast, advanced 
tumors exhibit significant infiltration and destruction of surrounding tissues, extend-
ing beyond the original site and potentially affecting adjacent structures [5]. As 
tumors become more malignant, rapid growth leads to ischemia and necrosis due to 
insufficient vascular supply, resulting in heterogeneous patterns in CT images with 
features like hemorrhage and fibrosis [84, 115]. These characteristics are consistent 
across different populations, ages, and genders (Fig. 5.8). 

5.6 Tumor Synthesis Benchmark 

We evaluate the effectiveness of Pixel2Cancer and DiffTumor by comparing them 
with supervised models trained on real data and several prominent unsupervised 
anomaly segmentation methods. Table 5.2 highlights that synthetic data have 

Table 5.2 Comparison with state-of-the-art unsupervised methods. We compare the initial label-
free modeling-based methods with other unsupervised anomaly segmentation baselines, tumor 
synthesis strategies, and fully-supervised methods. Modeling-based methods significantly outper-
form all other state-of-the-art unsupervised baseline methods and even surpass the fully-supervised 
method with detailed pixel-wise annotation 

Liver tumor segmentation performance 

Tumors Method Architecture Labeled/unlabeled CTs DSC (%) NSD (%) 

None PatchCore [83] Resnet50 0/116 15.9 16.4 

None f-AnoGAN [86] Customized [7] 0/116 19.0 16.9 

None VAE [53] Customized [7] 0/116 24.6 23.6 

Synt Yao et al. [113] U-Net 0/116 32.8 31.3 

Real Fully-supervised U-Net 101/0 56.7 58.0 

Synt Hand-crafted [43] U-Net 0/116 59.8 61.3 

Synt Pixel2Cancer [59] U-Net 0/116 58.9 63.7 

Synt DiffTumor [9] U-Net 101/116 70.9 71.2 

Pancreas tumor segmentation performance 

Tumors Method Architecture Labeled/unlabeled CTs DSC (%) NSD (%) 

Real Fully-supervised U-Net 96/0 57.5 56.5 

Synt Hand-crafted [43] U-Net 0/104 54.1 52.2 

Synt Pixel2Cancer [59] U-Net 0/104 60.9 57.1 

Synt DiffTumor [9] U-Net 96/104 64.8 60.5 

Kidney tumor segmentation performance 

Tumors Method Architecture Labeled/unlabeled CTs DSC (%) NSD (%) 

Real Fully-supervised U-Net 96/0 71.3 62.8 

Synt Hand-crafted [43] U-Net 0/120 63.2 55.4 

Synt Pixel2Cancer [59] U-Net 0/120 73.2 65.0 

Synt DiffTumor [9] U-Net 96/120 84.2 76.6
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significantly outperformed all these baseline methods, achieving a DSC of 59.77% 
and NSD of 61.29%. These results highlight the potential of synthetic strategies to 
avoid per-pixel manual annotation for tumor segmentation. 

5.6.1 Case Study: Fake Tumors, Real Results 

Synthetic Liver Tumors In synthetic liver tumors, synthetic data have demon-
strated significant superiority over real data across all stages, from small to large 
tumors. The hand-crafted approach proposed by Hu et al. [43] outperforms real 
data, achieving a 2.3%. improvement in DSC and a 3.3%. improvement in NSD. 
Pixel2Cancer has shown superior performance in liver segmentation, with a DSC 
improvement of 2.2%. and an NSD improvement of 5.7%.. Additionally, DiffTumor 
has surpassed the performance of real data by 4.0%. in DSC and 4.7%. in NSD. 

Synthetic Kidney Tumors In kidney tumors, segmentation models have achieved 
superior performance when using synthetic data as data augmentation. Pixel2Cancer 
has shown superior performance in kidney segmentation, with a DSC improvement 
of 2.4%. and an NSD improvement of 3.2%.. Additionally, DiffTumor has surpassed 
the performance of real data by 7.0%. in DSC and 6.7%. in NSD. 

Synthetic Pancreatic Tumors Segmentation models also have achieved superior 
performance in pancreatic tumor segmentation when using synthetic data as data 
augmentation. Pixel2Cancer has shown superior performance in pancreas segmen-
tation, with a DSC improvement of 3.9%. and an NSD improvement of 1.9%.. 
DiffTumor has surpassed the performance of real data by 8.2%. in DSC and 9.4%. in 
NSD. 

5.6.2 Visual Turing Test 

The Turing Test, introduced by Alan Turing in “Computing Machinery and Intel-
ligence” [98], assesses whether a machine can exhibit intelligent behavior indis-
tinguishable from that of a human. We apply the Visual Turing Test to evaluate 
if synthetic tumors resemble real tumors. For this, we compared CT volumes 
containing real and synthetic tumors across various organs. Professionals, blinded 
to the origins of the samples, classified each volume as real or synthetic based on 
3D views of continuous slice sequences (see Fig. 5.9). 

Modeling-Based Approach (Pixel2Cancer) The outcome metrics, as presented 
in Table 5.3, unveil the performance evaluations by different radiologists. For the 
junior radiologist R1 (7 years of experience), metrics such as accuracy, sensitivity, 
and specificity all register below 40%. Notably, a specificity of 35.5% indicates 
that 64.5% of synthetic tumors are inaccurately identified as real. The intermediate
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Fig. 5.9 Visual Turing Test. Can you find some examples of synthetic data in the CT images? 
Answers are in Johns Hopkins Researchers Create Artificial Tumors to Help AI Detect Early-Stage 
Cancer 

radiologist R2 (9 years of experience) exhibits comparable metrics around 40%, 
with 59.2% of synthetic tumors causing confusion. Even the senior radiologist 
R3 (14 years of experience) misclassifies 44.1% of synthetic tumors as real, 
underscoring the formidable challenge posed even to seasoned professionals. These 
results emphasize the efficacy of our modeling-based approach (Pixel2Cancer) in 
achieving a realistic simulation of tumor development. 

Learning-Based Approach (DiffTumor) Two professionals were involved in 
this test, with 4 and 11 years of experience, respectively. 60 CT volumes were 
arranged in random order and scrutinized independently by two professionals. The 
test outcomes are detailed in Table 5.3. Radiologists R1’s near-zero specificity 
scores suggested that synthetic data closely resembled real tumors, resulting in 
the misclassification of most synthetic tumors as real. Consequently, R1’s accuracy 
scores hovered around 50%. Conversely, R2, with more experience, exhibited higher 
specificity scores compared to R1, approaching 50%. This implies that nearly 
50% of synthetic samples were correctly identified as synthetic, indicating a better 
discernment between real and synthetic tumors by R2. These findings affirm the 
effectiveness of DiffTumor in generating visually realistic tumors.
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Table 5.3 Results of reader study. Pixel2Cancer (top table): The test was conducted with three 
medical professionals having 7, 9, and 14 years of experience, respectively. Each professional 
evaluated 50 CT images for each organ, consisting of both real and synthetic tumors. They were 
tasked with categorizing each CT image as either real, synthetic,  or  unsure. DiffTumor (bottom 
table): Visual Turing test over three organs has been conducted with two radiologists (R1 and R2). 
Both radiologists are provided with 60 three-dimensional CT volumes of each organ, including 
30 scans with real tumors and the remaining 30 with synthetic ones. Radiologists are tasked to 
label each CT volume as real or synthetic. A lower specificity score indicates a higher number of 
synthetic tumors being identified as real

Modeling-based Approach: Pixel2Cancer 

Reader Metric Liver Pancreas Kidneys 

R1 Sensitivity (%) 100 95.0 95.5 

Specificity (%) 27.3 22.7 26.7 

Accuracy (%) 60.9 57.1 67.6 

R2 Sensitivity (%) 94.7 87.5 90.0 

Specificity (%) 47.8 47.4 56.3 

Accuracy (%) 69.1 65.7 75.0 

R3 Sensitivity (%) 100 100 100 

Specificity (%) 45.4 55.6 57.9 

Accuracy (%) 68.4 72.4 75.8 

Positives: real tumors (N = 25); negatives: synthetic tumors (N = 25)
Learning-based Approach: DiffTumor 

Reader Metric Liver Pancreas Kidneys 

R1 Sensitivity (%) 100 97.1 92.9 

Specificity (%) 2.9 0.0 3.1 

Accuracy (%) 45.0 56.7 45.0 

R2 Sensitivity (%) 84.6 100 100 

Specificity (%) 47.1 44.0 65.6 

Accuracy (%) 63.3 76.7 81.7 

Positives: real tumors (N = 30); negatives: synthetic tumors (N = 30)

5.7 Conclusion 

In this chapter, we delved into the concept of synthetic data and its application in 
medical fields, with a particular focus on cancer research. We defined synthetic data 
and discussed its critical role in cancer research, such as improving data diversity, 
protecting patient privacy, and enabling robust research in tumor detection, diagno-
sis, and treatment. We explored the challenges and opportunities presented in cancer 
research. Despite these challenges, synthetic data offers significant opportunities, 
such as enhancing the training of machine learning models, supporting large-
scale studies without privacy concerns, and fostering innovation in personalized 
medicine. Additionally, we highlighted promising approaches and future directions 
for the use of synthetic data in cancer research, including modeling-based methods
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and learning-based methods. These methods are opening new avenues for more 
accurate and comprehensive cancer research, enabling researchers to simulate 
various scenarios and treatments, and ultimately contributing to better patient 
outcomes. 
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Chapter 6 
Vision-Language Pre-training 
from Synthetic Data 

Che Liu 

Abstract Recent advancements in Medical Vision-Language Pre-training (Med-
VLP) demonstrate significant potential, leveraging extensive datasets of medical 
images and accompanying reports to deliver impressive performance across a wide 
range of downstream tasks, including both visual-based challenges and those inte-
grating vision and language. However, MedVLP systems require substantial datasets 
with matched image-text pairs, which are often challenging to procure due to 
their labor-intensive and costly nature. Additionally, real-world datasets frequently 
encounter issues such as imbalanced concepts, unpaired image-text samples, and 
corrupted images. Recent progress in deep generative models, notably from Vari-
ational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) to 
Stable Diffusion (SD)-based models, has been significant. SD-based models, in 
particular, excel in conditional generation, a crucial capability for synthesizing 
medical images with high fidelity. Moreover, the generation of medical reports can 
be enhanced using language models, especially large language models (LLMs) such 
as Llama, utilizing conditional generation driven by extensive medical concept def-
initions sourced from clinical peer-reviewed databases. This article introduces the 
principal MedVLP methodologies, the role of generative models, and the techniques 
of conditional generation, alongside an exploration of various downstream tasks 
employed to assess the effectiveness of MedVLP. 

6.1 Introduction 

Significant advancements in machine learning, particularly deep learning (DL), 
have revolutionized the processing and analysis of medical images [4, 15]. While 
traditional machine learning methods in medical imaging require extensive labeled 
datasets, deep learning approaches have somewhat alleviated this burden by employ-
ing sophisticated feature extraction capabilities. Despite these advancements, deep 
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learning models still depend heavily on large annotated datasets [35, 46]. Self-
supervised learning (SSL) methods have attempted to reduce the need for extensive 
annotations but often fail to capture nuanced features critical for medical appli-
cations [4, 12, 13, 15]. Vision-Language Pre-training (VLP) has emerged as a 
potent solution in this context, requiring fewer expert annotations by learning robust 
features from available paired image-text data [23, 34, 52, 55, 57]. 

However, acquiring such high-quality paired datasets is rare and typically 
involves significant financial and logistical challenges, necessitating innovative 
solutions like generative models [8, 18, 30]. Variational Autoencoders (VAEs) [31], 
Generative Adversarial Networks (GANs) [19], and more recently, Stable Diffusion 
(SD) models [45], have been pivotal in this regard. VAEs [31] are foundational in 
generating new data samples by learning the distribution of input data, making 
them ideal for tasks where modeling the underlying data distribution is crucial. 
GANs [19], by employing a dual-network architecture involving a generator and 
a discriminator, excel in generating high-fidelity images, making them particularly 
useful for creating realistic medical images. Stable Diffusion [45] models have taken 
this a step further by effectively conditioning the generation process on textual 
descriptions, thus providing a mechanism for creating detailed and specific medical 
imagery based on textual prompts. 

The concept of conditional generation, especially text-conditioned, has become 
increasingly relevant. This approach utilizes detailed clinical descriptions from peer-
reviewed medical databases to generate corresponding medical images, offering a 
promising avenue for enriching training datasets without the need for real-world 
data acquisition. This capability not only enhances the diversity of medical images 
but also aligns them more closely with specific clinical findings and annotations 
[10]. 

In addition to image synthesis, the generation of medical reports using large 
language models (LLMs) [41, 44, 51, 61] represents a transformative application 
within MedVLP. LLMs such as Llama [51] have shown exceptional capabilities 
in understanding and generating complex, domain-specific text. By leveraging 
vast amounts of medical literature and clinical case reports, these models are 
trained to produce detailed medical reports that are both clinically relevant and 
contextually accurate. The process involves conditioning the language models on 
specific medical imagery findings, allowing them to generate coherent and detailed 
descriptions akin to those written by healthcare professionals [20, 38]. This not only 
enhances the training datasets for MedVLP by providing paired image-text data but 
also serves as a tool for assisting medical practitioners in drafting diagnostic reports 
more efficiently. Such advancements hold the potential to significantly streamline 
the workflow in medical settings, reducing the cognitive load on radiologists and 
increasing the accuracy of diagnostic interpretations. This integration of LLMs 
into MedVLP platforms demonstrates the potential of combining advanced image 
and text generation technologies to improve the comprehensiveness and utility of 
medical imaging studies.
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This article delves into the dynamics of Medical Vision-Language Pre-training 
(MedVLP), examining the integration of various generative models for synthesizing 
both medical images and accompanying reports. We explore different generative 
models tailored for medical imagery and text generation, evaluating their efficacy 
in contributing to the MedVLP paradigm. Moreover, we discuss the downstream 
tasks that serve as benchmarks for evaluating the performance of MedVLP systems. 
Finally, the article addresses the current challenges faced in deploying MedVLP 
with synthetic data, focusing on how these models cope with the nuanced com-
plexities of medical data and their implications for clinical practice. Through this 
comprehensive analysis, we aim to shed light on the transformative potential of 
generative models in enhancing medical image analysis and the development of 
more effective and nuanced medical diagnostic tools. 

6.2 Vision-Language Pre-training in Medical Image 
Computing 

In the rapidly evolving field of Medical Vision-Language Pre-training (MedVLP), 
recent developments have marked significant achievements, particularly in learning 
clinically relevant visual and textual features from paired image-text datasets 
[23, 34–37, 39, 43, 52, 57]. This capability allows MedVLP systems to effectively 
interpret and analyze medical imagery alongside corresponding textual reports, 
thereby enhancing both the precision and breadth of medical diagnostics. 

Most MedVLP architectures employ a dual-stream approach: an image encoder 
and a text encoder [48]. The image encoder is tasked with processing and analyzing 
visual data from medical images, while the text encoder concurrently processes the 
paired medical reports, extracting semantic and contextual latent features that relate 
to the visual data (Table 6.1). 

Upon extracting visual and textual features, MedVLP systems generally adopt 
one of three mainstream approaches to integrate and utilize these features: align-
ment, reconstruction, and entity-based methods. The alignment approach focuses 
on maximizing the similarity of the paired image and text features to ensure that 
they correspond closely to one another. The reconstruction approach, on the other 
hand, involves either partially masking data (image or text) and then attempting to 
reconstruct the missing parts, which aids in strengthening the model’s predictive 
and interpretative capabilities. Lastly, the entity-based approach prioritizes the 
extraction of specific clinical entities from the text, using them to guide the 
learning process of visual features. This method aims to refine the model’s focus 
on clinically relevant features in the images, fostering a deeper understanding of the 
nuances in medical diagnostics. Together, these approaches form the backbone of 
MedVLP systems, each contributing uniquely to the advancement of medical image 
understanding and analysis. We have shown three such approaches in Fig. 6.1.
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Table 6.1 Overview of various public datasets for MedVLP 

Dataset Patients X-rays Labels Reports DICOM Metadata 

MIMIC-CXR [27] 65,379 377,095 14 ✔ ✔ ✔
OpenI [11] 3,996 8,121 – ✔ – – 

CandidPTX [17] 13,744 19,234 3 – ✔ – 

PadChest [3] 67,625 160,861 – ✔a ✔ ✔
CheXpert Plus [6] 64,725 223,462 14 ✔ ✔ ✔

a 
The reports are in Spanish 

Fig. 6.1 Recent advancements in MedVLP have leveraged various architectures to improving 
both the learning process and prediction accuracy in medical imaging applications. The notation 
Ie . represents the image encoder, Id . denotes the image decoder, and Le . signifies the language 
encoder. (a) Alignment-based method: Image-text alignment using contrastive loss (CLIP loss) 
to pull the features of paired image-text close together while pushing unpaired features apart, 
enhancing the model’s ability to correlate relevant medical images and texts. (b) Reconstruction-
based approaches: Masked reconstruction using reconstruction loss, where either masked image 
tokens or text tokens are reconstructed. This method focuses on recovering the original content, 
thus enabling the model to better understand and generate detailed components of both medical 
images and texts. (c) Entity-based approaches: This method uses extracted entities to supervise the 
visual feature learning. Unlike the other two methods that utilize the medical report directly, this 
style extracts entities from the report first and then aims to learn visual features from the entity 
classification task, thereby enhancing specific medical knowledge representation 

6.2.1 Alignment-Based Approaches 

The alignment-based approaches in MedVLP focus on aligning image and text 
features to enhance the model’s understanding and interpretation of medical data 
[34, 52, 55, 57]. Utilizing CLIP loss, these methods aim to synchronize features 
at various levels of granularity—global, regional, and token. This multifaceted 
approach ensures a comprehensive alignment that covers the overall context of the 
images and texts, specific areas of interest within the images, and even the smallest 
units of information represented by individual tokens. Such detailed alignment
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supports the model in developing a robust understanding of the relationships 
between different modalities of medical data. 

Moreover, some methods in alignment-based MedVLP incorporate multiscale 
visual features to align with different parts of medical reports, accommodating the 
varying levels of detail and information contained in clinical texts [23, 35]. By 
matching these multiscale visual features with corresponding segments of text, the 
model can learn high-level semantics more effectively, maximizing the similarity 
of paired image-text data while simultaneously distancing unpaired samples. This 
approach primarily focuses on high-level semantic alignment, which is crucial for 
understanding complex medical scenarios described in reports. However, it may 
overlook fine-grained features and low-level visual patterns, as the image encoder 
primarily learns from the medical report directly, potentially missing out on visual 
invariants that are critical for detailed medical analysis. Such trade-offs highlight 
the need for careful consideration in the deployment of alignment-based methods in 
clinical settings, ensuring that they capture both the broad semantic contexts and the 
detailed visual cues necessary for accurate medical diagnostics. 

6.2.2 Reconstruction-Based Approaches 

Reconstruction-based approaches in MedVLP primarily involve masking portions 
of image tokens or text tokens and then reconstructing them, leveraging both image 
and text features [7, 24, 32, 58, 60]. This method helps models learn the intricate 
interplay between visual and textual data, crucial for interpreting medical content. 
By deliberately obscuring parts of the input and challenging the model to fill in 
the missing information, these approaches encourage a deeper understanding of 
the underlying structures and relationships within the data. This process not only 
enhances the model’s predictive capabilities but also improves its ability to integrate 
and synthesize information from both visual and textual sources effectively. 

However, the technique of random masking can introduce complications, such as 
masking significant portions of normal or unremarkable areas, potentially leading 
the model to learn shortcuts or irrelevant features. To address these challenges, some 
studies have introduced guided masking strategies. These methods utilize attention 
maps to selectively obscure parts of the data that are deemed most informative for 
learning, thereby helping the model develop more robust and meaningful features. 
While this method excels in capturing low-level patterns and detailed visual-textual 
alignments, it can be somewhat limited when it comes to tasks requiring high-
level conceptual understanding, such as classification. These limitations highlight 
the need for balanced approaches in MedVLP that can effectively bridge the gap 
between detailed feature extraction and high-level semantic comprehension.
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6.2.3 Entity-Based Approaches 

Entity-based approaches in MedVLP represent a distinct methodology where 
features are not learned directly from the medical report in its entirety. Instead, 
this method begins by extracting clinical entities, such as disease names and 
abnormal patterns, from the report, often relying on expert knowledge to guide the 
extraction process. This preliminary step focuses on identifying key medical terms 
and concepts that are crucial for understanding the underlying medical conditions 
depicted in the images [9, 16, 42, 56, 59]. 

Once these entities are extracted, the MedVLP task is transformed into a 
classification challenge, where the primary objective for the model is to classify 
the image based on the entities included in the medical report. This approach 
leverages a portion of supervised information during the pre-training phase, which 
can enhance model performance and provide greater interpretability. The use of 
expert knowledge in the extraction process ensures that the entities are clinically 
relevant and accurately represent significant aspects of the medical condition being 
analyzed. 

However, there are inherent limitations to this approach. The extracted entities 
represent only a fraction of the information contained in the entire medical report, 
potentially omitting crucial details that could be important for a comprehensive 
understanding of the case. Moreover, the robustness of the entity extraction 
process is heavily dependent on the quality and scope of the knowledge database 
used, which can vary significantly. Additionally, this approach may struggle with 
newly identified diseases or rare conditions that are not yet well-represented in 
existing databases, limiting the model’s effectiveness in handling emerging medical 
challenges. 

6.3 Generating Synthetic Medical Images 

The creation of synthetic medical images is spearheaded by key generative models 
such as VAEs, GANs, and Stable Diffusion (SD) [19, 31, 45], each serving 
distinct roles in medical imaging technology. VAEs and GANs are geared primarily 
towards unconditional generation, producing images in one step from input noise. 
VAEs function through an encoder-decoder architecture that models the input data 
distribution [14], while GANs employ a dual structure of a generator that creates 
images and a discriminator that evaluates them, training the system to generate 
increasingly realistic images [28]. 

Conversely, SD adopts a multi-step approach to image generation. Starting with 
random Gaussian noise, SD refines this input through several denoising steps, unlike 
the single-step generation of VAEs and GANs [29]. This methodical enhancement 
process allows SD to produce higher quality images, crucial for medical imaging 
where detail is paramount. However, the superior image quality comes with
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Fig. 6.2 The framework of a VAE is depicted, where x . represents the original image input, and 
x' . is the generated image output. The latent feature z. of the input image is transformed through 
a variational process into z' ., a feature vector following a Gaussian distribution. E. denotes the 
image encoder, and G. is the image generator. The top panel illustrates the training stage, where 
the encoder E. maps x . to a latent representation z., which is then processed to produce z' . that 
follows a Gaussian distribution through a variational process. This transformed latent vector z' . 
is subsequently used by the generator G. to produce the reconstructed image x' .. The bottom 
panel shows the inference stage, where random Gaussian noise z' . is input into the generator G. 
to synthesize the image x' . 

increased computational demands, as each image requires multiple inference steps 
to achieve the final output, making SD both computationally intensive and effective 
for high-fidelity applications. 

6.3.1 Variational Autoencoder 

A VAE employs a unique generative model framework, as shown in Fig. 6.2, that 
utilizes an autoencoder architecture with a probabilistic approach. Unlike traditional 
autoencoders, which aim to minimize reconstruction error by directly encoding and 
decoding data, VAEs introduce a probabilistic twist to the encoding process. The 
encoder in a VAE transforms the input x . into a latent feature space z., but instead of 
encoding to a fixed point, it outputs parameters that define a probability distribution, 
typically characterized by mean and variance. This distributional approach allows 
the model to handle the complex, varied nature of input data more effectively. 

From the probabilistically defined latent space, a specific representation z. is 
sampled based on the Gaussian distribution parameters provided by the encoder. 
This sampled latent feature is then passed to the decoder, which attempts to 
reconstruct the input by generating a new image x'

.. The capability to sample latent 
representations allows the VAE not only to reconstruct input images but also to 
generate new ones by feeding random Gaussian noise into the decoder. This process 
results in the generation of new images that are variations on the learned data 
distribution. However, since the generative aspect of VAEs is largely unconditional,
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Fig. 6.3 The framework of a GAN is illustrated, where x . represents the original image input and x' . 
denotes the generated image output. The latent feature vector z' ., subject to a Gaussian distribution, 
is utilized to generate images. G. denotes the generator that creates images from the latent vector 
z' ., and  D . is the discriminator tasked with distinguishing between real images x . and synthetic 
images x' .. The top panel shows the training stage, where G. generates an image x' . from z' . which, 
along with real images x ., is evaluated by D . to train G. to produce increasingly realistic images. 
The bottom panel depicts the inference stage, where random Gaussian noise z' . is input into G. to 
synthesize the image x' ., independent of the discriminator 

the model generates images based on the distribution characteristics of the latent 
space rather than on explicit, controllable semantic content, positioning VAEs as 
versatile tools in image synthesis but less so for tasks requiring precise semantic 
consistency. 

6.3.2 Generative Adversarial Network 

GAN, illustrated in Fig. 6.3, represent a novel and powerful class of generative 
models distinguished by their use of two neural network components: the generator 
( G.) and the discriminator ( D .). This architecture enables GANs to generate highly 
realistic data by effectively learning the distribution of the input data through 
adversarial processes. The generator is tasked with creating data that is indistin-
guishable from genuine data, while the discriminator evaluates whether the data 
it receives (either from the generator or the real dataset) is real or synthetic. This 
adversarial interaction pushes the generator to produce increasingly sophisticated 
outputs, thereby enhancing the realism and quality of the generated data. 

The training process for a GAN is framed as a game between G. and D ., 
where G. learns to produce data that D . cannot distinguish from real data, and D . 

simultaneously sharpens its ability to identify the fakes. Initially, the generator 
produces data based on random noise input, which the discriminator evaluates. 
Feedback from the discriminator guides the generator in refining its subsequent
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Fig. 6.4 The framework of a Stable Diffusion (SD) model is illustrated, where x . represents the 
original image input, and x' . denotes the generated image output. E. is the image encoder that 
transforms x . into the latent feature z.. The diffusion process involves adding Gaussian noise to z., 
transforming it into z' . through a denoising process aimed at predicting and removing the added 
noise. G., the image generator, then uses the denoised latent feature z' . to generate the image 
x' .. During the inference stage, random Gaussian noise is input into the denoising block, which 
processes the noise to refine z' ., and then  G. uses z' . to produce the final image output x' . 

outputs. The discriminator’s training on both real and generated data enables it to 
provide accurate assessments, which in turn train the generator to mimic the real 
data distribution closely. 

GANs excel in generating high-quality images, making them ideal for applica-
tions requiring photorealistic rendering. However, training GANs can be challeng-
ing due to issues such as mode collapse, where the generator learns to produce 
only a limited variety of outputs, or non-convergence, where the generator and 
discriminator do not reach a stable state. 

6.3.3 Stable Diffusion 

Stable Diffusion, the framework of which is shown in Fig. 6.4, represents a 
significant advancement in generative modeling, requiring extensive datasets for 
effective training. For example, SD models are often trained on massive datasets 
such as LAION-5B, which contains billions of images. This extensive training set 
enables SD models to learn a diverse array of features and styles, contributing 
to their ability to generate high-fidelity and highly diverse synthetic images. The 
complexity and variety of the dataset directly influence the quality and versatility of
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Fig. 6.5 The synthetic chest X-ray images generated by a medical domain-specific SD model [5] 

the generated outputs, making the size and diversity of the training dataset a critical 
factor in the performance of SD models. 

However, the training process for SD models is computationally expensive, 
primarily due to the iterative denoising steps required to refine the generated 
images. During training, the model gradually introduces Gaussian noise into the 
data and then learns to reverse this process, effectively ‘denoising’ to recreate 
the original input or generate new, high-quality images from noisy inputs. This 
step-by-step denoising process, though resource-intensive, allows SD models to 
achieve remarkable levels of detail and realism in the generated images, setting them 
apart from other generative models that might use less computationally demanding 
processes. The fidelity and quality of images produced by Stable Diffusion are 
notably high, making it a preferred choice in applications where visual detail and 
authenticity are paramount (Fig. 6.5). 

6.3.4 Generating Medical Images Conditioned on Text 

Although the previously mentioned methods can generate high-quality images, they 
do so without specific conditions guiding the output. This unconditioned approach, 
while useful for general purposes, does not necessarily meet the needs of MedVLP, 
where the generated image must be paired specifically with corresponding textual 
data to ensure meaningful learning and applicability in medical contexts [2, 29, 49]. 

To generate images for MedVLP effectively, it’s crucial that the images not 
only exhibit high fidelity but also align semantically with text descriptions. This 
necessity gives rise to the need for conditional generation, where the synthesis of 
images is directly influenced by textual conditions [21]. Among the architectures 
capable of this, SD stands out as both popular and powerful. SD incorporates 
conditions during the denoising stage through a cross-attention mechanism. This 
method allows the integration of text conditions to constrain and guide the image 
generation process, ensuring that the synthetic images are semantically consistent 
with the accompanying text. 

By utilizing text prompts to guide the synthesis, SD enables the creation 
of synthetic medical images that are tightly coupled with textual descriptions 
[5, 33, 38]. This capability is crucial for building robust image-text pairs that are



6 Vision-Language Pre-training from Synthetic Data 121

indispensable for effective MedVLP training. Through conditional generation, SD 
not only enhances the relevance of the generated images but also significantly 
boosts the potential of MedVLP systems in learning and applying nuanced medical 
knowledge from integrated image-text data. 

6.4 Generating Synthetic Medical Text 

In the context of MedVLP, generating synthetic medical text, typically in the form of 
medical reports, is equally crucial as image synthesis. These generated texts serve 
as detailed descriptions or diagnostic reports that complement synthetic images, 
thereby enabling comprehensive training of MedVLP systems. The process begins 
by using advanced language models to craft medical reports that can mirror the 
complexity and specificity required in actual medical documentation [20, 25, 40]. 
This capability significantly enhances the dataset used for training MedVLP models 
by providing contextually relevant textual data. 

Once these synthetic medical reports are generated, they are utilized as textual 
conditions to guide the generation of corresponding medical images. This inte-
grative approach ensures that the synthetic images not only exhibit high fidelity 
but also align accurately with the medical scenarios described in the text. This 
methodological synergy between generated text and images fosters a more effective 
training environment for MedVLP systems, allowing them to better understand and 
interpret the nuanced interplay between medical imagery and textual data. 

The generation of structured medical reports is largely facilitated by mainstream 
LLMs such as Llama3 [1] and GPT [41], which utilize transformer-based architec-
tures. These models are adept at processing natural language inputs and generating 
coherent and contextually appropriate outputs. They employ an autoregressive 
method of text generation, where each word is predicted based on the sequence of 
words that came before it, as demonstrated in Fig. 6.6. For instance, when provided 
with a prompt such as “Now you are a professional radiologist, please generate 
a standard medical report including pneumonia in the right upper lobe,” these 
models can produce precise and clinically relevant reports like: “Right upper lobe 
pneumonia or mass. However, given right hilar fullness, a mass resulting in post-
obstructive pneumonia is within the differential.” 

After generating the synthetic medical text, this text is then used to condition the 
process of generating medical images through models such as SD. This ensures that 
the images not only visually represent the described medical conditions but also 
correspond precisely to the clinical details outlined in the synthetic reports. After 
preparing the synthetic text and synthetic images, both can be utilized for MedVLP 
using purely synthetic data, employing the VLP approaches described in Sect. 6.2.
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Fig. 6.6 The figure illustrates the autoregressive text generation process using a transformer-based 
LLM. In the first step, the initial input token is processed through multiple transformer layers to 
generate the second token. Subsequently, each step incorporates the previously generated token 
as input, which is again processed through the same transformer layers to produce the next token. 
This sequence continues iteratively through ‘N’ steps, with each step generating a subsequent token 
until the completion of the sequence 

6.5 Downstream Tasks for Evaluating Medical 
Vision-Language Pre-training 

After the development and pretraining phases of MedVLP, it is crucial to evaluate 
the quality and efficacy of the pre-trained models. This evaluation typically involves 
various downstream tasks that test different aspects of the models, focusing 
particularly on their ability to handle cross-modal tasks that involve both images 
and textual data. We have listed various public datasets for downstream tasks in 
Table 6.2. 

6.5.1 Zero-Shot Tasks 

Zero-shot tasks are key for assessing the cross-modal feature quality of pre-trained 
models. These tasks do not require traditional training with labeled examples 
specific to the task at hand; instead, they use the general understanding and features 
learned during the MedVLP phase to make inferences about unseen data.
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Table 6.2 Overview of various public datasets for downstream tasks: The symbol ‘/’ denotes that 
training/validation data is not required for zero-shot tasks 

Task Dataset Train Valid Test 
Fine-tune Classification CheXpert [26] 186,027 5,000 202 

RSNA [47] 16,010 5,337 5,337 

COVIDx [54] 23,988 5,998 400 

CXR14 [53] 77,872 8,652 25,596 
Fine-tune Segmentation RSNA [47] 16,010 5,337 5,337 

SIIM [50] 8,433 1,807 1,807 
Fine-tune Object Detection RSNA [47] 16,010 5,337 5,337 

Object-CXR [22] 6,400 1,600 1,000 
Zero-shot Classification RSNA [47] / / 5,337 

SIIM [50] / / 1,807 

CXR14 [53] / / 25,596 

CheXpert [26] / / 500 
Zero-shot Grounding RSNA [47] / / 5,337 

SIIM [50] / / 1,807 

• Zero-shot Classification (Fig. 6.7a): This task evaluates the ability of the model 
to classify images based on textual descriptions that were not part of the training 
set. For instance, a model might be given an image of a lung and a text description 
“pneumonia” and would need to classify whether the image fits the description 
based solely on the learned embeddings. 

• Zero-shot Grounding (Fig. 6.7b): Here, the model must localize objects or areas 
within an image that correspond to a given textual description. This task checks 
how well the model understands the spatial relationships and details within the 
image that relate to the descriptions. 

6.5.2 Fine-Tuning Tasks 

In addition to zero-shot tasks, fine-tuning tasks are employed to further refine and 
evaluate the visual feature quality of the models. These tasks involve adjusting the 
model on a specific dataset or for a particular task to improve performance, thereby 
assessing how effectively the pre-trained model adapts to new visual information. 

• Fine-tune Classification (Fig. 6.8 a) This task involves retraining the model 
to classify medical images into predefined categories, such as differentiating 
between types of lung diseases, based on their visual content. It uses disease 
labels and cross-entropy loss to fine-tune the model. 

• Fine-tune Segmentation (Fig. 6.8b): Segmentation tasks require the model to 
outline specific structures within an image, such as tumors or other pathological



124 C. Liu

Fig. 6.7 Zero-shot downstream tasks utilizing disease names as prompts. (a) Zero-shot Image 
Classification: The process involves using the disease name as a prompt to extract global image 
features and text prompt features. The similarity between these features is then computed and used 
as the probability of the disease mentioned in the prompt. (b) Zero-shot Image Grounding: This 
task also starts with the disease name as a prompt but focuses on extracting regional image features 
and a global text feature. The similarity between the text feature and each regional image feature 
is calculated, resulting in a similarity score for each image region relative to the disease. This 
similarity map is then used as the final segmentation result to compute metrics 

features. This is crucial for applications like automated diagnostics where precise 
anatomical segmentation is necessary. 

• Fine-tune Object Detection (Fig. 6.8c): Finally, object detection tasks challenge 
the model to identify and localize multiple objects within medical images, which 
is essential for applications such as detecting abnormalities across different 
scans. 

Based on the comprehensive evaluation provided by these downstream tasks, we 
can effectively assess the capabilities and performance of MedVLP systems across a 
range of critical dimensions. These tasks allow us to determine not only how well the 
models handle specific visual recognition tasks post-training but also their ability to 
integrate and interpret cross-modal information from both textual and visual inputs. 
As such, the outcomes of zero-shot and fine-tuning tasks provide essential metrics 
that reflect the robustness, adaptability, and overall utility of MedVLP systems in 
practical, clinical settings.
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Fig. 6.8 Figure illustrates three finetuning tasks using image embeddings. (a) Finetune Image 
Classification: This process involves a linear classifier that uses the global image embedding 
derived from medical images. The classifier is trained with a cross-entropy loss function to 
predict the disease label based on the image features. (b) Finetune Image Segmentation: An image 
decoder utilizes the global image embedding to reconstruct segmentation masks of anatomical or 
pathological features, trained via a Dice loss to enhance the metric of the segmentation. (c) Finetune 
Object Detection: In this task, an object detector processes the image embedding to identify and 
locate objects within medical images, using bounding box coordinates adjusted through regression 
loss to refine the detection performance 

6.6 Conclusion 

In this chapter, we explored the use of synthetic data and its impact on MedVLP. 
We highlighted various MedVLP methods and discussed the utilization of public 
real image-text datasets for MedVLP. We detailed the generative models used for 
synthesizing images and LLMs for generating medical text. We also demonstrated 
how text can be used as a condition for generating medical images. Finally, we 
discussed the evaluation of MedVLP on various downstream tasks using a wide 
range of datasets. 
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Chapter 7 
Diffusion Models for Inverse Problems 
in Medical Imaging 

Hyungjin Chung and Jong Chul Ye 

Abstract Diffusion model is a class of generative models that learns the gradient 
of the unnormalized log prior density. Diffusion models are easy to train, as the 
training amounts to training a denoiser on multiple noise levels. Equipped with a 
powerful generative prior that is modeled with a diffusion model, one can solve 
inverse problems through posterior sampling, leveraging the principles of Bayesian 
inference. In this chapter, we review the principles of diffusion models and study 
how they can be used to solve inverse problems that arise in medical imaging, 
focusing on MRI and CT reconstruction tasks. 

7.1 Introduction 

Let us consider the following linear inverse problem, which, despite its simplicity, 
can be used to model the measurement process of diverse medical imaging 
modalities (e.g. MRI, CT) 

.y = Ax + n, y ∈ R
m, x ∈ R

n, A ∈ R
m×n, n ∼ N(0, σ 2

y I ) (7.1) 

where typically m < n., making the problem ill-posed. The problem is to reconstruct 
a clean signal x . from the deficient and noisy measurement y .. In a probabilistic 
sense, this can be represented as the following likelihood model 

.p(y|x) = N(y;Ax, σ 2
y I ) = Z exp

(
−||y − Ax||2

2

2σ 2
y

)
, (7.2) 

where Z is a normalizing constant. On the other hand, we are interested in the 
posterior distribution, which is achieved by Bayes rule
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. 

posterior, ,, ,
p(x|y) ∝

prior,,,,
p(x)

likelihood Eq. (7.2), ,, ,
p(y|x) . (7.3) 

To access the posterior, one needs to define a suitable prior p(x)., which can be 
thought of as the naturalness of the signal. 

Intuitive Meaning of Prior and the Likelihood 
High posterior probability requires high prior probability conjugated with 
a high likelihood value. A high prior probability means that the image is 
realistic, while a low prior probability means that the image is unrealistic. 
However, in order to also achieve a high likelihood, x . should not be just any 
realistic image. It should adhere to the measurement information contained 
in y .. This is often denoted as data consistency, measurement consistency, 
fidelity, etc. 

The advances in inverse problem-solving can be attributed to the advancements 
in devising a better prior. Traditional methods used hand-crafted priors: total 
variation [2, 14], sparsity [12, 23] are two of the most widely used priors that are 
used in the context of medical imaging. Once we define a prior, we can choose to 
either find x . that maximizes the posterior (i.e. maximum a posteriori; MAP), or to 
sample from the posterior (i.e. posterior sampling). For instance, performing MAP 
can be done in the following way. From Eq. (7.3), we can take the log on both sides 
to have 

. log p(x|y) = log p(x) + log p(y|x) − log p(y). (7.4) 

We can equivalently minimize the negative log posterior, leading to 

.x∗ = arg min
x

− log p(x) − log p(y|x). (7.5) 

= arg min 
x 

f  (x) + 
1 

2σ 2 
y

||y − Ax||2
2, (7.6) 

where f (x) = exp(p(x)). defines our implicit prior. Taking f (x) := ||T (x)||1 . 

regularizes so that the reconstructed signal is sparse in some transform domain 
acquired through T (·) : R

n I→ R
n
., and setting f (x) := ||Dx||1 . where D . is the 

finite difference operator regularizes so that the signal is smooth. 
In the modern deep learning era, we can learn the prior from the data itself, rather 

than hand-crafting it. That is, we can train a deep generative model [15, 21, 25] 
to approximate pθ(x) ≈ pdata(x)., where θ . is the parameter of our generative 
model. Different from the MAP formulation in Eq. (7.5), we can define a constrained 
optimization problem where we constrain x . to be in the range space of our
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generative model, i.e. 

.x∗ = arg min
x

||y − Ax||2
2 subject to x ∼ pθ(x). (7.7) 

As deep generative models typically learn a mapping from the reference distribution 
(typically a standard normal distribution, denoted as z ∼ pz(z).) to the data 
distribution, a natural way to solve Eq. (7.7) is to optimize for this latent variable 
z.. A method proposed in CSGM [3] can be succinctly represented as 

.z∗ = arg min
z

||AGθ(z) − y||2, (7.8) 

which is possible as we can effectively take the gradient w.r.t. z. by backpropagation, 
and Gθ . is a direct mapping that requires a single neural network forward pass. 
Once the optimization of Eq. (7.8) is solved, the final reconstruction is given as 
x∗ = Gθ(z

∗).. It was shown that the same paradigm applies to GANs, VAEs [3], 
and normalizing flows [33]. We will see in the following sections that this is not 
directly applicable to diffusion models. 

7.2 Background: Diffusion Models 

Let us define a random variable x0 ∼ p(x0) = pdata(x)., where pdata . denotes 
the data distribution. In diffusion models, we construct a continuous Gaussian 
perturbation kernel 

.p(xt |x0) = N(xt ; stx0, s
2
t σ 2

t I ), t ∈ [0, 1], (7.9) 

which smooths out the distribution. As t → 1., the marginal distribution pt (xt ). is 
smoothed such that it approximates the Gaussian distribution, which becomes our 
reference distribution to sample from. Using the reparametrization trick, one can 
directly sample 

.xt = stx0 + stσtz, z ∼ N(0, I ). (7.10) 

Diffusion models aim to revert the data noising process. Remarkably, it was 
shown that the data noising process and the denoising process can both be 
represented as a stochastic differential equation (SDE), governed by the score 
function ∇xt log p(xt ). [19, 28].
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Variance Preserving (VP)/Variance Exploding (VE) Diffusion Models 
In the diffusion literature, one of the two different forward processes is used. 
VE diffusion [19, 28] sets the signal coefficient st = 1., and only scales the 
noise coefficient σt . to very high values as t → 1., making the signal coefficient 
negligible after enough diffusion. On the other hand, VP diffusion [11, 16] 
scales both the signal and the noise coefficient st → 0, σt → 1. as t → 1.. 
Choosing which diffusion process to use is often a design choice. Moreover, 
these two processes can be thought of as equivalent, as one can redefine a 
scaled variable x̃ . by dividing x . with its signal coefficient [19, 20]. In this 
chapter, we typically set st = 1. for simplicity, unless specified otherwise. 

Namely, the forward/reverse diffusion SDE can be succinctly represented as 

.dx± = −σ̇t σt∇xt log p(xt ) dt ± σ̇t σt∇xt log p(xt ) dt + √
σ̇t σtdwt , (7.11) 

where wt . is the standard Wiener process. Here, the +. sign denotes the forward 
process, where Eq. (7.11) collapses to a Brownian motion. With the −. sign, the 
process runs backward, and we see that the score function ∇xt log p(xt ). governs 
the reverse SDE. In other words, in order to run reverse diffusion sampling (i.e. 
generative modeling), we need access to the score function of the data distribution. 

The procedure called score matching, where one tries to train a parametrized 
model sθ . to approximate ∇xt log p(xt ). can be done through score matching [17]. 
As explicit and implicit score matching methods are costly to perform, the most 
widely used training method in the modern sense is the so-called denoising score 
matching (DSM) [32] 

. min
θ

Ext ,x0,e

l
||s(t)

θ (xt ) − ∇xt log p(xt |x0)||2
2

l
, (7.12) 

which is easy to train as our perturbation kernel is Gaussian. Once sθ∗ . is trained, we 
can use it as a plug-in approximation of the score function to plug into Eq. (7.11). 

7.2.1 Detour: Score Function, Posterior Mean, and DDPM 

7.2.1.1 Score Function and Posterior Mean 

The score function has close relation to the posterior mean E[x0|xt ]., which can be 
formally linked through Tweedie’s formula [13] 

Lemma 7.1 (Tweedie’s Formula) Given a Gaussian perturbation kernel defined 
in Eq. (7.9), the posterior mean is given by



7 Diffusion Models for Inverse Problems in Medical Imaging 133

.E[x0|xt ] = 1

st
(xt + σ 2

t ∇xt log p(xt )) (7.13) 

In other words, having access to the score function is equivalent to having access 
to the posterior mean E[x0|xt ].. The posterior mean is the minimum-mean-squared-
error (MMSE) estimate of the Gaussian-noisy xt .. This shouldn’t come as a surprise, 
as rearranging Eq. (7.12) with st = 1. and defining 

.Dθ(xt ) := xt + σ 2
t sθ (xt ), (7.14) 

Equation (7.12) is equivalent to a denoising autoencoder (DAE). 

. min
θ

Ext ,x0,e

l
1

σt

||D(t)
θ (xt ) − x0||2

2

l
. (7.15) 

This means that running the reverse diffusion in Eq. (7.11) by using a plug-
in estimate ∇xt log p(xt ) ≈ s

(t)
θ∗ (xt ). is essentially refining the posterior mean 

E[x0|xt ]. through the process. Under this view, diffusion models always keep a 
dual representation: the noisy variable xt ., and the empirical posterior mean x̂θ

0|t :=
xt + σ 2

t D
(t)
θ (xt ).. The relation between the posterior mean, score function, and the 

dual representation will come in handy later on. 

7.2.1.2 Denoising Diffusion Probabilistic Models (DDPM) 

DDPM is a diffusion model, where the forward and the reverse diffusion are defined 
by discrete Markov Gaussian transition kernels 

.pθ(x0) =
l

pθ(xT )

TΠ
t=1

p
(t)
θ (xt−1|xt ) dx1:T , (7.16) 

where x{1,...,T } ∈ R
d
. are noisy latent variables that have the same dimension as 

the data random vector x0 ∈ R
d
., defined by the Markovian forward conditional 

densities 

.q(xt |xt−1) = N(xt |
√

βtxt−1, (1 − βt )I ), . (7.17) 

q(xt |x0) = N(xt |
√

ᾱtx0,  (1 −  ̄αt )I ). (7.18) 

Here, the noise schedule βt . is an increasing sequence of t , with ᾱt :=Πt
i=1 αt , αt := 1 − βt .. Training of diffusion models amounts to training a multi-

noise level residual denoiser (i.e. epsilon matching) 

. min
θ

Ext∼q(xt |x0),x0∼pdata(x0),e∼N(0,I )

l
||e(t)

θ (xt ) − e||2
2

l
,
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such that e
(t)
θ∗ (xt ) ~ xt−√

ᾱtx0√
1−ᾱt

.. Interestingly, this training objective is equivalent 
to denoising score matching up to a multiplicative constant, similar to the relation 
between DSM and DAE. Indeed, it can be seen that the score function approximat-
ing ∇xt log q(xt |x0). has the following relation 

.s
(t)
θ∗ (xt ) ≈ −xt − √

ᾱtx0

1 − ᾱt

= −e
(t)
θ∗ (xt )/

√
1 − ᾱt . (7.19) 

Sampling from Eq. (7.16) can be implemented by ancestral sampling, which 
iteratively performs 

.xt−1 = 1√
αt

(
xt − 1 − αt√

1 − ᾱt

e
(t)
θ (xt )

)
+ β̃te, (7.20) 

where β̃t := 1−ᾱt−1
1−ᾱt

βt .. One can also view ancestral sampling Eq. (7.20) as solving 
the reverse VP-SDE [28]. Due to the equivalence revealed in Sect. 7.2.1, we simply  
use the term “diffusion models” regardless of the specifics of the model. 

7.2.1.3 Denoising Diffusion Implicit Models (DDIM) [28] 

Seen either from the variational or the SDE perspective, diffusion models are 
inevitably slow to sample from. To overcome this issue, DDIM [27] proposes 
another method of sampling which only requires matching the marginal distribu-
tions q(xt |x0).. Specifically, the update rule is given as follows 

.
xt−1 = √

ᾱt−1x̂t +
/

1 − ᾱt−1 − η2β̃2
t e

(t)
θ∗ (xt ) + ηβ̃te,

= √
ᾱt−1x̂t + w̃t

(7.21) 

where x̂t . is the denoised estimate 

.x̂t := x
(t)
θ∗ (xt ) := 1√

ᾱt

(xt − √
1 − ᾱte

(t)
θ∗ (xt )), (7.22) 

which can also be equivalently derived from Tweedie’s formula [13], and w̃t .denotes 
the total noise given by 

.w̃t :=
/

1 − ᾱt−1 − η2β̃2
t e

(t)
θ∗ (xt ) + ηβ̃te (7.23) 

In Eq. (7.21), η ∈ [0, 1]. is a parameter controlling the stochasticity of the update 
rule: η = 0.0. leads to fully deterministic sampling, whereas η = 1.0. with β̃t =√

(1 − ᾱt−1)/(1 − ᾱt )
√

1 − ᾱt /ᾱt−1 . recovers the ancestral sampling of DDPMs. 
It is important to note that the noise component w̃t . properly matches the forward 

marginal [27]. The direction w̃t . of this transition is determined by the vector sum of
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the deterministic and the stochastic directional component. Accordingly, assuming 
optimality of e

(t)
θ∗ ., the total noise w̃t . in Eq. (7.23) can be represented by 

.w̃t = √
1 − ᾱt−1ẽ (7.24) 

for some ẽ ∼ N(0, I ).. In other words, Eq. (7.21) is equivalently represented by 
xt−1 = √

ᾱt−1x̂t+√
1 − ᾱt−1ẽ . for some ẽ ∼ N(0, I ).. Therefore, it can be seen that 

the difference between DDIM and DDPM lies only in the degree of dependence on 
the deterministic estimate of the noise component with feasible intermediate values 
η ∈ (0, 1).. 

7.3 Solving Medical Imaging Inverse Problems 
with Diffusion Models 

7.3.1 Iterative Projection Approach 

Recall the problem formulation for using generative models to solve inverse 
problems in Eq. (7.7), and the canonical CSGM approach in Eq. (7.8). Directly 
trying to adopt the CSGM approach to the diffusion model framework would yield 
the following formulation 

.z∗ = arg min
z

||Ax̂ − y||, where x̂ ∼ pθ(x), (7.25) 

where the sampling x̂ ∼ pθ(x). would have to be done through solving Eq. (7.11) 
numerically. This would require at least few tens of neural function evalua-
tions (NFE) just for sampling. However, in order to optimize the problem given 
in Eq. (7.25), one would have to backpropagate the long chain, which would be 
infeasible.1 In the following, we discuss ways in which we can use an alternative 
approach to try to solve for Eq. (7.25). 

The first canonical approach of solving inverse problems following the for-
mulation presented in Eq. (7.7) is to perform iterative projections to impose data 
consistency while leveraging the stochastic samples from the generative diffusion 
model. Note that numerically solving the reverse VE-SDE of Eq. (7.11) can be done 
through Euler-Maruyama discretization 

.xi ← (σ 2
i+1 − σ 2

i )sθ (xi+1, σi+1) +
/

σ 2
i+1 − σ 2

i z, z ∼ N(0, I ) (7.26)

1 In practice, even on a 40GB VRAM A100 GPU, trying to backpropagate more than 2 NFE would 
result in out-of-memory errors. 
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While iteratively applying Eq. (7.26) would lead to samples from the prior distribu-
tion, we can project the intermediate samples xi . so that they meet the measurement 
condition y = Ax . 

.x'
i ← (I − A∗A)xi + A∗y, (7.27) 

where A∗
. is the Hermitian transpose of the operator A.. Moreover, it was proposed 

in [28] that applying some Langevin dynamics corrector steps in between the 
numerical SDE solve steps in Eq. (7.26) leads to better sample quality (denoted as 
PC sampler, short for predictor-corrector sampling). Applying the same logic, the 
update rule now reads 

.xi ← xi+1 + ϵisθ (xi+1, σi+1) + √
2ϵiz (7.28) 

x'
i ← (I − A∗A)xi + A∗y,

where ϵi . is some step size at the i-th iteration. So far, we have not discussed how 
the prior p(x). was trained. There are two ways to go about this, as MRI signals 
are inherently complex. The first choice, which would be the easiest way to train a 
diffusion model in a large-scale fashion, would be to train the model with DICOM 
images. DICOM images are magnitude values of the originally complex-valued 
MRI, and in most cases, medical images are saved in this form, with raw, heavy 
k-space being discarded. The second choice would be to train the prior to model 
the complex-valued distribution (in the standard two-channel way) of the minimum 
variance unbiased estimate (MVUE) images [18]. Here, let us consider the first case 
(which is the harder case), as for the second case, additional care is not necessary. 

When the model is trained with real-valued (magnitude) images, we cannot 
reconstruct the complex-valued MRI directly. A surprisingly simple fix that enables 
this is presented in Algorithm 7.1. Here, we run two parallel reverse diffusion 
processes, one for the real part, and another for the imaginary part of the image. 
The denoising (i.e. Predictor or Corrector) steps are done independently, and the 
cross-talk between them is enforced through the data consistency step in Eq. (7.27). 

Extending to Multi-Coil MRI While the complex-valued MRI reconstruction 
algorithm presented in Algorithm 7.1 is useful, most modern MRI scanners [34] 
have multiple receiver coils, which capture the signal with different sensitivities. 
Can we apply the same logic to parallel imaging? The answer is yes, where 
the idea is presented in Algorithm 7.2. The algorithm essentially states that all 
we have to do is run Algorithm 7.1 individually for each coil image. Notably, 
although the score function has never seen individual coil images, thanks to the 
high generalization capacity of diffusion models, we observe that the individual 
coil images are reconstructed with high accuracy, and the final merge can be 
obtained through a simple sum-of-root-sum-of-squares (SSOS). Observe that the 
coil components are easily parallelizable as there exists no cross-talk. Interested 
readers are pointed towards the original work of score-MRI [4].
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Algorithm 7.1 Score-MRI (single-coil; complex-valued) 
Require: sθ ,  N,  M,  {ϵi} ⊳ step size, {σi} ⊳ noise schedule 
1: if parallel imaging (PI) then 
2: A := PΩFS 
3: else 
4: A := PΩF 
5: end if 
6: xN ∼ N(0,  σ 2 

T I) 
7: for i = N − 1 : 0 do 
8: Re(xi ) ← Predictor(Re(xi+1), σi,  σi+1) 
9: Im(xi ) ← Predictor(Im(xi+1), σi,  σi+1) 

10: xi = Re(xi ) + ι Im(xi ) 
11: xi ← xi + A∗(y − Axi ) 
12: for j = 1 : M do 
13: Re(xi ) ← Corrector(Re(xi ), σi, ϵi ) 
14: Im(xi ) ← Corrector(Im(xi ), σi , ϵi ) 
15: xi = Re(xi ) + ι Im(xi ) 
16: xi ← xi + A∗(y − Axi ) 
17: end f or
18: end for
19: return x0

Algorithm 7.2 Score-MRI (multi-coil) 
Require: sθ ,  N,  {ϵi} ⊳ step size, {σi} ⊳ noise schedule 
1: Define A := PΩF 
2: x (k) 

N ∼ N(0,  σ 2 
T I) 

3: for i = N − 1 : 0 do 
4: for k = 1 : c do (parallel) 
5: Re(x (k) 

i ) ← Predictor(Re(x (k) 
i+1), σi,  σi+1) 

6: Im(x (k) 
i ) ← Predictor(Im(x (k) 

i+1), σi,  σi+1) 
7: x (k) 

i = Re(x (k) 
i ) + ι Im(x (k) 

i ) 
8: x (k) 

i ← x (k) 
i + A∗(y(k) − Ax (k) 

i ) 
9: Re(x (k) 

i ) ← Corrector(Re(x (k) 
i ), σi, ϵi ) 

10: Im(x (k) 
i ) ← Corrector(Im(x (k) 

i ), σ i , ϵi ) 
11: x (k) 

i = Re(x (k) 
i ) + ι Im(x (k) 

i ) 
12: x (k) 

i ← x (k) 
i + A∗(y(k) − Ax (k) 

i ) 
13: end for 
14: end for 

15: x0 =
/∑c

k=1 |x(c)
0 |2 ⊳ SSOS

16: return x0

Using the score function trained as the second case (i.e. with complex images) is 
a trivial extension. The two parallel denoising steps that were applied independently 
can now be merged into a single stream of complex-valued denoising, with the 
same data consistency steps. For the rest of the chapter, for simplicity, we will only 
consider this second case. 

Up until now, we only discussed MRI reconstruction. For CT reconstruction, the 
same idea of using iterative projections can be applied, but the problem is actually



138 H. Chung and J. C. Ye

easier as now there is no need to consider complex values. For further reference, 
consult [6, 29]. 

7.3.2 Direct Bayesian Approach 

Recall that solving the reverse SDE in Eq. (7.11) led to sampling from p(x).. When 
solving for inverse problems, what we would instead want is to sample from the 
posterior. All we would have to change would be to switch the gradient of the log 
prior ∇xt log p(xt ). to the gradient of the log posterior ∇xt log p(xt |y).. Using Bayes 
rule, we see that 

.∇xt log p(xt |y) = ∇xt log p(xt ) + ∇xt log p(y|xt ). (7.29) 

As usual, the gradient of the log prior can be approximated with the diffusion model. 
But what about the time-dependent likelihood? At first sight, this may seem trivial, 
as it was stated in Eq. (7.2) that for many measurement models in inverse imaging, 
the likelihood term is known. However, care must be taken as we now have an 
additional dependence on the diffusion time t . Writing out explicitly, we have 

.p(y|xt ) =
l

p(y|x0)p(x0|xt )dx0. (7.30) 

Notice that p(y|x0). is tractable, but p(x0|xt ). is not. Hence, one has to make 
some approximation to it. In this section, we will review some of the canonical 
approaches. Before we begin this section, it should be noted that when we consider 
MRI reconstruction, we will always be referring to the multi-coil case here after, 
and hence the sensitivity coil maps estimated through e.g. ESPiRiT [31]. 

7.3.2.1 Score-ALD [18] 

xt . is intuitively a noiser version of x0 .. One straightforward approximation, hence, is 
to treat it as if the excessive noise exists on the measurement y .. The approximation 
then reads 

.∇xt log p(y|xt ) ≈ AT Axt − y

σ 2
y + γ 2

t

, (7.31) 

where γt . is a hyperparameter that is correlated with the noise level at time t . Score-
ALD was one of the earliest works to show the effectiveness of using diffusion 
models for MRI reconstruction. However, it required designing an effective choice 
of the hyperparameter γt ., which is often non-trivial.
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7.3.2.2 Diffusion Posterior Sampling (DPS) [8] 

Observe that Eq. (7.30) can be rewritten in terms of expectation 

.p(y|xt ) = Ex0∼p(x0|xt )[p(y|x0)]. (7.32) 

However, even when we consider Monte Carlo samples, running the reverse 
diffusion to sample x0 . from the reverse distribution for all timesteps t would 
be computationally extremely heavy. In DPS, the authors propose an effective 
approximation by pushing the expectation i nside

.p(y|xt ) ≈ p(y|x̂t ), where x̂t := E[x0|xt ] (7.33) 

Notice that the posterior mean can be obtained thanks to Tweedie’s formula in 
Lemma 7.13. Further details and the approximation error (i.e. Jensen gap) induced 
by this process can be found in [8]. While DPS was shown to be effective for 
image restoration tasks, it did not scale well to medical image reconstruction tasks, 
as taking the gradient with respect to xt . involves taking backpropagation through 
the score function, which is often unstable and slow, especially combined with the 
forward operators used in medical imaging. 

7.3.2.3 Decomposed Diffusion Sampler (DDS) [10] 

Let us consider the case where we are using the DDIM sampler in Eq. (7.21) for our 
reverse diffusion with DPS. One iteration of the diffusion step can be rewritten as 

. xt−1 = √
ᾱt−1

(
x̂t − γt∇xt 𝓁(x̂t )

) + w̃t , (7.34) 

where 𝓁(x) = ||y − Ax||2/2σ 2
y . for the Gaussian case. By applying chain rule for 

the gradient term, we have 

. ∇xt 𝓁(x̂t ) = ∂x̂t

∂xt

∇x̂t
𝓁(x̂t ).

Here, the main computational complexity, and the instability arise from the network 
Jacobian term ∂x̂t

∂xt
.. Interestingly, it was shown in [10] that if the data manifold M. in 

which the signal resides is assumed to be an affine subspace, then the Jacobian term 
is an orthogonal projection onto the clean manifold up to a scale factor. Formally, 
we have the following result 

Proposition 7.1 (Manifold Constrained Gradient [10]) Suppose the clean data 
manifold M. is represented as an affine subspace and assumes the uniform distribu-
tion on M.. Then,
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.
∂x̂t

∂xt

= 1√
ᾱt

PM. (7.35) 

x̂t − γt∇xt 𝓁(x̂t ) = PM
(
x̂t − ζt∇x̂t

𝓁(x̂t )
)

(7.36) 

for some ζt > 0., where PM . denotes the orthogonal projection to M.. 

Notably, the DPS gradient update step can be achieved by taking the standard 
gradient update step with the Tweedie estimate x̂t ., and projecting onto the manifold 
M.. Nonetheless, a notable limitation is the use of a single projected gradient step 
for each ancestral steps. A natural question arises: can we explore extensions that 
allow computationally efficient multi-step optimization steps? 

Let Tt . denote the tangent space of the clean manifold at a denoised sample x̂t .. 
Suppose, furthermore, that there exists the l-th order Krylov subspace 

.Kt,l := Span(b, Ab, · · · , Al−1b), b := y − Ax̂t (7.37) 

such that 

. Tt = x̂t +Kt,l .

Then, we can use the conjugate gradient (CG) update steps, as it can be guaranteed 
that the updates will not leave the Krylov subspace. Using the properties of CG, it 
is easy to see that M-step CG update with M ≤ l . starting from x̂t . are confined in 
Tt . since it corresponds to the solution of 

. min
x∈x̂t+KM

||y − Ax||2 (7.38) 

andKM ⊂ Kl . when M ≤ l .. In other words, we have shown that if the tangent space 
at each denoised sample is representable by a Krylov subspace, there is no need 
to compute the DPS gradient. Rather, CG suffices to guarantee that the updated 
samples stay within the tangent space. To sum up, DDS can be summarized as 
follows 

.xt−1 = √
ᾱt−1x̂

'
t + w̃t , . (7.39) 

x̂
'
t = CG(A∗A, A∗y, x̂t ,  M), M ≤ l (7.40) 

where CG(·). denotes the M-step CG for the normal equation starting from x̂t .. 

7.3.3 Properties 

In this section, we discussed several different approaches for solving inverse 
problems with diffusion models. There are many meanings to solving an inverse
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problem, and in the context of doing so with diffusion models, it often means 
performing (approximate) posterior sampling. In the literature, these approaches are 
often called Diffusion model-based Inverse problem Solvers (DIS). In DIS, we keep 
the prior diffusion model fixed and leverage the likelihood function 

7.4 Experiments 

In the experiments section, we will first focus on showing the intriguing properties of 
acquiring stochastic posterior samples through the Score-MRI approach introduced 
in Sect. 7.3.1, although the results will not be specific to this approach. Then, the 
later parts will be focused more on presenting the accelerated results through the 
DDS approach introduced in Sect. 7.3.2.3. For the MRI case, the fastMRI knee 
public dataset [34] is used. For the CT case, AAPM 256 ×.256 dataset is used [24]. 

7.4.1 DIS Are Agnostic to the Sampling Pattern 

Diffusion models are agnostic to the forward model, as it is leveraged as a plug-
and-play prior. The likelihood (i.e. information about the measurement, and in 
the case of MRI, sampling pattern) information is only used during the inference 
phase to guide the sampling. In Fig. 7.1, we show that this is indeed the case by 
comparing score-MRI against strong supervised deep learning-based methods: U-
Net [34] and E2E-varnet [30] trained on 1D sampling patterns. Notice that while the 
supervised methods show strong performance on the in-domain measurements (i.e. 
1D sampling patterns), the performance degrades heavily when OOD measurements 
are used for reconstruction (i.e. 2D sampling patterns such as Gaussian or VD 
poisson disk). In contrast, score-MRI is agnostic to the variations in the sampling 
pattern, and produces superior reconstructions. Note that this not only holds for 
MRI reconstruction but also for CT reconstruction. Traditionally, sparse-view CT 
reconstruction (SV-CT) and limited-angle CT reconstruction (LA-CT) have often 
been studied separately, and one had to re-train a new network for a new level of 
sparsity. This is not the case for DIS. 

7.4.2 Pathology Detection 

Supervised learning leads to MMSE reconstructions. These minimize the distortion 
while sacrificing the perceptual quality by yielding blurry reconstructions [1]. On 
the other hand, by leveraging diffusion models, we can generate high perceptual 
quality reconstructions, while they may compromise the distortion metric. In 
medical imaging, which is better? At first thought, it might seem like the answer
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Fig. 7.1 Multi-coil reconstruction results. (a) Sub-sampling mask used to generate under-sampled 
image, (b) TV, (c) supervised learning (U-Net), (d) E2E-varnet [30], (e) score-MRI, and (f) 
the ground truth. First row: 2D ×.8 Gaussian random sampling, second row: 1D ×.4 Gaussian 
random sampling, third row: 1D ×. 4 uniform random sampling, fourth row: ×.8 variable density 
(VD) poisson disk sampling. Green box: Zoom in version of the indicated yellow box, Blue box: 
Difference magnitude of the inset. Yellow numbers in the upper right corner indicate PSNR [db], 
and SSIM, respectively 

is obviously the former, as one would want to minimize any hallucinations and be 
conservative. Nonetheless, recall that the objective of medical imaging is to make 
an accurate diagnosis. Which case would be more favorable? To show this, we fine-
tuned an object detection model, YOLO v52 on fastMRI+ [35] with fully-sampled 
MRI images, and ran inference with different reconstructions obtained through 
various methods (including the test-set of the fully-sampled MRI images).

2 https://github.com/ultralytics/yolov5. 


 -1446 58376 a -1446 58376 a
 
https://github.com/ultralytics/yolov5


7 Diffusion Models for Inverse Problems in Medical Imaging 143

Fig. 7.2 Results of pathology detection. Detection using (a) TV reconstruction, (b) supervised 
U-Net, (c) DuDoRNet, (d) proposed method, (e) fully-sampled images. Ground-truth label for the 
pathologies are shown in (f). (Yellow green box): Cartilage partial thickness loss/defect, (Pink box): 
Meniscus tear, (Purple box): Ligament PCL Low-Mod grade sprain, (Skyblue box): Ligament ACL 
low grade sprain 

Fig. 7.3 Quantitative metrics 
of pathology detection 

Overall results on the pathology detection task is illustrated in Fig. 7.2, and the 
quantitative metric is shown in Fig. 7.3. From the results, we immediately see, rather 
surprisingly, that the best-performing method is score-MRI, lending weight to the 
strengths of DIS even for medical imaging. 

7.4.3 Quantifying Uncertainty of the Prediction 

Score-MRI, and generally all DIS are generative posterior sampling algorithms, 
with two sources of stochasticity (i.e. initial point, noise along the sampling 
process). Due to the stochastic nature, we can run multiple reconstructions in 
parallel, and quantify the uncertainty of the prediction, as depicted in Fig. 7.4. 
At low acceleration factors ( × 2.), we see little variation between the different 
reconstructions. This indicates high confidence in the model, and hence we can 
conclude that the reconstruction is relatively exact in all parts of the image. As 
the acceleration factor is increased, and the degree of aliasing artifacts becomes
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Fig. 7.4 Quantifying the uncertainty of reconstruction. (a) Ground truth, (b) aliased image from 
sub-sampling, (c) mean of the reconstruction, (d) standard deviation of the samples: range is set 
to [0, 0.02] (on Viridis colormap). From the first row to the fourth row, the acceleration factor 
grows from × 2. to × 8. 

more severe, we see that the uncertainty increase in specific regions. Potentially, 
this measure of uncertainty can inform the practitioners on how much they should 
rely on the reconstruction, thereby deciding whether to use a different diagnostic 
tool. 

7.4.4 Accelerated Sampling with DDS 

A downside of score-MRI was the slow inference time. Four thousand neural 
function evaluations (NFE; the number of forward passes through the diffusion 
model) lead to several minutes of reconstruction time even for a moderately-
sized image. This is note a downside unique for score-MRI, but also a downside 
for the direct Bayesian approaches such as score-ALD (Sect. 7.3.2.1) and DPS 
(Sect. 7.3.2.2). We can alleviate this downside by using a fast sampler called DDS, 
introduced in Sect. 7.3.2.3. In Fig. 7.5, we see that DDS is capable achieving fast 
sampling with under 50 NFEs and yield even better results.
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Fig. 7.5 Representative reconstruction results. (a) Multi-coil MRI reconstruction, (b) 3D sparse-
view CT. Numbers in parenthesis: NFE. Yellow numbers in bottom left corner: PSNR/SSIM 

7.5 Discussion 

The methods described in the chapter were designed mostly for the most basic 
2D imaging cases. However, it should be noted that there is much more to 
medical image reconstruction that is out of the scope of this work. For different 
applications, while the fundamental theory remains the same, one often needs to 
adapt the specifics of the algorithm for the suitable application. For instance, using 
shortcut sampling and using regularization introduced in CCDF [7] was shown  
to be useful in MRI denoising [5]. Methods for compensation of high dynamic 
range and variance in positron emission tomography (PET) [26] was used for PET 
reconstruction. Orthogonal to the developments specific to the imaging modalities 
at hand, extension of 2D reconstruction-oriented methods to 3D imaging situations 
were also proposed [9, 22], enabling direct adoption of 2D priors even for 3D cases.
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7.6 Conclusion 

In this chapter, we explored methods for employing unconditional diffusion models, 
originally trained to sample from the prior (data) distribution, to sample from the 
posterior distribution using measurement information provided only at the inference 
stage. This complete separation of the two factors allows for forward model-
agnostic application of diffusion models across a wide range of downstream tasks, 
a capability unattainable with traditional supervised learning approaches. We also 
highlighted the benefits of Diffusion Inference Sampling (DIS), including high 
perceptual quality in posterior sampling, which enhances diagnostic accuracy, and 
the ability to quantify uncertainty. 

While diffusion models have seen increasing interest in medical imaging over 
the past few years, their application remains in the early stages. Currently, most 
deep learning engines in practical use are based on supervised methods. For these 
emerging techniques to gain reliable traction among practitioners, extensive clinical 
validation is necessary. 

Appendix 

Lemma 7.1 (Tweedie’s Formula) Given a Gaussian perturbation kernel defined 
in Eq. (7.9), the posterior mean is given by 

.E[x0|xt ] = 1

st
(xt + σ 2

t ∇xt log p(xt )) (7.13) 

Proof 

.∇xt log p(xt ) = ∇xt p(xt )

p(xt )
. (7.41) 

= 
1 

p(xt )
∇xt

l
p(xt |x0)p(x0)  d  x0. (7.42) 

= 
1 

p(xt )

l
∇xt p(xt |x0)p(x0)  d  x0. (7.43) 

= 
1 

p(xt )

l
p(xt |x0)∇xt log p(xt |x0)p(x0)  d  x0. (7.44) 

=
l

p(x0|xt )∇xt log p(xt |x0)  d  x0. (7.45) 

=
l

p(x0|xt ) 
stx0 − xt 

s2 
t σ

2
t

dx0. (7.46)
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= 
stE[x0|xt ] − xt 

s2 
t σ 2t

. (7.47) 
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Chapter 8 
Virtual Elastography Ultrasound via 
Generative Adversarial Network and Its 
Application to Breast Cancer Diagnosis 

Zhao Yao, Yuanyuan Wang, Min Liu, Jianqiao Zhou, and Jinhua Yu 

Abstract Elastography ultrasound (EUS) imaging is a vital ultrasound imaging 
modality. The current use of EUS faces many challenges, such as vulnerability 
to subjective manipulation, echo signal attenuation, and unknown risks of elastic 
pressure in certain delicate tissues. The hardware requirement of EUS also hinders 
the trend of miniaturization of ultrasound equipment. Here we show a cost-
efficient solution by designing an improved generative adversarial model (GAN) 
to synthesize virtual EUS (V-EUS) from conventional B-mode images. Specifically, 
a bi-discriminator structure and a color prior module are designed to model the 
intrinsic attributes of the EUS. A total of 4580 cases were collected from 15 medical 
centers and extensive experiments were designed to demonstrate the validity of 
the proposed model. In the task of differentiating benign and malignant breast 
tumors, there is no significant difference between V-EUS and real EUS on high-
end ultrasound, while the diagnostic performance of pocket-sized ultrasound can be 
improved by about 5 %. after V-EUS is equipped. 

8.1 Introduction 

Ultrasound imaging (US) is an essential component of modern medical imaging 
technology. Elastography ultrasound imaging (EUS), as a widely used ultrasound 
imaging modality, can be used to assess the biomechanical properties of soft 
tissues. EUS provides distinctive information different from other ultrasound (US) 
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modalities and plays an increasingly important role in diagnosing many diseases, 
especially tumors, with significant clinical value [1, 2]. 

With the rapid development of integrated circuits, an important trend in US 
equipment is towards miniaturization and portability to take full advantage of real-
time, non-invasive, inexpensive, and easily accessible US [3, 4]. Due to the hardware 
requirements of EUS, none of the existing pocket-sized ultrasound instruments 
are able to provide elastography modality, which has become an obstacle to the 
widespread use of miniaturized ultrasound equipment [3, 5]. On the other hand, 
compared with B-mode US, EUS is more susceptible to subjective manipulation, 
including probe position, applied pressure, and frequency of compression, which 
dictates a higher operator dependence and longer learning curve [6]. In addition, 
EUS requires the calculation of tissue displacement based on ultrasound echo 
signals, and the accuracy of displacement calculation is strongly influenced by 
signal attenuation, with the consequence that the quality of EUS of deep tissues 
degrades significantly. Furthermore, as EUS relies on stress changes to capture the 
elasticity of tissue, and the biomechanical properties of delicate tissues, such as 
carotid plaque, eye, and brain tissue, are not well understood, leading to no clear 
conclusions about the safety of EUS in the diagnosis of these lesions. 

Recently, deep learning-based medical image synthesis technology offers 
promising solutions to many data-driven clinical application challenges. For 
example, data synthesis technology can improve the imaging quality of low-end 
acquisition equipment and break through the limits of the original imaging methods 
in various aspects such as imaging speed [7], resolution [8], modality [9], and slice 
staining techniques [10]. 

To tackle the barriers mentioned above to use EUS in clinical applications, in this 
paper, we propose a cost-efficient solution by designing an image synthesis method 
based on deep learning. Specifically, a virtual EUS (V-EUS) reconstruction method 
based on generative adversarial network (GAN) is proposed to establish an end-
to-end translation from B-mode US to EUS. To fully validate the clinical value of 
V-EUS, we choose the clinical problem of breast cancer diagnosis and validate it 
in 4580 breast tumor cases from 15 medical centers. In order to obtain an accurate 
elasticity assessment of the tumor region and to make the color distribution of V-
EUS highly compatible with the one of real EUS, we propose to integrate a tumor 
discriminator module and a color balancing module in the GAN framework. 

The remainder of this chapter is organized as follows. In Sect. 8.2, we present the 
design of the model structure and detailed description of the training and validation. 
In Sect. 8.3, we show the multi center experimental design and the corresponding 
analysis of the experimental results. Finally, in Sect. 8.4 we discuss the application 
of the model to the diagnosis of benign and malignant breast tumor. An earlier 
version of the main content of this chapter was published in [11].
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8.2 Deep Neural Network Architecture, Training and 
Validation 

8.2.1 Generator 

Under the paradigm of the GAN model, the architecture of the generator follows 
the design of U-net [12], as shown in Fig. 8.1. It is pretty suitable to use U-net 
structure for this study. In addition to learning the overall mapping relationship 
between inputs and outputs, the encoder-decoder structure of the model is helpful to 
learn semantic information at different scale. The skip connection between encoder 
and decoder ensures that the decoder can integrate more low-level features which is 
essential for enriching the details of EUS image [13]. 

After data preprocess, the input B-mode USwith a size of 256*256 were feed into 
the generator. In the encoder, it contains an input layer and 6 convolutional blocks. 
Each convolutional block is composed of a ReLU layer, a convolutional layer and a 
batch-normalization layer. Between each convolutional block, we used convolution 
with step size of 2 instead of down-sampling, which may decrease the information 
loss [14]. The output channels of each convolutional block in encoder was set to 
64, 128, 256, 512, 512, 512, 512. In the decoder, it contains 6 convolutional blocks 
and an output layer. Different from the convolutional blocks in the encoder, the 
convolution operation in decoder is replaced by the deconvolution operation, which 
reconstructs the feature map back to the input image size. The input channels of 
each convolutional blocks in decoder was set to 512, 1024, 1024, 1024, 512, 256, 
128. The last layer is a deconvolution operation followed by a Tanh activation layer, 
which mapping 128 channels feature maps into 3 channels EUS. 

Fig. 8.1 Overview of the model architecture. The generator adopts a U-net design and the 
discriminator uses a fully convolutional network. The global and tumor discriminator uses the 
same network architecture. (In the figure, c, k and s represent the number of convolution kernels, 
convolution kernel size and stride, respectively)
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8.2.2 Discriminator 

The discriminator, as shown in Fig. 8.1, receives 4-channel composite image 
(concatenating 1-channel B-mode US and 3-channel EUS) as input. This is a 
paradigm of conditional GAN, which aims to expose the discriminator to more prior 
knowledge [15]. The 4 channels composite image is then feed into a convolutional 
layer followed by 4 convolutional blocks and an output layer. Each convolutional 
block is composed of a convolution layer, a batch-norm layer and a Leaky-ReLU 
activation layer. The output channels of each convolution layer in discriminator 
were set to 64, 128, 256, 512, 512 and 1. The local connection characteristic of 
convolution operation makes patch retain the spatial information of the input image, 
so the discriminator effectively models the input image as a Markov random field, 
which is crucial for high-frequencies reconstruction [16]. 

In addition to the global discriminator used to classify whether the input image 
is real or fake, we further designed a local discriminator to determine whether the 
tumor area is real or fake. Because the color distribution of the tumor region is 
different from the normal tissue on EUS, the local discriminator, by taking tumor 
area as input, can effectively distinguish between tumor tissue and normal tissue, 
thus improving the realism of the elastic reconstruction of the tumor region. 

8.2.3 Color Rebalancing 

A remarkable characteristic of EUS is the simple color distribution, with blue and 
red dominating most of the color distribution. Thus the output of the model has a 
tendency to be dominated by a large number of color types if distribution differences 
are not taken into account, which may reduce the realism of the virtual strain images. 
To accommodate this, we proposed a color-rebalancing coefficient to reweight L1 
loss during training based on the color rarity. Compared with RGB space, Lab space 
is more in line with the visual perceptual and convenient for calculation. We statistic 
and calculate the color distribution in Lab color space. The factor γ ∈ R

Q
. is defined 

by Eq. (8.1): 

.γp = (αp + (1 − α)/Q)−1, (8.1) 

where p is the empirical distribution of pixel p, Q is the number of quantized ab 
space, so 1/Q. is a uniform distribution and we mixed the prior distribution and 
uniform distribution with weight α ∈ [0, 1].. In our experiment, α . equals to 0.8 
works well. 

The model training loss comes from two components, the generator and the 
discriminator. The loss function of the generator lg . s defined by Eq. (8.2): 

.lg = λ ∗ γ ∗ 𝓁L1(yr , yv) ∗ l
𝓁CE(1,D(x, yv)) + 𝓁CE(1,D(xt , y

t
v))

l
, (8.2)
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the loss function of the two discriminator l
global
d . and ltumor

d . are defined by Eqs. (8.3) 
and (8.4): 

.l
global
d = 𝓁CE(1,D(x, yr )) + 𝓁CE(0,D(xt , yv)), (8.3) 

.ltumor
d = 𝓁CE(1,D(x, yt

r )) + 𝓁CE(0,D(xt , y
t
v)), (8.4) 

where 𝓁CE(·). denotes the cross-entropy loss, x denotes the input B-mode US,
yr . and yv . refer to the V-EUS and the real EUS respectively, xt ., yt

r . and y
t
v . 

denote tumor regions cropped from the B-mode US, the real EUS and the V-EUS, 
respectively. The factor λ. is empirically set to 100 to accommodate 𝓁L1 . and 𝓁CE . 

from discriminator. 
Finally, the loss function is defined by Eq. (8.5): 

.loss = lg + 0.5 ∗ l
global
d + 0.5 ∗ ltumor

d . (8.5) 

8.3 Experimental Results 

In this section, we first summarized the baseline characteristics of the enrolled 
patients and the evaluation methods of V-EUS, then we analyzed the robustness of 
V-EUS on multi center testing, after that we investigated the effect of tumor depth 
on V-EUS, and finally we elaborated on the application of V-EUS to portable US. 

8.3.1 Patient and Breast Lesion Characteristics 

This study, carried out fromAugust 2016 toMarch 2021, was approved by the Ruijin 
Hospital Ethics Committee, Shanghai Jiao Tong University School of Medicine, 
and written informed consent to participate were acquired before examinations. All 
patients in the 15 centers underwent core needle biopsy or surgery after conventional 
US and elastography examination, and thus the histopathological findings were 
obtained for all breast lesions. The high-end US instrument used was the Resona 
7 ultrasound system (Mindray Medical International, Shenzhen, China) equipped 
with L11-3 high-frequency probe, and the pocket-sized US device used was the 
Stork diagnostic ultrasound system (Stork Healthcare Co., Ltd. Chengdu, China) 
with L12-4 high-frequency probe. 

All radiologists involved in the project at each sub-center had at least 3 years of 
experience in breast EUS and were uniformly trained in imaging methods prior to 
the start of the study. The acquired imaging data were stored on hard disks and 
sent to the study center for analysis. The mean age of 4580 cases was 48 ±.14 
age, including 4578 women and 2 men. These included 2226 malignant tumors and
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Table 8.1 Distribution of 
lesion according to BI-RADS 

BI-RADS Benign Malignant Total 

2 7 1 8 

3 905 64 969 

4A 1047 234 1281 

4B 259 448 707 

4C 98 933 1031 

5 38 546 584 

Total 2354 2226 4580 

2354 benign tumors, with the most common of the malignant tumors being invasive 
ductal carcinoma and the most common of the benign tumors being fibroadenoma. 
The distribution of the BI-RADS scores and the statistics of malignant and benign 
tumors are shown in Table 8.1. 

8.3.2 Evaluation Metrics and Methods of V-EUS 

In order to assess the quality of V-EUS comprehensively, we perform both quantita-
tive and subjective evaluations. Quantitative evaluations are performed in following 
two aspects: similarity between V-EUS and real EUS and the efficacy of V-EUS 
in the diagnosis of breast cancer. We use structure similarity index measurement 
(SSIM), mean absolute percentage error (MAPE), and color histogram correlation 
(CHC) to quantitatively measure the reconstruction error between V-EUS and real 
EUS. These three indexes quantitatively compare V-EUS with EUS in terms of 
similarity of image structure, similarity of elasticity values, and similarity of color 
distribution, respectively. As an intuitive interpretation, large SSIM and CHC values 
indicate good agreement between V-EUS and real EUS, while large MAPE values 
indicate large synthetic errors. The calculation methods of these three indexes are 
detailed in Supplementary methods. 

.SSIM = (2μrealμvirtual + C1)(2σreal,virtual + C2)

(μ2
real + μ2

virtual + C1)(σ
2
real + σ 2

virtual + C1))
, (8.6) 

where μreal . and μvirtual . are the average of real EUS and V-EUS, respectively. σreal . 

and σvirtual . are the variance of real EUS and V-EUS, respectively. σreal,virtual . is the 
covariance of real EUS and V-EUS. C1 . and C2 . are constants. 

.MAPE = 1

m

m⎲

1

|preal
i − pvirtual

i |
preal

i

, (8.7) 

where preal
i . and pvirtual

i . represents the strain scores of real EUS and V-EUS, 
respectively.
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.HC = 1 −
/

1 −
∑

Cntreal · Cntvirtual√∑
Cntreal · ∑

Cntvirtual

, (8.8) 

where the · Cntreal . and · Cntvirtual . are vectors containing the count of every bin in 
the histogram of real EUS and V-EUS respectively. Therefore, CHC is the mean of 
HC in hue and saturation color space. 

We further quantify the stiffness of the tumor by calculating the strain ratio 
(SR), which is a semi-quantitative assessment method and defined as the ratio of 
the deformation of the normal breast tissue to the tumor tissue, and then analyze its 
diagnostic efficacy by using the receiver operating characteristic (ROC) curve. 

In addition to the objective evaluation, we also conduct subjective blind evalu-
ations on V-EUS. Both junior and senior US radiologists are required to perform 
visual Turing tests to evaluate the visual fidelity of V-EUS. The procedure of 
subjective evaluations is described in the corresponding results section. 

8.3.3 V-EUS Evaluation in the Internal Validation Set 

The overall values of SSIM, MAPE and CHC are 0.903, 0.304 and 0.849, 
respectively, which indicates a good agreement between V-EUS and real EUS. 

An essential aspect of evaluating V-EUS is the application in the clinical practice, 
differentiating between benign and malignant breast tumors in our application. We 
calculate the SR values of real EUS and V-EUS, respectively, and use the SR values 
to calculate the AUCs for breast cancer diagnosis. The performance of SR values 
obtained from real EUS is similar to that of V-EUS, with AUC of 0.773 and 0.752, 
respectively (p = 0.396, Fig. 8.2a). In the task of breast cancer diagnosis, we usually 
choose a smaller diagnostic threshold to ensure high sensitivity, and it can be seen 
from the ROC that the diagnostic performance of real EUS and V-EUS is similar at 
this time. Further, we compared the diagnostic performance of V-EUS and real EUS 
stratified by tumor size (Fig. 8.2b) and location (Fig. 8.2c). The statistical results 
show that the performance of real EUS and V-EUS in the diagnosis of benign 
and malignant tumors in different groups is similar, without significant statistical 
difference. Several representative examples are shown in Fig. 8.2d. 

8.3.4 Generalization to Multi-Center External Testing Sets 

Due to differences in imaging parameters and clinical settings, US images can vary 
greatly among different medical centers. It is therefore important to verify that the 
model trained on the main cohort is robust to different cohorts from other medical 
centers. We collected 1730 cases from 14 medical centers as external test cohorts to
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Fig. 8.2 Performance of the deep learning model on the internal validation set. (a) Comparison 
of ROCs between real EUS and V-EUS in determining breast tumor malignancy. (b) Comparison 
of diagnostic performance stratified by tumor size. n indicates the number of cases in the interval. 
Error bar indicates 95% confidence intervals of AUC. (c) Comparison of diagnostic performance 
stratified by tumor location. n indicates the number of cases in the interval. Error bar indicates 95% 
confidence intervals of AUC. (d) Results of several examples 

evaluate the generalization performance of the model. Table 8.2 presents the number 
of samples of different centers and the corresponding numerical metrics. 

For diagnosing breast cancer, the SR of real EUS and V-EUS were calculated, 
respectively, and the diagnostic AUCs of each center were analyzed (Fig. 8.3). It 
was found that the diagnostic AUC of V-EUS is not significant different from that 
of real UES in each centers. These results indicate that our model is capable of 
generalizing to diverse data sources.
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Table 8.2 Comparison of 
multi center data distribution 
and numerical metrics 

Center Number SSIM MAPE CHC 

A 58 0.917 0.312 0.847 

B 58 0.942 0.273 0.858 

C 46 0.949 0.243 0.866 

D 145 0.927 0.210 0.845 

E 362 0.903 0.319 0.819 

F 243 0.897 0.315 0.852 

G 213 0.899 0.356 0.865 

H 150 0.939 0.320 0.864 

I 74 0.892 0.370 0.820 

J 95 0.914 0.364 0.827 

K 96 0.897 0.346 0.844 

L 39 0.901 0.289 0.818 

M 56 0.902 0.431 0.849 

N 95 0.936 0.366 0.848 

Fig. 8.3 AUC comparison of 14 medical centers. * indicates a significant difference (p < 0.05, the 
p-value for the center E is 0.0005 and the p-value for the center H is 0.0055). #. indicates that the 
AUC of V-EUS is greater than that of real EUS. Error bar indicates 95 %. confidence intervals of 
AUC 

8.3.5 Tumor Depth Dependence of Diagnostic Efficiency 

EUS is strongly influenced by imaging attenuation and it was reported to show 
reduced sensitivity for diagnosing lesions at relatively deep locations [17–19]. With 
the reconstruction results we found that V-EUS rarely showed artefacts or loss 
of elastic pseudo-color in deeper tumors. We therefore design experiments to test 
whether V-EUS is robust to imaging depths. We mixed the main cohort and the 
multicenter cohort and then all 4231 cases were divided into training and testing 
datasets according to the depth of tumors. We set 15mm as the threshold and get 
2826 training cases with tumor depth less than 15mm and 1405 testing cases. We 
use the AUCs of SR in determining breast malignancy to measure the effectiveness 
of EUS.
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The diagnosis AUC of real EUS and V-EUS are 0.751 and 0.767 (Fig. 8.4a), 
respectively. The diagnostic performance of V-EUS is not significantly different 
from that of real EUS. From a more detailed perspective, we statistic the diagnosis 
AUC for samples of different tumor depth in the test set (Fig. 8.4b). With increasing 
tumor depth, the diagnostic performance of V-EUS progressively exceeds that of 
real EUS. 

Representative examples of different tumor types with different tumor depths 
are shown in Fig. 8.4c. According to the statistics, we find when the tumor depth is 
greater than 20mm, 25.9% (62 of 239) of real EUS exhibit artifacts caused by signal 
attenuation. It can be seen that V-EUS is more accurate in measuring the hardness 
of the lesion and can effectively avoid artifacts at the deep-located lesion. 

8.3.6 Blind Evaluation on V-EUS 

There are two indispensable reasons that motivate us to perform the blind evaluation. 
One is the gap between human visual perception and computational metrics, and 
the other is the wide application of the Tsukuba score system in clinical US 
examinations. 500 cases were randomly selected from 4231 cases among 15 centers 
for blind evaluation, which were completed by two radiologists (a senior one with 10 
years’ experience and a junior one with 4 years’ experience). During the evaluation, 
two radiologists were asked to observe a set of real EUS and V-EUS respectively 
and to give three answers: (1) a corresponding BI-RADS score based on each of 
the two images, (2) which of the two images was true, and (3) Tsukuba scores for 
each of the two images based on the Tsukuba scoring system. The blind evaluation 
results are summarized in Fig. 8.5. 

For the perceptual realism test, if the operator successfully picks out the real 
one from the two displayed EUS (one is real and the other is virtual), the model is 
considered to be failed and will score 0. Otherwise, the score will be 1. Therefore, 
if our model exactly reproduced real EUS, the perceptual score would be 0.5. 
Interestingly, in the blind test of junior radiologists, the perceptual score is 0.73, 
indicating our results are deemed more realistic than real EUS. In the blind test of 
senior US radiologists, the model score is 0.53, which also shows that V-EUS and 
real EUS are similar in visual authenticity (Fig. 8.5a). 

In the experiment on the diagnosis of breast cancer, the Tsukuba scores of real 
EUS and V-EUS are used as a complement to the BI-RADS scores respectively, 
thus testing the extent to which they can contribute to the diagnostic performance 
(the combination method of Tsukuba scores and BI-RADS scores is described 
in Supplementary methods). In the junior radiologists group, the AUC of BI-
RADS using the BUS is 0.754, while the AUCs are increased to 0.840 and 0.816 
respectively when supplemented with the Tsukuba scoring system based on real 
EUS and V-EUS (Fig. 8.5b). In the senior radiologists group, the AUC using BUS 
is 0.789, while the AUCs are promoted to 0.890 and 0.862 respectively when 
incorporating with real EUS and V-EUS (Fig. 8.5c).
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Fig. 8.4 Dependence of V-EUS on tumor depth in diagnosing breast cancer. (a) Comparison of 
ROCs in determining tumor malignancy on test set when dividing training and test set with 15mm 
as the threshold. (b) The diagnostic performance of real EUS and V-EUS varies with the depth 
of tumor. For the real EUS, the centers of the error bar for each interval are 0.812, 0.790, 0.775, 
0.709, 0.702, and 0.647, respectively. For the V-EUS, the centers of the error bar for each interval 
are 0.766, 0.777, 0.770, 0.781, 0.791 and 0.794 respectively. n indicates the number of cases in the 
interval. Error bar indicates 95% confidence intervals. (*p < 0.05; **p < 0.01, the p-values for the 
last three intervals are 0.0013, 0.0017, 0.0004 respectively). (c) Examples of typical case results. 
ROIs were cropped from the US images and displayed on the right together with V-EUS. We 
observe that for the deep-located tumor, V-EUS not only perform better than real EUS, but also 
avoid artifacts caused by US signal attenuation. Pink arrows highlight the US imaging at the signal 
attenuation
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Fig. 8.5 Blind evaluation results of V-EUS and real EUS. (a) Perceptual score comparison of 
blind evaluation results of the junior radiologist and senior radiologist with random group. (b) 
ROCs comparison of blind evaluation results of the junior radiologist in diagnosing breast cancer 
using BI-RADS, real EUS combined with BI-RADS, V-EUS combined with BI-RADS. (c)  ROCs  
comparison of blind evaluation results of the senior radiologist in diagnosing breast cancer using 
BI-RADS, real EUS combined with BI-RADS, V-EUS combined with BI-RADS

8.3.7 Generalization to Portable US Images 

Compared with the US images collected by high-end US devices, the US images 
collected by pocket-sized US devices have lower resolution, which challenges 
the generalization ability of the model. Since the pocket-sized US devices cannot 
perform strain imaging to get the training data, we use US images collected from 
high-end US devices to train the model and test it with the pocket-sized US images 
(Fig. 8.6a). A total of 349 cases with breast tumors were collected by pocket-sized 
US devices. Similarly, radiologists with different years of experience were involved 
to perform blind tests. Subjects first performed BI-RADS grading on B-mode US, 
and then gave the strain scores according to V-EUS. In the junior radiologist group, 
the AUC of BI-RADS is 0.706, while after using the strain scores of V-EUS, the 
AUC increases to 0.755 (Fig. 8.6b). In the senior radiologist group, the AUC of BI-
RADS is 0.729, while after using the strain scores of V-EUS, the AUC increases to 
0.781 (Fig. 8.6c). The V-EUS has a significant improvement in determining breast 
malignancy (p = 0.0001 in the junior radiologist group and p = 0.0012 in the senior 
radiologist group). As shown in some examples, we can see that the proposed model 
can effectively capture the elastic information of the lesion (Fig. 8.6d). 

8.4 Discussion 

In this study, we propose a GAN-based model to directly translate US images 
into V-EUS, which is validated by comprehensive experiments to have good visual 
consistency and clinical value with real EUS. There are two main considerations in 
choosing the clinical task of breast cancer diagnosis. First, breast cancer accounts
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Fig. 8.6 Blind evaluation results of V-EUS and real EUS. (a) Adaptability to pocket-sized US 
images. (a) The deep learning model trained on high-quality US images is adapted to low-quality 
pocket-size US images. The photo of the pocket-sized device is from Stork Healthcare Co., Ltd. 
Chengdu, China. (b) ROCs comparison of blind evaluation results of the junior radiologist. (c) 
ROCs comparison of blind evaluation results of the senior radiologist in diagnosing breast cancer. 
(d) Examples of typical case results. For lesions with different tumor depth and different benign 
and malignant types, the model can capture the elastic information effectively 

for 30% of malignancies in women, and its incidence continues to increase and 
result in noteworthy cancer death [20]. Breast cancer screening examinations prior 
to breast cancer diagnosis can reduce the mortality rate [21]. Second, conventional 
BUS combined with EUS is becoming the agenda operation and has improved the 
accuracy of identifying breast malignancies, both in diagnosis and screening. 

Compared with the real EUS acquired by high-end US devices via signal 
processing, V-EUS avoids artifacts caused by attenuation of ultrasound signals in 
deep-located tumors. According to the statistical results, we find that among 239
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cases with tumor depth greater than 20mm, there are 62 cases with obvious artifacts 
caused by ultrasound signal attenuation, accounting for 25.9% of the cases in this 
group. As a result, the diagnostic performance of real EUS decreased dramatically 
when the tumor depth is greater than 20 mm. In contrast, the diagnostic performance 
of V-EUS is hardly affected by tumor depth. In order to provide US radiologists with 
the superiority of V-EUS in clinical diagnosis, an envisage is that if the tumor depth 
is greater than 20mm, radiologists use the results of V-EUS, otherwise they use the 
real EUS provided by US devices. Applying this idea to our retrospective study, we 
observe a significant improvement in breast cancer diagnosis (p < 0.05). It is worth 
nothing that our study is based on clinical data of Asian patients, and the results 
may be more pronounced for European, American and African patients, who tend 
to have deeper breast tumor than Asian patients. 

In addition to providing assistance for high-end US devices, V-EUS has a more 
profound impact on pocket-sized US devices that cannot perform EUS imaging. 
The current dilemma is that although the market share of pocketed-sized US devices 
is increasing in recent years due to its high flexibility and low cost, it is currently 
unable to perform EUS imaging for the limitation of imaging hardware. In resource-
limited areas, portable US scanner, rather than standard high-end US scanner, could 
serve as a primary detection modality for early breast cancer detection because of 
its portability and low cost. However, due to cost and size limitations, the function 
of portable US scanner is limited, for example, it does not have the function 
of elastography, which can improve the accuracy of breast cancer screening as 
mentioned above. V-EUS provides a solution with almost hardware cost free for 
pocket-sized US devices. In this study, we train the deep learning model with paired 
B-mode US and EUS images acquired from high-end US devices and test the 
model with B-mode US acquired from pocket-sized US devices without any fine-
tuning or domain adaption. The diagnostic results and examples shown in Fig. 8.6 
demonstrate that V-EUS has a great potential to empower the pocket-sized US 
devices. 

Although we have demonstrated that V-EUS performs well in the clinical task of 
breast cancer diagnosis, there are many aspects of future work that can be extended. 
From the perspective of clinical tasks, the effectiveness of V-EUS in the diagnosis 
of other breast diseases and the imaging of other organs, such as thyroid and liver, 
still need to be proved. In fact, the deep learning model proposed in this work 
is very convenient to transfer to other US image synthesis tasks. Using the shear 
wave elastography (SWE) images as training labels, the model can establish a 
mapping from B-mode US images to SWE images. If the clinical effectiveness of 
the synthesized SWE images can be proved, it will have a profound impact on the 
development and clinical application of US devices. 

In conclusion, we present a deep learning framework for synthesizing V-EUS 
through B-mode US, and validate the clinical value of V-EUS in diagnosing breast 
cancer through comprehensive experiments. V-EUS can not only provide high-end 
US devices with accurate diagnostic results in examining deep located tumors, 
but more importantly, endow the pocket-sized US devices with the capability of 
performing EUS imaging.
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Chapter 9 
Generative Adversarial Networks for 
Brain MR Image Synthesis and Its 
Clinical Validation on Multiple Sclerosis 

Hongwei Bran Li and Bene Wiestler 

Abstract This chapter explores the application of generative adversarial networks 
(GANs) for synthesizing brain magnetic resonance imaging sequences in the 
context of multiple sclerosis (MS). It presents advanced MRI synthesis meth-
ods, including lesion-focused loss functions for improved lesion appearance and 
uncertainty quantification in synthetic images. It details the technical aspects 
of GANs, including their architecture, training, and optimization, and discusses 
their clinical applications from diagnostic enhancements to their integration into 
multi-center studies. Furthermore, the chapter assesses the validation of these 
models in clinical settings, showcasing their ability to enhance diagnostic accuracy, 
detecting and monitoring MS. Through extensive experiments and reader studies 
with experienced radiologists, it was demonstrated that synthetic images achieve 
high-quality clinical utility. Finally, the chapter discusses the limitations and future 
directions of generative MRI synthesis in MS, highlighting its potential to impact 
clinical practice and patient care. 

9.1 Introduction 

Magnetic Resonance Imaging (MRI) has long been a cornerstone in the diag-
nostic assessment of neurological disorders, notably Multiple Sclerosis (MS) [1]. 
Traditional MR imaging techniques, while effective, often face challenges—the 
acquisition of multiple MRI sequences can be time-consuming and costly, and 
some sequences may be missing or of poor quality due to various factors such as 
patient motion or differences in acquisition protocols across imaging centers [10]. 
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In recent years, generative models have been a transformative approach to medical 
imaging. These models, including Generative Adversarial Networks (GANs) [5] and 
diffusion models [15], have shown promising results in enhancing the capabilities 
of MRI by generating synthetic, high-quality images with diagnostic potentials. 

The transition to generative models-driven methods to enhance image informa-
tion marks a significant achievement in neuroradiology. Deep generative models can 
synthesize MRI data often indistinguishable from real scans [9]. This capability is 
not just a technological advancement but also a practical one, offering the potential 
to reduce scan times, decrease the necessity for repeat scans, and provide extensive 
data sets for medical training and research without additional patient exposure to 
MRI procedures. 

The integration of generative models into MRI practices presents unique oppor-
tunities and challenges. On the one hand, these models can generate comprehensive 
synthetic datasets, facilitate enhanced diagnosis, and are instrumental in person-
alized medicine. On the other hand, challenges such as the risk of generating 
inaccurate images (e.g. images with false-positive lesions) and the necessity for 
robust validation and testing frameworks are critical considerations. The ongoing 
development of these technologies aims to address these challenges, ensuring that 
the benefits of AI-driven MRI can be fully realized in clinical settings. In the follow-
ing section, we present the basics of GANs and their extension for neuroimaging, 
the evaluation strategy for synthetic images, and the clinical validation. 

9.2 Generative Adversarial Networks for MRI Sequence 
Synthesis 

The core of leveraging generative models in MRI lies in their ability to synthesize 
high-quality images that can significantly enhance the diagnostic process. This 
section explores GANs, focusing on the architectures, training mechanisms, and 
specific innovations tailored for neuroimaging. 

9.2.1 Basics of Generative Adversarial Networks 

GANs utilize a two-network architecture comprising a generator G and a discrim-
inator D, engaged in a min-max adversarial game. This adversarial framework is 
formalized as:

.min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (9.1) 

where the generator G maps random noise z to synthetic images G(z)., while D 
differentiates between real samples x and generated samples G(z)..  As  shown in
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Fig. 9.1 A schematic view of GANs as a generative model that approximates the true data 
distribution in a min-max game 

Fig. 9.2 The DiamondGAN 
[9] architecture for MRI 
modality synthesis, which 
learns a mapping between 
any subset of multiple input 
MRI modalities (X) to a 
target modality. Figure 
adapted courtesy of [9] 

Fig. 9.1, the generator G : Z→ X. aims to learn a mapping from a latent space Z. 

to the target MRI image space X., approximating the true data distribution pdata(x).. 
Concurrently, the discriminator D : X → [0, 1]. estimates the probability that 
sample x is drawn from pdata(x). rather than the generated distribution pg .. 

9.2.2 Image-to-Image Synthesis Using GANs 

In the context of MRI, GANs have been adapted for image-to-image synthesis, a 
task where the goal is to transform one modality or multiple modalities into another 
MRI modality while preserving underlying structural details. Instead of generating 
an image from random noise z, the generation is conditional on a source image (or 
its embedding). This is particularly useful for synthesizing different MRI sequences 
by taking multiple sequences as the input, to generate sequence-specific image 
features. One ideal framework is the DiamondGAN [9] setting that maps an arbitrary 
combination of source modalities to a target modality, as shown in Fig. 9.2. 

9.2.2.1 Architectural Details 

Practically, in an image-to-image synthesis task, the generator G. could utilize 
an encoder-decoder architecture like U-Net [13], known as U : R

H×W×C →
R

H×W×C'
., where H ., W ., and C . represent the height, width, and number of channels
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of the input, respectively. U-Net is particularly favored for its efficiency in handling 
medical images due to its capability to capture multi-scale contextual information 
via its encoder-decoder structure with skip connections. 

The discriminator D can be implemented as a PatchGAN [8] P. for improved 
coherence. It focuses on classifying whether small patches in the image are real or 
fake. This local approach to assessing image fidelity allows the model to concentrate 
on fine details. P. can be formulated as: 

.P(x)i,j = σ((W ∗ x)i,j + b) (9.2) 

where W. represents the convolutional kernels, ∗. denotes convolution, b. is a bias 
term, and σ . is the sigmoid activation function. The architecture of the discriminator 
P. is defined as a series of strided convolutional layers li .: 

.P(x) = lm ◦ lm−1 ◦ . . . ◦ l1(x) (9.3) 

where each li . includes convolution, batch normalization, and LeakyReLU activation, 
except for the final layer which employs a sigmoid activation to produce probability 
outputs. 

9.2.2.2 Training and Optimization 

The training involves alternating updates to the discriminator and the generator. The 
generator learns to produce increasingly realistic images based on the feedback 
from the discriminator, which is trained to become more adept at distinguishing 
real images from synthesized ones, as well as a synthesis-specific loss objective. 
This form of training ensures that the generated images are realistic for diagnostic 
imaging. The optimization process is detailed in Algorithm 9.1. 

9.2.3 Loss Functions for MS-Specific MRI Synthesis 

To address the unique challenges of synthesizing MRI sequences for MS diagnosis 
and monitoring, specialized loss functions can be designed. These functions enhance 
the fidelity of MS lesion appearance and the overall quality of synthetic images. 

9.2.3.1 Pixel-Wise Reconstruction Loss 

One basic loss is to compute a pixel-wise reconstruction loss Lrec .. This loss is 
designed for a single generator that takes multiple input modalities and produces a 
single target modality. It can be formulated as:
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Algorithm 9.1 Training of conditional GAN for synthetic image synthesis 
Require: Real images dataset, number of epochs N , batch size 
Ensure: Trained Generator G is capable of producing synthetic images based on input images 
1: Initialize Generator G and Discriminator D with random weights 
2: for each epoch in 1 to N do 
3: for each batch in dataset do 
4: Xreal ← sample_real_images(batch_size) // Sample real images 
5: Xcondition ← sample_condition_images(batch_size) // Sample condition images 
6: Xf  ake  ← G(Xcondition) // Generate fake images conditioned on Xcondition 
7: // Train Discriminator D 
8: Dloss ← −mean(log(D(Xreal)) + log(1 − D(Xf  ake))) 
9: Update D weights to minimize Dloss 
10: // Train Generator G 
11: Gloss ← −mean(log(D(Xf  ake))) 
12: Update G weights to minimize Gloss 
13: end for 
14: // Optionally evaluate the model performance on the validation set 
15: if epoch % evaluation_frequency = = 0 then 
16: Evaluate G using qualitative and quantitative metrics 
17: end if 
18: end for 
19: return G

.Lrec = EX,T [||T − G(X)||1] (9.4) 

where X are the source modalities after concatenation, T is the target modality, 
and G is the generator translating between source and target modalities. This 
loss minimizes the pixel-wise intensity difference between synthetic and acquired
images.

9.2.3.2 Structural Similarity Index Measure Loss 

To enhance the perceptual quality of synthetic images and ensure structural 
consistency with the target images, SSIM [18] is incorporated into the loss function. 
The SSIM between two image patches x and y is defined as:

.SSIM(x, y) = (2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)
(9.5) 

where μx . and μy . are the average intensities of x and y, σ 2
x . and σ 2

y . are the variances 
of x and y, σxy . is the covariance of x and y, and C1 . and C2 . are constants to stabilize 
the division with weak denominator. 

Hence, the SSIM loss to minimize the difference can be defined as: 

.LSSIM = 1 − SSIM(T ,G(X)) (9.6)
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where T is the target image and G(X). is the generated image. This formulation 
ensures that minimizing LSSIM . leads to maximizing the structural similarity 
between the synthetic and target images. Its differentiable implementation can be 
found in: https://github.com/VainF/pytorch-msssim. 

9.2.3.3 Lesion-Targeting Loss 

To place greater emphasis on accurately synthesizing MS lesions, a lesion-targeting 
loss LLT . is designed, which is critical for diagnosis and disease monitoring. This 
loss is defined as: 

.LLT = ||M ⊙ T − M ⊙ G(X)||1 (9.7) 

where M is the lesion segmentation mask, T is the target image, G(X). is the 
generated image, and ⊙. denotes element-wise multiplication. This loss encourages 
the generator to pay particular attention to lesion areas, which—though crucial for 
the clinical utility of the synthetic images—only make up a very small percentage 
of the image and thus contribute only little to the total loss. 

9.2.3.4 Adversarial Loss 

The adversarial loss, derived from the discriminator, plays a crucial role in our 
GAN framework. It encourages the generator to produce synthetic images that are 
indistinguishable from real MRI sequences. We adopt the PatchGAN [8] network 
mentioned in Sect. 9.2.2.1. The adversarial loss is formulated as: 

.Ladv(G,D) = E[logD(T )] + E[log(1 − D(G(X)))] (9.8) 

9.2.3.5 Total Loss 

All the loss components can be integrated into a total loss function as follows: 

.Ltotal = λGLadv + λsLSSIM + λLTLLT + λrLrec (9.9) 

where λG ., λs ., λLT ., and λr . are weighting factors that balance the different loss 
components as shown in Fig. 9.3. These weights are crucial in determining the trade-
off between overall image quality and local lesion accuracy of the synthesized MRI 
sequences.

https://github.com/VainF/pytorch-msssim
https://github.com/VainF/pytorch-msssim
https://github.com/VainF/pytorch-msssim
https://github.com/VainF/pytorch-msssim
https://github.com/VainF/pytorch-msssim
https://github.com/VainF/pytorch-msssim
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Fig. 9.3 Network architecture, training process, and inference stage task with GANs for the image 
synthesis task. The image Generator G takes the combination of FLAIR and T1w as input to 
generate synthetic double inversion recovery images (DIR). Additional supervision from the lesion 
maps during training enhances the synthesis of MS-specific lesions (such as lesion attention). The 
feedback on the similarity between synthetic DIR and true DIR is given by the Discriminator D 
and a structure similarity loss function and it updates the network weights. Figure adapted courtesy 
of [3] 

9.3 Uncertainty Quantification in Synthetic MRI 

Uncertainty quantification (UQ) is relevant to enhance the clinical utility of 
synthetic MRI images. It provides a measure of the model’s confidence in its 
predictions, which is particularly crucial in medical imaging. In the realm of 
generative models, especially when applied to tasks like MRI sequence synthesis, 
UQ can be instrumental in assessing the reliability of generated images. 

In theory, two primary types of uncertainty are typically considered: aleatoric 
uncertainty, which accounts for noise inherent in the data, and epistemic uncertainty, 
which stems from the model’s lack of knowledge. Methods such as Bayesian neural 
networks [6] offer a framework for modeling epistemic uncertainty by placing priors 
over the network weights, thus enabling the model to express its confidence level 
regarding its outputs. Additionally, techniques like Monte Carlo dropout [4] can be 
employed during both training and inference to simulate the effect of randomness in 
neural network predictions, providing a quick estimation of uncertainty by running 
multiple forward passes and observing the variability in the outputs. Test-time 
augmentation is an effective method to quantify aleatoric uncertainty [19]. 

In clinical practice, quantifying uncertainty, either aleatoric or epistemic, can aid 
radiologists in making more informed decisions. For instance, high uncertainty in 
areas of an MRI scan might prompt additional testing or expert review, ensuring 
that diagnosis and treatment planning are based on reliable imaging data. Moreover, 
it helps in setting realistic expectations regarding the diagnostic capabilities of AI-
driven tools in medical imaging, potentially leading to broader acceptance and trust 
among medical professionals. In the following section, we introduce the principle 
of Monte Carlo dropout.
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9.3.1 Monte Carlo Dropout 

Monte Carlo dropout [4] is a Bayesian approximation [11] to estimate model 
uncertainty. This method involves performing multiple forward passes through 
the network with dropout enabled at inference time, effectively sampling from an 
approximate posterior distribution of the network weights. 

The uncertainty map U for a given input X is computed as follows:

.U(X) = 1

N

NΣ

t=1

Gt(X)2 −
  ⎛
1

N

NΣ

t=1

Gt(X)

⎞2

(9.10) 

where Gt(X). is the output of the t-th forward pass with dropout, and N is the total 
number of Monte Carlo samples.

9.3.2 Voxel-Wise Uncertainty Map 

In the MRI image synthesis task, the resulting uncertainty map U(X). provides a 
voxel-wise measure of the model’s uncertainty. Higher values in U(X). indicate 
areas where the model is less confident in its predictions, which often correspond 
to challenging regions such as lesion boundaries or areas with complex tissue 
interfaces. Notably, such an uncertainty map can be further leveraged to improve 
the image quality [17]. 

9.3.3 Clinical Implications of Uncertainty Maps 

We argue that uncertainty maps may serve several important clinical functions: 

1. Reliability Assessment: They provide clinicians with a visual guide to areas 
where the synthetic images may be less reliable, prompting closer examination 
or comparison with other modalities. 

2. Lesion Detection: Areas of high uncertainty often correlate with regions of 
pathology, potentially aiding in the detection of subtle or early-stage lesions. 

3. Quality Control: Uncertainty maps can be used as a quality control measure, 
flagging synthetic images with unusually high overall uncertainty for manual 
review.
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9.4 Quantitative and Qualitative Evaluation of Synthetic 
Images 

The evaluation of synthetic MRI sequences is crucial to validate their quality 
and clinical utility. This section presents a multi-faceted approach, combining 
quantitative metrics with qualitative assessments by expert radiologists. 

9.4.1 Quantitative Metrics 

When providing reference images, several established image quality metrics could 
be used to assess the synthetic images objectively: 

• Peak Signal-to-Noise Ratio (PSNR): Measures the ratio between the maximum 
possible signal power and the power of distorted noise. 

• SSIM: Assesses the perceived quality of the synthetic image compared to the real 
image, focusing on structural information, as defined in the previous section. 

• Mean Absolute Error (MAE): Measures the average magnitude of the differences 
between predicted and actual values. 

9.4.2 Clinical Assessment by Lesion Counting 

In the MS context, the primary method for evaluating the clinical utility of our 
synthetic images is through lesion counting in three steps: (1) Two independent 
neuroradiologists, blinded to the image source (synthetic or real), count MS lesions 
in synthetic and real MRI sequences. (2) Lesions are categorized based on their 
location: juxtacortical, periventricular, infratentorial, and subcortical. (3) The lesion 
counts in synthetic images are compared to those in the corresponding real images 
to assess the ability of our method to represent MS pathology accurately. 

9.5 Clinical Validation 

Clinical validation forms the crux of transitioning generative models from theo-
retical constructs to practical tools in medical imaging, particularly in the diagnosis 
and monitoring of Multiple Sclerosis (MS). This section outlines the comprehensive 
validation process undertaken to ascertain the clinical utility and diagnostic accuracy 
of synthetic MRI sequences generated via GANs, originally presented in our two 
publications [2, 14].
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9.5.1 Validation Objectives 

Clinical validation was conducted through a series of structured experiments and 
collaborative studies across multiple imaging centers. The primary objectives were 
to (1) assess the diagnostic accuracy of synthetic MRI images compared to acquired 
MRI images and (2) evaluate the capability of synthetic images to accurately depict 
MS lesions and their progression over time. 

9.5.2 Experimental Design 

The validation involved a multi-center study with the following design: 

• Patient cohort: A diverse cohort of MS patients, with varying degrees of disease 
progression, was selected to ensure comprehensive testing of the synthetic MRI 
images under different clinical scenarios. 

• Image assessment: Both synthetic and conventional MRI images of the patients 
were evaluated by experienced neuroradiologists who were blinded to the image 
origin (synthetic or real). 

• Metrics used: Diagnostic accuracy was quantified using metrics lesion-to-
background ratio. Image quality was assessed using PSNR, SSIM, and MAE 
as outlined earlier. 

9.5.3 Reader Studies 

Reader studies were specifically designed to gauge the clinical acceptance and 
perceived image quality of synthetic MRI sequences: 

• Study participants: A group of neuroradiologists from different centers partici-
pated, providing a broad base of expertise and opinion. 

• Study procedure: Experts were asked to identify MS lesions from a set of 
anonymized images without knowing whether they were viewing synthetic or 
real MRI scans. 

• Feedback collection: After the assessment, detailed feedback was collected 
regarding the perceived quality of the images, ease of lesion identification, and 
overall trust in the synthetic images for clinical decision-making.
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Fig. 9.4 Representative images of FLAIR, SynthDIR, and TrueDIR from the same patient [2]. 
Displayed are slices in both sagittal and axial planes along with their corresponding lesion 
segmentations. A notable enhancement in the detection of juxtacortical lesions (indicated by green 
arrows) is observed in SynthDIR compared to the input FLAIR images. Figure courtesy of [2] 

9.5.4 Results and Findings 

9.5.4.1 Synthetic DIR Images Enhanced Visualization of Juxtacortical 
Lesions 

In a single-center study [2], the use of synthetic Double Inversion Recovery 
(synthDIR) images led to a statistically significant increase in lesion detection 
compared to conventional FLAIR images, with an average of 31.4 ± 20.7. lesions 
detected using synthDIR versus 22.8 ± 12.7. with FLAIR (p < 0.001.), as shown 
in Fig. 9.4. This improvement was predominantly due to the enhanced visualization 
of juxtacortical lesions, where synthDIR detected 12.3± 10.8. lesions as opposed to 
7.2 ± 5.6. lesions detected by FLAIR (p < 0.001.). 

Additionally, the contrast-to-noise ratio (CNR) in synthDIR images (22.0± 6.4.) 
was superior to that in FLAIR images (16.7 ± 3.6., p = 0.009.); however, it did not 
differ significantly from trueDIR images (22.0 ± 6.4. vs. 22.4 ± 7.9., p = 0.87.), 
suggesting comparable performance with actual DIR images in terms of image 
contrast.
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9.5.4.2 Uncertainty Maps Helped Discriminate Between Lesions and 
Artifacts 

In another multi-center study [3], we observed that the utilization of synthDIR 
facilitated significantly more lesion detections compared to FLAIR images, with 
an average of 26.7 ± 2.6. lesions detected using synthDIR versus 22.5 ± 2.2. for 
FLAIR in Reader 1 (p < 0.0001.), and 22.8 ± 2.2. versus 19.9 ± 2.0. in Reader 2 
(p = 0.0005.). 

The use of uncertainty maps in the evaluation of synthDIR images helped 
to further discriminate between MS lesions and artifacts, enhancing the overall 
diagnostic utility of synthetic MRI, as shown in Fig. 9.5. The consistency of 
lesion detection improvements across internal and external data sets suggests 
that synthDIR can reliably reproduce critical diagnostic features across different 
scanners and patient cohorts. 

9.5.4.3 Synthetic DIR Identified Disease Progression 

In a longitudinal study, both readers identified a significantly higher number of 
newly formed, MS-specific lesions in the longitudinal subtractions from synthDIR 
compared to physical FLAIR. Reader 1 detected an average of 3.27 ± 0.60. lesions 
with synthDIR versus 2.50 ± 0.69. with FLAIR (p = 0.0016.), and Reader 2 
observed 3.31 ± 0.81. lesions versus 2.53 ± 0.72. (p < 0.0001.). The enhancement 
in lesion detectability was particularly notable in juxtacortical lesions, showing a 
36% relative gain in lesion counts, pooled across both readers. In 5% of the cases, 
synthDIR subtraction maps were instrumental in identifying disease progression 
that was missed on FLAIR subtraction maps, as shown in Fig. 9.6. 

9.6 Conclusion and Future Directions 

9.6.1 Clinical Validation and Implications 

This chapter’s exploration and clinical validation of GANs for synthesizing brain 
MRI sequences confirm their potential to transform neuroimaging. By enhancing 
diagnostic processes and potentially improving patient outcomes, these generative 
models promise to make significant clinical impacts. The integration of deep learn-
ing methods with clinical expertise paves the way for innovative, next-generation 
medical imaging solutions that are both effective and patient-centric.
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Fig. 9.5 Examples of synthetic images and the use of uncertainty map [3]. Uncertainty maps 
deliver critical insights into the accuracy of synthetic images. Highlighted in red (Patients 1–4), 
hyperintensities observed in synthDIR that do not match with trueDIR are distinctly marked as 
high-variance zones on the corresponding uncertainty maps. This feature aids in recognizing these 
discrepancies as artifacts generated during the synthesis process. Conversely, actual lesions are 
identified clearly as areas exhibiting minimal (Patient 1—green circle in synthDIR) or low (Patient 
4—green circle in synthDIR) uncertainty values. Figure courtesy of [3] 

9.6.2 Current Limitations and Ethical Considerations 

Despite promising results, several challenges remain. The synthesis of contrast-
enhanced images [16] and ensuring generalizability and adaptability [7] across 
various scanners and protocols are technical hurdles that need addressing. Although 
uncertainty map is one solution to remind clinicians about potential hallucinations, 
it complicates clinical flow. Task-specific, clinician-centric solutions might be 
needed considering the actual objectives of leveraging uncertainty quantification. 
For example, it might be clinically relevant to provide a hint about global confidence 
of the synthesis results and provide text to describe the issue in specific locations. 
This might connect interpretability and multi-modal learning. Additionally, the
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Fig. 9.6 Examples of synthetic images for longitudinal analysis [14]. In the longitudinal subtrac-
tion images, the juxtacortical lesion is more distinctly prominent and detectable in the synthetic 
DIR compared to those derived from physical FLAIR. Figure courtesy of [14] 

ethical and regulatory considerations surrounding the use of synthetic images in 
clinical settings must be carefully managed to ensure patient safety and maintain 
trust in medical imaging technology. 

9.6.3 Advancing Generative Models in Medical Imaging 

Looking ahead, there are several exciting directions. Future work would focus on 
3D/4D synthesis, enhancing model architectures to improve the fidelity and utility 
of synthetic images, particularly for capturing complex pathology details across 
diverse patient populations. One of the promising methods is diffusion models that 
operate on the latent space [12], making it applicable for 3D and even longitudinal 
synthesis. 

Incorporating data from multiple imaging modalities or clinical data could 
enhance the diagnostic accuracy of synthetic images. Techniques like diffusion 
tensor imaging and perfusion imaging hold potential to add valuable dimensions 
to synthesized images.
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The ability of generative models to produce consistent and high-quality images 
can significantly benefit longitudinal studies and personalized medicine. Developing 
models that account for temporal changes and individual patient data could revolu-
tionize treatment planning and disease monitoring. 

9.6.4 Broader Impact 

The broader application of generative models could extend beyond MS to other 
medical fields where imaging is crucial, such as oncology or cardiology. This 
expansion could facilitate large-scale studies, enhance diagnostic efficiency, and 
enable more sensitive disease monitoring. 

The journey of integrating generative models into medical imaging is only 
beginning. As methodology evolves, it holds the promise not only to enhance the 
quality of medical care but also to redefine the possibilities of medical treatment 
and research. Ongoing collaboration among clinicians, engineers, and computer 
scientists will be essential to navigate the challenges and realize the full potential of 
generative methods and clinician-centric, patient-centric AI. 
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Chapter 10 
Histopathological Synthetic 
Augmentation with Generative Models 

Jiarong Ye , Peng Jin , Haomiao Ni , Sharon X. Huang , 
and Yuan Xue 

Abstract In this chapter, we explore the application of generative models to 
enhance the fidelity and utility of artificially generated images for data augmentation 
in digital pathology. We employ HistoGAN for synthetic augmentation, filtering 
images based on label congruence and feature resemblance to real specimens. This 
ensures that only the most accurate synthetic images are used. Additionally, we 
utilize reinforcement learning for automated quality checks, optimizing synthetic 
sample selection, and improving image classification outcomes. However, GANs 
have limitations, such as instability during training and the need for large annotated 
datasets for conditional generation. To address these issues, we transition to 
HistoDiffusion, a model that utilizes diffusion processes, which are more stable 
to train and reduce the risk of mode collapse common in GANs. Furthermore, 
unconditional diffusion models can be guided with smaller annotated datasets to 
enable conditional synthesis. HistoDiffusion generates more complex and nuanced 
images, enhancing realism and diversity. Through this exploration of generative AI 
techniques for synthetic augmentation, each model addresses the limitations of its 
predecessor, advancing the effectiveness of data augmentation in digital pathology. 
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10.1 Introduction 

Image analysis of digitized histopathological slides is crucial for cancer diag-
nosis [20]. Machine learning, especially deep learning, has shown promise in 
classifying these images. Whole slide images (WSIs) are high-resolution, making 
direct analysis difficult. To address this, patch-level classification is used, where 
patches are analyzed individually and aggregated to determine the final label [19, 48, 
52]. Accurate patch-level classification is essential for matching human diagnostic 
accuracy. Over the past decade, computer-assisted diagnosis (CAD) algorithms 
for histopathology images have been developed to enhance pathologists’ accuracy 
in disease detection, diagnosis, and prognosis prediction [15]. These automatic 
histopathology image classification systems are particularly valuable in underde-
veloped regions due to their low cost and accessibility. They help mitigate inter-
and intra-pathologist variability, thereby supporting more consistent and accurate 
diagnoses (Fig. 10.1). 

Fig. 10.1 Diagram of synthetic augmentation workflow. (a) Traditional training workflow using 
only real training data; (b) Augmenting the training dataset by incorporating synthetic data 
generated by a generative model; (c) Using synthetic augmentation, with filtered synthetic data 
to ensure only high-quality samples are added to the training set. (Note: The latent vector z is 
a random noise input fed into the generator part of a GAN. It is sampled from a predefined 
distribution, such as a Gaussian distribution; the conditional information y is used in conditional 
GANs (cGANs) to guide the generation process. It represents additional information like labels 
that the model uses to generate specific types of data.)
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Fig. 10.2 Comparison between different deep generative models for synthetic augmentation. (a) 
Conditional Generative Adversarial Networks (cGANs) enhance the original GAN framework by 
integrating additional information, such as class labels, into both the generator and discriminator, 
guiding the data generation process to produce specific outputs based on the given conditions. 
However, cGAN-based method normally requires relatively large-scale annotated training data; 
(b) Unconditional diffusion model (DM) which cannot take conditional input; (c) Conditional 
diffusion model that can be pretrained on large-scale unannotated data and later applied to 
unseen small-scale annotated data for augmentation. The encoder (Enc) compresses the input data 
into a compact lower-dimensional latent representation. This process retains essential semantic 
information and enhances computational efficiency for subsequent processing within the latent 
space. After the diffusion model (DM) modifies the latent representation, the decoder (Dec) 
translates it back into the image space, reconstructing high-resolution images from the latent code 
while ensuring high visual fidelity to the real data 

10.1.1 Synthetic Augmentation 

Supervised training of image recognition systems requires large amounts of anno-
tated data. However, histopathology image datasets are often small and imbalanced 
due to annotation costs and privacy concerns. Data augmentation is used to enhance 
training data and reduce overfitting. Effective augmentation generates new samples 
that follow the original data distribution, while poor augmentation can mislead 
training. Traditional data augmentation techniques [51], such as random transfor-
mations or distortions (e.g., cropping and flipping) and auto augmentations [5, 17] 
using hyper-parameter searching to automatically find the optimal augmentation 
policy, increase training data yet lack flexibility. To overcome data limitations in 
histopathology image recognition, we focus on expanding training sets with high-
quality synthetic examples using GAN and diffusion models, termed as Synthetic 
Augmentation. In the following sections, we will discuss synthetic augmentation 
with images via generative models such as GANs and diffusion models, along with 
their pros and cons (Fig. 10.2).
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10.1.2 Generative Models 

10.1.2.1 Generative Adversarial Networks (GAN) 

Generative adversarial networks (GANs) [13] enable applications such as image 
synthesis, object detection [25] and image segmentation [53]. Among GAN variants, 
conditional GANs (cGANs) [30] generate more interpretable results by using 
conditional inputs, such as class labels, to produce labeled samples for synthetic 
augmentation. State-of-the-art cGAN models achieve high-fidelity images through 
gradual generation or refinement sub-tasks and large-scale training [21, 56]. cGANs 
have an objective function defined as: 

. min
θG

max
θD

LcGAN = Ex∼Pdata [log D(x, y)] + Ez∼N[log(1 − D(G(z, y)))] .

(10.1) 

In the equation above, x represents the real data from an unknown image distribu tion
Pdata . and y is the conditional label. z is a random vector for the generator G, 
drawn from a standard normal distribution N(0, I).. During training, G and D are 
alternatively optimized to compete with each other.

To apply GANs for synthetic segmentation, Ratner et al. [37] learns data 
transformation with unlabeled data using GANs. GAGAN [1] and BAGAN [28] 
use cGANs [30] generated samples to augment the standard classifier in the low-
data regime. Compared with works done in the natural image domain, issues 
related to insufficient and imbalanced data are more prominent in the medical 
image domain. To mitigate these problems, researchers have been working on 
synthetic augmentation for medical image recognition tasks. Frid-Adar et al. [10] 
proposes to use cGAN generated synthetic CT images to improve the performance 
of CNN in liver lesion classification. Gupta et al. [14] synthesizes lesion images 
from non-lesion ones using CycleGAN [61]. Bowles et al. [2] uses GAN derived 
synthetic images to augment medical image segmentation models. Zhao et al. [59] 
proposes a GAN model for synthesizing retinal images from small sized samples 
and uses the synthetic images to improve semantic segmentation performance. 
Mahapatra et al. [27] applies a Bayesian neural network (BNN) [26] to calculate 
the informativeness of the synthetic images for improved classification and segmen-
tation results. Zhao et al. [60] uses transformations of labeled images for one-shot 
image segmentation. These approaches address insufficient and imbalanced data in 
medical imaging, enhancing recognition tasks. 

10.1.2.2 Diffusion Models 

More recently, diffusion models have become popular for natural image generation 
due to their impressive results and training stability [7, 18, 46]. A few studies have 
also demonstrated the potential of diffusion models for medical image synthesis [32,
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36]. Diffusion models (DM) [18, 44, 45] are probabilistic models that are designed 
to learn a data distribution. Given a sample from the data distribution z0 ∼ q(z0)., 
the DM forward process produces a Markov chain z1, . . . , zT . by gradually adding 
Gaussian noise to z0 . based on a variance schedule β1, . . . , βT ., that is: 

.q(zt |zt−1) = N(zt ;
√

1 − βtzt−1, βt I) , (10.2) 

where variances βt . are constants. If βt . are small, the posterior q(zt−1|zt ). can be well 
approximated by diagonal Gaussian [35, 44]. Furthermore, when the T of the chain 
is large enough, zT . can be well approximated by standard Gaussian distribution 
N(0, I).. These suggest that the true posterior q(zt−1|zt ). can be estimated by 
pθ(zt−1|zt ). defined as [34]: 

.pθ(zt−1|zt ) = N(zt−1;μθ(zt ), Σθ (zt )) . (10.3) 

The DM reverse process (also known as sampling) then generates samples z0 ∼
pθ(z0). by initiating a Markov chain with Gaussian noise zT ∼ N(0, I). and 
progressively decreasing noise in the chain of zT −1, zT −2, . . . , z0 . using the learnt 
pθ(zt−1|zt ).. To learn pθ(zt−1|zt )., Gaussian noise ∈ . is added to z0 . to generate 
samples zt ∼ q(zt |z0)., then a model ∈θ . is trained to predict ∈ . using the following 
mean-squared error loss: 

.LDM = Et∼U(1,T ),z0∼q(z0),∈∼N(0,I)[||∈ − ∈θ (zt , t)||2] , (10.4) 

where time step t is uniformly sampled from {1, . . . , T }.. Then μθ(zt ). and Σθ(zt ). 

in Eq. 10.3 can be derived from ∈θ (zt , t). to model pθ(zt−1|zt ). [18, 34]. 
The denoising model ∈θ . is typically implemented using a time-conditioned U-

Net [39] with residual blocks [16] and self-attention layers [50]. Sinusoidal position 
embedding [50] is also usually used to specify the time step t to ∈θ .. 

10.1.3 Summary 

To summarize, synthetic augmentation using generative models such as GANs and 
diffusion models addresses the challenges of small and imbalanced histopathology 
datasets. Conditional GANs generate high-fidelity images with class labels, enhanc-
ing interpretability. Diffusion models offer training stability and robust results. 
These techniques improve the quality of training data, enabling accurate patch-
level classification in digital pathology. The following sections will delve into two 
specific synthetic augmentation techniques using HistoGAN and HistoDiffusion, 
respectively, and outline their applications and advantages in histopathology image 
recognition.



188 J. Ye et al.

10.2 Synthetic Augmentation with HistoGAN 

The motivation behind synthetic augmentation with HistoGAN addresses two 
critical needs in histopathology image analysis. First, we need a new HistoGAN 
framework to generate high-fidelity synthetic images that capture meaningful 
features, overcoming the limitations of existing GAN methods that produce visually 
appealing but not necessarily informative images. Second, a selective synthetic 
augmentation approach is essential to ensure that only high-quality synthetic images 
with high label confidence and accurate feature representation are incorporated into 
the training set. This selective process mitigates the risks of label ambiguity and 
feature misalignment, thereby enhancing the performance of histopathology image 
classification systems (Fig. 10.3). 

Fig. 10.3 Architecture of a 3-stage HistoGAN for histopathological patch synthesis. Inputs to 
GAN include y, a conditional input like class labels, to guide the generation process; and z, a  
latent vector sampled from a normal distribution to serve as a source of randomness and diversity. 
The number of stages can be adjusted based on the desired final image resolution. Features such as 
cytoplasm texture and nuclei shapes are progressively refined from stage I to III. Self-attention 
is applied after the stage I generator and in all stage discriminators to enhance local region 
consistency. Conditional batch normalization [6] follows convolutional layers for flexible feature 
map modulation
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> Highlights 

1. HistoGAN introduces an innovative conditional GAN model designed to 
synthesize realistic histopathology image patches; 

2. The work explores a synthetic augmentation method based on handcrafted 
criteria; 

3. Additionally, it examines a synthetic augmentation approach utilizing 
reinforcement learning. 

10.2.1 Methodology 

10.2.1.1 HistoGAN 

We designed HistoGAN, a new model specifically for histopathology image syn-
thesis, based on state-of-the-art conditional GAN techniques [3, 56, 58]. HistoGAN 
generates synthetic images in a coarse-to-fine manner through multiple stages, grad-
ually refining details to ensure high fidelity. Following state-of-the-art conditional 
image synthesis techniques [3, 58], we use class-conditional batch normalization 
in both generators and discriminators to enhance learning effectiveness. Spectral 
normalization [31] is applied to all stages’ discriminators to further improve model 
performance. To capture the distribution of nucleus density and color changes in 
histopathology images, we leverage self-attention [50, 58] at the early stages of 
generation and throughout all stages in the discrimination process. This mechanism 
allows the model to learn dependencies between spatial regions by examining the 
relationship between one pixel and all other positions in the same image. Similar 
to [58], the image features from the previous hidden layer x are first transformed 
into two feature spaces q, k . as query and key in self attention [50] to calculate the 
attention map. Let q(x) = Wqx . and k(x) = Wkx ., the attention map over the i-th 
location when synthesizing the j -th region is 

.αj,i = exp
(
sji

)

ΣN
i=1 exp

(
sji

) , where sji = q (xi )
T k

(
xj

)
. (10.5) 

The output of the self-attention of the j -th region oj . is calculated by applying 
attention weight over the value v as 

.oj =
NΣ

i=1

αj,iv (xi ) , where v (xi ) = W vxi . (10.6) 

In all transformation matrices Wq,Wk ., and Wv ., weight matrices are implemented 
as 1 × 1. convolutions. Compared with the StackGAN model implemented in our



190 J. Ye et al.

Fig. 10.4 The architecture of the proposed synthetic augmentation algorithm. The ∪. symbol 
indicates that the selected synthetic image set is unioned with the original training set to improve 
classification model training and test performance 

previous work [54], our HistoGAN generates more realistic image patches which 
also benefits the following synthetic augmentation step (Fig. 10.4). 

10.2.1.2 Synthetic Augmentation via Handcrafted Criteria 

Given a trained cGAN model, one can sample infinite noise-vector inputs from a 
Gaussian distribution to generate infinite synthetic images. While a good cGAN 
model can generate realistic images, their usefulness for augmenting the original 
training set in visual recognition tasks is not guaranteed. Current GAN-based 
data augmentation methods vary the number of generated images based on the 
augmentation ratio, but effectiveness is affected by quality and diversity of synthetic 
images. 

To reduce randomness and selectively add new images, we propose a two-step 
process: first, identify samples that can be confidently classified into certain classes; 
second, select samples whose features are within a certain neighborhood of class 
centroids in the feature space. This process uses a pre-trained feature extractor to 
calculate centroids for real samples and extract features for fake samples. To ensure 
robust feature extraction, we use a feature extractor with Monte Carlo dropout (MC-
dropout) [11] and take the expectation value of multiple samplings. A depiction of 
our proposed synthetic augmentation algorithm is shown in Fig. 10.5 and a detailed 
description is given in Algorithm 10.1. 

The first step of selection is based on label certainty. We evaluate the label 
certainty of a fake example by calculating the entropy score of its predicted class 
probabilities. If the feature extractor is certain about a sample’s classification, the 
entropy score will be low. We rank the entropy scores of all generated images in 
ascending order and choose the first half with lower entropy.



10 Histopathological Synthetic Augmentation with Generative Models 191

Synthetic 
Images 

4rN 

Feature 
Extractor 

... 

Entropy 
Ranklow high 

Distance to 
Assigned ClassDistance 

Ranklow high 
Selected 
Discarded 

2rN 

Selected 
Images 

rN 

class 
centroid 

data 
sample 

Fig. 10.5 Illustration of the image selection process. r and N represent the augmentation ratio 
and the number of original training data. The same feature extractor runs multiple times through 
MC-dropout for both entropy and class centroid distance calculations to increase r obustness

Algorithm 10.1 Synthetic augmentation 
Input: a set of trained HistoGAN models {Gt }, number of classes C, augmentation ratio r , 
number of original training samples N = ΣC 

i=1 Ni . 
Output: selected synthetic samples X with |X| = rN . 
Initialization: X1 = ∅, t̂ = arg min( d̂t ), Gt̂ generated samples X0 = {xi 

j : i ≤ C,  j  ≤ 4rNi }, 

entropy Ei = {ei 
j : ei 

j = − Σ
pi 

j log pi 
j ,  i  ≤ C,  j  ≤ 4rNi}. 

for xi 
j ∈ X0 do 

if ei 
j < Median(Ei ) then 
X1 = X1 ∪ {xi 

j } 
end if 

end forclass centroid distance Di = {di 
j : di 

j = Df (x
i 
j ,  ci) }. 

for xi 
j ∈ X1 do 

di 
j = Df {xi 

j ,  ci} 
if di 

j < Median(Di ) then 
X = X ∪ {xi

j }
end if

end for

The second step selects synthetic images based on their distance to class 
centroids in the feature space. We calculate the feature distances for the remaining 
samples and sort them in ascending order. The first half with smaller distances are 
kept. This ensures only samples that confidently match their assigned labels are 
selected. Similar to [54], the feature distance between image x and centroid c is 
defined as

.Df (x, ci) = 1

K

Σ

k

Σ

l

1

HlWl

|||
|||ψ̂k

l (x) − ψ̂k
l (ci)

|||
|||
2

2
, (10.7) 

where ψ̂k
l . is the unit-normalized activation in the channel dimension Al . of the l-

th layer of the k-th MC-sampling feature extraction network with shape Hl × Wl ..
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We denote the total sampling time as K . Df (x, ci). can be regarded as an estimated 
cosine distance between a sample and i-th centroid in the feature space. The centroid 
c is calculated as the average feature of all labeled training images in the same class. 
For class i, its centroid ci . is represented by 

.ci =
⎡

⎣ 1

Ni

NiΣ

j=1

ψ1(xj ), . . . ,
1

Ni

NiΣ

j=1

ψL(xj )

⎤

⎦ , (10.8) 

where Ni . denotes the number of training samples in i-th class and xj . is the j -
th training sample. Similar to Eq. 10.7, ψl . is the activation extracted from the l-th 
layer of the feature extraction network. L is the total number of layers utilized in the 
feature distance selection. ci . is retained by one time MC-sampling and fixed during 
the distance calculation. 

Given augmentation ratio r , we first generate 4rNi . images for each class i, then 
select rNi . images according to the two-step selection process described above. 
Regarding the choice of r , we provide an ablation study in Fig. 10.9, which indicates 
that the optimal augmentation ratio r . for synthetic image pools generated by 
HistoGAN is r = 0.5., as it consistently provides the best performance across 
different pool sizes by balancing quality and diversity without introducing noise. 

10.2.1.3 Synthetic Augmentation via Reinforcement Learning 

While the traditional method using handcrafted metrics lacks generality and may not 
always capture the nuanced quality differences in synthetic images, its effectiveness 
in selective augmentation is somewhat limited. This limitation necessitates a more 
adaptive approach. Hence, we further employ a reinforcement learning (RL)-based 
approach to automate the selective augmentation process for synthetic medical 
images. By framing the selection mechanism as a model-free, policy-based RL 
process, we enable an agent to make decisions based on a comprehensive pool of 
learned features and classification performance gains. This approach ensures the 
selection of the most representative and high-quality synthetic samples, thereby 
enhancing the effectiveness of medical image recognition systems. 

Background Theoretical Preliminaries About Proximal Policy Optimiza-
tion (PPO) in RL 
Proximal Policy Optimization (PPO) is a leading reinforcement learning 
algorithm known for its balance of simplicity and performance. It improves 
policy gradient methods by using a clipped objective function, which prevents 
large, unstable updates and ensures more stable learning. This makes PPO 
ideal for tasks like selective augmentation of synthetic medical images, where 
robust decision-making is crucial.
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Fig. 10.6 The architecture of our proposed synthetic augmentation framework based on Rein-
forcement Learning 

The detailed architecture of our proposed framework is shown in Fig. 10.6. We  
generate a candidate pool of synthetic images using HistoGAN. The controller, a 
transformer model [50], decides whether to select or discard each synthetic sample 
based on feature vectors from a ResNet34 model [16]. After selection, we train the 
classifier on the expanded dataset and use the maximum validation accuracy of the 
last five epochs [62] as the reward to update the policy. To ensure stable updates and 
avoid fluctuations, we use Proximal Policy Optimization (PPO) [41]. Next, we detail 
the design of the controller and policy gradient method, the two main components 
of our framework. 

The controller leverages feature dependencies among candidate images, hypoth-
esizing that augmentation order is not independent; later additions must differ from 
earlier ones to ensure diversity. To address this, we use the self-attention mechanism 
of the transformer model [50], which avoids recurrent structures by combining 
feature vectors with positional embeddings as input to the encoder. Skip connections 
combine features from different abstraction levels. The transformer’s decoder, a 
linear layer, acts as the policy network, outputting binary actions for each input 
feature vector. Proximal Policy Optimization (PPO) [41] is used for efficient policy 
gradient optimization, stabilizing training with a clipped probability ratio. At time 
step t , let  Aθ . be the advantage function, the objective function is as follows: 

.L(θ) = E
⎡
min(γθ (t)Aθ (st , at ), clip(γθ (t), 1 − δ, 1 + δ)Aθ (st , at ))

⎤
, (10.9) 

where Aθ(st , at ) = Qθ(st , at ) − Vθ(st , at ).. As part of the transformer output, 
Vθ(st , at ). is a learned state-value taken off as the baseline from the q-value to lower
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Fig. 10.7 Examples of real images, synthetic images generated from [54], and images generated 
by our HistoGAN model trained on cervical histopathology dataset before and after selection. Our 
HistoGAN generates realistic images with clearly better visual quality than those by [54]. Zoom 
in for a better view 

Fig. 10.8 Examples of real and synthetic images generated by HistoGAN trained on 10% of PCam 
dataset 

the variation of the rewards along the training process. π . refers to the probability of 
actions. Qθ(st , at ). is the q-value at time t defined as the smooth version of the max 
validation accuracy among the last 5 epochs in the classification task. The reward 
is smoothed using the Exponential Moving Average (EMA). The probability ratio
γθ (t). between previous and current policies is: γθ (t) = πθ (at |st )

πθ (at−1|st−1)
.. If ai(t) = 0., 

the candidate is discarded; otherwise, it is added to the training set (Figs. 10.7, 10.8, 
and 10.9).
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Fig. 10.9 Classification results of the proposed synthetic augmentation with different augmenta-
tion ratios on the cervical dataset. N in candidate pool sizes indicates the number of images in the 
original training dataset. For the same candidate pool size, selected images with different ratios 
are from the same pool. The error bar represents the standard deviation of classification accuracy 
from 5 multiple runs of each setting, the middle dot refers to the mean of 5 accuracy scores of the 
aforementioned multiple runs

10.2.2 Experiments and Results 

To demonstrate the generality, experiments were conducted on two datasets. The 
first dataset contains labeled cervical histopathology images collected from a 
collaborating health sciences center, annotated by the same pathologist, resulting 
in 1284 Normal, 410 CIN1, 481 CIN2, and 472 CIN3 patches. The dataset is split 
by patients into training, validation, and testing sets (7:1:2 ratio), with image class 
ratios maintained across sets. The second dataset is the PatchCamelyon (PCam) 
benchmark, which includes 327,680 color patches of lymph node sections, each 
sized 96 ×. 96 pixels and annotated with binary labels for metastatic tissue. The 
dataset is split into 75% training, 12.5% validation, and 12.5% testing sets. Using 
only 10% of the training set (32,768 patches), we trained our HistoGAN model and 
a baseline classifier, then evaluated the models on the full test set. 

To validate the quality of images generated by HistoGAN and the effectiveness 
of synthetic augmentation, two expert pathologists assessed 100 synthetic cervical 
histopathology images, split evenly between pre- and post-selection. Organized into 
10 groups, the pathologists, blinded to the subgroup identities, consistently favored 
post-selection images in 7 out of 10 groups, with 2 ties and only 1 pre-selection 
preference, demonstrating the method’s efficacy. They highlighted realistic features 
such as correct orientation and cell polarity, while noting areas for improvement like 
smudged chromatin. Despite some unrealistic aspects, most images were deemed 
diagnostically valuable, underscoring the potential of our selective augmentation 
approach (Figs. 10.10 and 10.11, Tables 10.1 and 10.2).
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Fig. 10.10 t-SNE of the original and augmented cervical histopathology training set before and 
after image selection. The augmented training data after selection clearly have more distinguishable 
features than the ones without selection 

Fig. 10.11 t-SNE of the original and augmented PCam histopathology training set before and 
after image selection. While data augmentation without image selection increases the number of 
training samples, the original data distribution is distorted. After image selection, the original data 
distribution is recovered along with a greater number of data points 

! Attention 

While HistoGAN generates high-fidelity images, further improvements in 
realism and diversity are needed (smudged chromatin, missing nuclear details, 
and incorrect keratin texture). 

10.2.3 Summary 

This section introduces HistoGAN, a conditional GAN model for realistic 
histopathology image synthesis, and a synthetic augmentation method, using 
handcrafted criteria and reinforcement learning, which expands training datasets
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Table 10.1 Classification results of baseline and augmentation models on the cervical dataset. 
We reimplemented [54] and a metric learning model with triplet loss [40] using the same pool of 
synthetic images generated by HistoGAN for fair comparison 

Accuracy ↑. AUC ↑. Sensitivity ↑. Specificity ↑. 

Baseline model 0.754 ±. 0.012 0.836 ±. 0.008 0.589 ±. 0.017 0.892 ±. 0.005 

+ Traditional 
augmentation 

0.766 ±. 0.013 0.844 ±. 0.009 0.623 ±. 0.029 0.891 ±. 0.006 

+ GAN augmentation 0.787 ±. 0.005 0.858 ±. 0.003 0.690 ±. 0.014 0.909 ±. 0.003 

+ Metric learning 0.798 ±. 0.016 0.865 ±. 0.010 0.678 ±. 0.048 0.909 ±. 0.013 

(Triplet loss) 

+ Synthetic 
augmentation 

0.808 ±. 0.005 0.872 ±. 0.004 0.639 ±. 0.015 0.912 ±. 0.006 

(Selective via centroid 
distance) ∗ . 
+ Synthetic 

augmentation 
0.835 ±. 0.007 0.890 ±. 0.005 0.747 ±. 0.013 0.936 ±. 0.003 

(Selective via 
transformer-PPO, Ours) 

Table 10.2 Classification results of baseline and augmentation models on the PCam dataset 

Accuracy ↑. AUC ↑. Sensitivity ↑. Specificity ↑. 

Baseline model [16] 0.853 ±. 0.003 0.902 ±. 0.002 0.815 ±. 0.008 0.877 ±. 0.009 

+ Traditional 
augmentation 

0.860 ±. 0.005 0.907 ±. 0.003 0.823 ±. 0.015 0.885 ±. 0.017 

+ GAN augmentation 0.859 ±. 0.001 0.906 ±. 0.001 0.822 ±. 0.014 0.884 ±. 0.011 

+ Metric learning 0.864 ±. 0.004 0.910 ±. 0.003 0.830 ±. 0.012 0.887 ±. 0.008 

(Triplet loss) [40] 

+ Synthetic 
augmentation 

0.868 ±. 0.002 0.912 ±. 0.002 0.835 ±. 0.010 0.890 ±. 0.006 

(Selective via 
centroid distance) [54] ∗ . 

+ Synthetic 
augmentation 

0.876 ±. 0.001 0.917 ±. 0.001 0.846 ±. 0.010 0.895 ±. 0.005 

(Selective via 
Transformer-PPO, 
Ours) 

without distorting the original distribution, significantly improving automated 
image recognition with minimal annotation. Our method complements existing 
data augmentation techniques and is applicable to other histopathology tasks with 
limited annotated data.
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10.3 Synthetic Augmentation with HistoDiffusion 

> Highlights 

HistoDiffusion: a synthetic augmentation method that pre-trains latent dif-
fusion model on large unlabeled datasets and fine-tunes on small labeled 
datasets. 

The transition from GANs to diffusion models in synthetic augmentation is 
motivated by the inherent limitations of GANs and the distinct advantages offered by 
diffusion models. GANs necessitate a substantial amount of labeled data to produce 
high-quality images and are prone to training instability. Conversely, diffusion 
models exhibit superior training stability and can be effectively pre-trained on 
extensive unlabeled datasets, enabling them to learn diverse image features without 
relying heavily on annotations. This capability significantly reduces the dependency 
on annotated data while still allowing for the generation of realistic, high-quality 
images. Therefore, diffusion models present a more practical and efficient approach 
for medical image synthesis and augmentation (Fig. 10.12). 

Background Theoretical Preliminaries About Latent Diffusion Model 
(LDM) 
Latent Diffusion Models (LDMs) enhance image synthesis by operating in a 
lower-dimensional latent space, thereby improving computational efficiency 
and training stability compared to pixel-space models. Utilizing an encoder-
decoder architecture, it maps images into this latent space, where Gaussian 
noise is systematically added and reversed to generate high-quality images. 
Pre-training on extensive unlabeled datasets enables LDMs to capture a wide 
range of features, while subsequent fine-tuning on smaller labeled datasets 
minimizes the need for extensive annotations. 

10.3.1 Methodology 

10.3.1.1 HistoDiffusion Model Architecture 

Our proposed HistoDiffusion is built on Latent Diffusion Models (LDM) [38], 
which requires fewer computational resources without degradation in performance, 
compared to prior works [7, 23, 42]. LDM first trains a latent autoencoder (LAE) 
[24] to encode images as lower-dimensional latent representations and then learns 
a diffusion model (DM) for image synthesis by modeling the latent space of the 
trained LAE. Particularly, the encoder E. of the LAE encodes the input image
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Fig. 10.12 The architecture of our proposed HistoDiffusion, which consists of a pre-training 
process (blue solid lines), a fine-tuning process (blue dashed lines), and a synthetic augmentation 
process (orange lines). During pre-training, a latent autoencoder (LAE) and a diffusion model 
(DM) are trained on large-scale unlabeled datasets for unconditional image synthesis. HistoDiffu-
sion is then fine-tuned on a small-scale dataset for conditional image synthesis under the guidance 
of a trained latent classifier. During synthetic augmentation, given a target class label, the synthetic 
images generated by the fine-tuned model are selected and added to the training set based on their 
distances to the class centroids in the feature space 

x ∈ R
H×W×3

. into a latent representation z = E(x) ∈ R
h×w×c

. in a lower-
dimensional latent space Z.. Here  H and W are the height and width of image x, and 
h, w, and c are the height, width, and channel of latent z, respectively. The latent z 
is then passed into the decoder D. to reconstruct the image x̂ = D(z).. Through this 
process, the compositional features from the image space X. can be extracted to form 
the latent space Z., and we then model the distribution of Z. by learning a DM. For 
the DM in LDM, both the forward and reverse sampling processes are performed in 
the latent space Z. instead of the original image space X.. 

10.3.1.2 Unconditional Large-Scale Pre-training 

To ensure the latent space Z. can cover features of various data types, we first pre-
train our proposed HistoDiffusion on large-scale unlabeled datasets. Specifically, 
we gather unlabeled images from M different sources to construct a large-scale set 
of datasets S = {S1, S2, . . . , SM }.. We then train an LAE using the data from S. with 
the following self-reconstruction loss to learn a powerful latent space Z. that can 
describe diverse features: 

.LLAE = Lrec(x̂, x) + λKLDKL(q(z)||N(0, I)) , (10.10)
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where Lrec . is the loss measuring the difference between the output reconstructed 
image x̂ . and the input ground truth image x. Here we implement Lrec . with a 
combination of a pixel-wise L1 . loss, a perceptual loss [57], and a patch-base 
adversarial loss [8, 9]. To avoid arbitrarily high-variance latent spaces, we also add 
a KL regularization term DKL . [24, 38] to constrain the variance of the latent space 
Z. with a slight KL-penalty. 

After training the LAE, we fixed the trained encoder E. and then trained a DM 
with the loss LDM . in Eq. 10.4 to model E.’s latent space Z.. Here z0 = E(x). in 
Eq. 10.4. Once the DM is trained, we can use denoising model ∈θ . in the DM reverse 
sampling process to synthesize a novel latent z̃0 ∈ R

h×w×c
. and employ the trained 

decoder D. to generate a new image x̃ = D(z̃0)., which should satisfy the similar 
distribution as the data in S.. 

10.3.1.3 Conditional Small-Scale Fine-Tuning 

Using the LAE and DM pretrained on S., we can only generate the new image 
x̃ . following the similar distribution in S.. To generalize our HistoDiffusion to the 
small-scale labeled dataset S'

. collected from a different source (i.e., S' /⊂ S.), we 
further fine-tune HistoDiffusion using the labeled data from S'

.. Let  y be the label of 
image x in S'

.. To minimize the training cost, we fix both the trained encoder E. and 
trained DM model ∈θ . to keep latent space Z. unchanged. Then we only fine-tune the 
decoder D. using labeled data (x, y). from S'

. with the following loss function: 

.LD = Lrec(x̂, x) + λCELCE(ϕ(x̂), y) , (10.11) 

where Lrec(x̂, x). is the self-reconstruction loss between the output reconstructed 
image x̂ = D(E(x)). and the input ground truth image x. To enhance the correlation 
between the decoder output x̂ . and label y, we also add an auxiliary image classifier 
ϕ . trained with (x, y). on the top of D. and impose the cross-entropy classification 
loss LCE . when fine-tuning D.. λCE . is the balancing parameter. We annotate this 
fine-tuned decoder as D'

. for differentiation. 

10.3.1.4 Classifier-Guided Conditional Synthesis 

To enable conditional image generation with our HistoDiffusion, we further apply 
the classifier-guided diffusion sampling proposed in [7, 43, 44, 47] using the labeled 
data (x, y). from small-scale labeled dataset S'

.. We first utilize the trained encoder 
E. to encode the data x from S'

. as latent z0 .. Then we train a time-dependent latent 
classifier φ . with paired (zt , y). using the following loss function: 

.Lφ = LCE(φ(zt ), y) , (10.12)



10 Histopathological Synthetic Augmentation with Generative Models 201

where zt ∼ q(zt |z0). is the noisy version of z0 . at the time step t during the DM 
forward process, and LCE . is the cross-entropy classification loss. Based on the 
trained unconditional diffusion model ∈θ ., and a classifier φ . trained on noisy input 
zt ., we enable conditional diffusion sampling by perturbing the reverse-process mean 
with the gradient of the log probability pφ(y|zt ). of a target class y predicted by the 
classifier φ . as follows: 

.μ̂θ (zt |y) = μθ(zt ) + g · Σθ(zt )∇zt log pφ(y|zt ) , (10.13) 

where g is the guidance scale. Then the DM reverse process in HistoDiffusion can 
finally generate a novel latent z̃0 . satisfying the class condition y through a Markov 
chain starting with a standard Gaussian noise zT ∼ N(0, I). using pθ,φ(zt−1|zt , y). 

defined as follows: 

.pθ,φ(zt−1|zt , y) = N(zt−1; μ̂θ (zt |y),Σθ (zt )) . (10.14) 

The final image x̃ . of class y can be generated by applying the fine-tuned decoder
D'

., i.e., x̃ = D'(z̃0).. 

10.3.1.5 Synthetic Augmentation 

To further improve the efficacy of synthetic augmentation, we follow [55] to  
selectively add synthetic images to the original labeled training data based on 
centroid feature distance. The augmentation ratio is defined as the ratio between 
the selected synthetic images and the original training images. More results are 
demonstrated later in Table 10.3. 

10.3.2 Experiments and Results 

We employ three public datasets of histopathology images during the large-scale 
pre-training procedure. The first one is the H&E breast cancer dataset [4], containing 
312,320 patches extracted from the hematoxylin & eosin (H&E) stained human 
breast cancer tissue micro-array (TMA) images [29]. Each patch has a resolution of 
224 × 224.. The second dataset is PanNuke [12], a pan-cancer histology dataset for 
nuclei instance segmentation and classification. The PanNuke dataset includes 7901 
patches of 19 types of H&E stained tissues obtained from multiple data sources, 
and each patch has a unified size of 256 × 256. pixels. The third dataset is TCGA-
BRCA-A2/E2 [49], a subset derived from the TCGA-BRCA breast cancer histology 
dataset [33]. The subset consists of 482,958 patches with a resolution of 256 ×
256.. Overall, there are 803,179 patches used for pre-training. As for fine-tuning 
and evaluation, we employ the NCT-CRC-HE-100K dataset that contains 100,000 
patches from H&E stained histological images of human colorectal cancer (CRC)
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Fig. 10.13 Comparison of real images from training subset, synthesized images generated by 
StyleGAN2 [22] and our proposed HistoDiffusion (zoom in for clear observation). Qualitatively, 
our synthesized results contain more realistic and diagnosable patterns than results synthesized 
from StyleGAN2 

and normal tissue. The patches have been divided into 9 classes: Adipose (ADI), 
background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth 
muscle (MUS), normal colon mucosa (NORM), cancer-associated stroma (STR), 
colorectal adenocarcinoma epithelium (TUM). The resolution of each patch is 224×
224. (Fig. 10.13).
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10.3.3 Summary 

This section introduces HistoDiffusion, a synthetic augmentation technique for 
medical image recognition. It utilizes multiple unlabeled datasets for large-scale, 
unconditional pre-training and employs a labeled dataset for small-scale conditional 
fine-tuning. Experiments on a histopathology dataset showed that HistoDiffusion 
improves classification performance with limited labels and can handle future small 
datasets using the same pre-trained model. 

10.4 Conclusion 

This chapter has explored the integration of generative models, HistoGAN and 
HistoDiffusion, into digital pathology for effective synthetic data augmentation, 
addressing the necessity for high-quality training data. In Sect. 10.2, we intro-
duced HistoGAN, which has marked a significant advancement in synthetic image 
generation, employing selective criteria based on label congruence and feature 
resemblance. This approach not only enhances the quality of training data but 
also mitigates common challenges of overfitting, thereby improving the model’s 
performance on limited datasets. In Sect. 10.3, transitioning from HistoGAN, 
HistoDiffusion utilizes diffusion processes known for their training stability and 
reduced dependency on annotated data. This model is particularly advantageous in 
medical imaging, offering efficient synthesis of realistic images from minimal data 
inputs. Experimental results confirm the effectiveness of these models in enhancing 
diagnostic accuracy across various datasets. Future efforts will focus on refining 
these models with clinical insights and exploring advanced foundational generative 
models to keep pace with evolving data needs. In conclusion, the integration of 
HistoGAN and HistoDiffusion into the workflow of digital pathology represents 
a transformative shift toward more reliable, accessible, and efficient diagnostic 
practices. By harnessing the power of generative models, we can significantly 
expand the capabilities of pathological image analysis, ultimately leading to better 
patient outcomes and more streamlined medical processes. 
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Chapter 11 
Enhancing PET with Image Generation 
Techniques: Generating Standard-Dose 
PET from Low-Dose PET 

Caiwen Jiang, Zixin Tang, Zhiming Cui, and Dinggang Shen 

Abstract Positron Emission Tomography (PET) is an advanced imaging technique 
that vividly reflects human physiological activity and plays an indispensable role in 
diagnosing Alzheimer’s disease (AD) and cancer. However, PET imaging involves 
injecting radionuclides into the body, inevitably leading to radiation exposure. 
Reducing the dose of radionuclide used during imaging is crucial for safer and 
more cost-effective PET imaging. However, reducing the dose in PET acquisition 
can degrade image quality, potentially failing to meet clinical requirements. To 
maintain high-quality PET imaging while reducing the radionuclide dose, besides 
developing imaging systems to improve sensitivity, another effective approach is 
to generate Standard-dose PET (SPET) from Low-dose PET (LPET) by gener-
ative technologies. In this work, we propose a novel and effective approach to 
estimate high-quality SPET images from LPET images. Specifically, We employ 
a semi-supervised training framework to fully utilize both the rare paired and the 
abundant unpaired LPET and SPET images. Additionally, using this framework as 
a foundation, we introduce a Region-adaptive Normalization (RN) and implement a 
structural consistency constraint to address task-specific challenges. RN customizes 
normalization procedures for distinct regions within each PET image, mitigating 
adverse effects stemming from significant intensity variations across different areas. 
Simultaneously, the structural consistency constraint ensures the preservation of 
structural details throughout the process of generating SPET images from LPET 
images. With extensive experimental validation, our approach can achieve superior 
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performance over state-of-the-art methods, and shows stronger generalizability to 
the dose changes of PET imaging 

11.1 Introduction 

Positron Emission Tomography (PET) is an advanced nuclear imaging technology 
that has an essential role in early disease diagnosis and intervention in clinics [6, 
24, 43]. By injecting radionuclides into the body and capturing signals from their 
decay, PET can visualize the metabolic and biochemical processes in the body by 
providing the radionuclides’ distribution information [8, 26]. This unique feature 
allows PET to surpass other imaging methods, playing an indispensable role in the 
diagnosis and treatment of many diseases, particularly those affecting the body’s 
physiological functions such as Alzheimer’s Disease (AD) and cancer [10, 15, 31]. 

Nonetheless, given that those radionuclides are radioactive, which inevitably 
poses a risk of radiation exposure to patients [5, 28]. In addition, due to limitations 
in signal receiver sensitivity and noise interference, the dose of radionuclides 
must meet a certain threshold to produce PET images with sufficient quality for 
clinical diagnosis [1, 21]. Despite applying the As Low As Reasonably Achievable 
(ALARA) [32] principle in clinical imaging to minimize radiation exposure, PET 
imaging may still be deemed unacceptable for certain populations, such as pediatric 
subjects and pregnant women [4, 22]. To mitigate the radiation risks associated with 
PET imaging, designing advanced generation algorithms to enhance PET image 
quality (e.g., generating standard-dose PET (SPET) from low-dose PET (LPET)) is 
a promising alternative. 

Generating SPET from LPET poses several challenges. Firstly, paired LPET and 
SPET data for training models are rare. In most clinical scenarios, paired PET data 
are not collected, and only a small amount of paired data is acquired in list mode by 
PET scanners [29] for research purposes. Secondly, There are dramatic variations 
in intensity distribution across different regions. As shown in Fig. 11.1, it is difficult 
to preserve intensity contrast among regions in generating SPET images from LPET 
images. Finally, PET is not a structural imaging technique and often lacks structural 
details, especially in LPET images with significant noise. This poses a challenge in 
accurately generating SPET images with sufficient structural details. 

Fig. 11.1 (a)  LPET  and  (b) SPET images, and their corresponding distributions of intensity across 
different regions
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To address these challenges, we introduce a semi-supervised deep learning 
framework to accommodate training with those unpaired PET images. This frame-
work incorporates a Region-adaptive Normalization (RN) technique and a structural 
consistency constraint, both aimed at enhancing the fidelity of generated SPET 
images by infusing them with more realistic intensity contrast and intricate struc-
tural details. Specifically, RN integrates semantic information into the normaliza-
tion process, enabling tailored modulation of activations across different regions. 
Furthermore, the structural consistency constraint promotes alignment between 
predicted SPET features and real SPET images at various levels (e.g., vertex, line), 
ensuring the preservation of structural details during SPET generation. During 
training, unpaired LPET and SPET images are initially utilized to independently 
train corresponding network components in a self-supervised manner. Subsequently, 
a limited set of paired LPET and SPET images is employed to fine-tune the LPET-
to-SPET mapping branch. With extensive experimental validation, we demonstrate 
that the SPET images generated by our approach are sufficiently realistic and have 
the potential for clinical application. 

11.2 Previous Works on SPET Generation 

From a technical standpoint, methods for generating SPET images can be broadly 
classified into two categories: (1) machine learning-based approaches and (2) deep 
learning-based approaches. In the former category, Kang et al. introduced a voxel-
level prediction method for SPET images utilizing a random forest technique in 
2015 [17]. Following this, Wang et al. proposed a sparse learning approach based on 
mapping to predict SPET images using both LPET images and corresponding MR 
images [35]. An et al. put forth a data-driven methodology employing multi-level 
correlation analysis to generate SPET images from LPET and MRI data [2], which 
were aligned using specific registration techniques [13, 14, 41]. However, due to the 
unavailability of corresponding MR images for most PET scans, Wang et al. devised 
a semi-supervised triple dictionary learning method to leverage a large number 
of unpaired training samples for SPET image generation [36]. Nonetheless, these 
methodologies are often semi-automated and time-intensive, posing challenges for 
clinical implementation. 

In recent years, deep learning techniques have emerged as the predominant 
approach for generating SPET images, primarily owing to the unparalleled capa-
bilities of Convolutional Neural Networks (CNNs) in image processing [18, 20]. In 
2017, Xiang et al. introduced a deep auto-context CNN architecture, employing a 
series of CNN modules in an auto-context strategy to refine the initial SPET image 
estimations iteratively [42]. However, this approach involves slicing 3D images 
along the transverse plane to convert them into 2D images, leading to information 
loss in other directions and discontinuities in the final predicted 3D images across 
slices. To overcome this limitation, Kim et al. proposed an iterative generation 
framework based on 3D CNNs to predict complete SPET images [19]. Seeking
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more realistic results, Wang et al. devised a 3D conditional Generative Adversarial 
Network (GAN) for predicting SPET images from LPET images, replacing manual 
similarity loss definition with a discriminator [37]. They subsequently introduced 
a locally adaptive 3D GAN, incorporating MR images to provide anatomical 
information during SPET image generation [38]. Furthermore, Luo et al. introduced 
an Adaptive Rectification-based Generative Adversarial Network with Spectrum 
Constraint, referred to as AR-GAN, for SPET image generation [25]. However, the 
efficacy of deep learning methods relies on the availability of sufficient training 
data, which is often limited in practice due to the scarcity of paired LPET and SPET 
images. 

11.3 Methodology 

The proposed methodology is depicted in Fig. 11.2. Initially, we utilize a semi-
supervised strategy to train the framework using unpaired data. Subsequently, 
we incorporate region-adaptive normalization and structural consistency constraint 
techniques to accurately maintain anatomical structure throughout the image gener-
ation process. Further elaboration on our approach is provided below. 

Fig. 11.2 Overview of our proposed semi-supervised framework, which involves training in two 
stages. The first stage employs unpaired data for self-supervised training, as indicated by the purple 
arrows. The second stage uses a small amount of unpaired data to fine-tune the trained network 
components, as indicated by the pink arrows
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11.3.1 Utilization of Unpaired Data for Training 

To tackle the challenge of insufficient paired data in SPET image generation, 
we propose a semi-supervised framework aimed at minimizing the dependency 
on paired images. The training process of this framework consists of two main 
stages: (1) self-supervised learning using unpaired data, and (2) supervised learning 
utilizing the limited set of paired data. 

In the first stage of this semi-supervised learning process, depicted by the purple 
arrows in Fig. 11.2, LPET and SPET images are individually processed through a 
dose-specific auto-encoder network to acquire distinct embedding features. Here, 
RN Encoder E1 . and RN Encoder E2 . encode LPET and SPET images into 
the feature space, respectively, while Decoder D1 . and Decoder D2 . decode the 
features back into the corresponding PET images. Following this self-supervised 
training, the embedding features serve as representations of LPET or SPET images. 
However, minor discrepancies arising from dose variations may persist between the 
embedding features of LPET and SPET. 

Subsequently, in the second stage, training is conducted using a subset of paired 
data to narrow the gap in the feature space via the Transfer Module T12 .. This stage is 
represented by the flow of data indicated by the pink arrows in Fig. 11.2, traversing 
through RN Encoder E1 ., Transfer Module T12 ., and Decoder D2 .. 

Let XL . represent an LPET image and XS . a corresponding SPET image. In the 
first stage, {E1,D1}. and {E2,D2}. are individually trained under the loss functions 
LU1 . and LU2 ., which are defined as 

.LU1 = Ll2(D1(E1(XL)),XL) + λ1Ld1(D1(E1(XL))), . (11.1) 

LU2 = Ll2(D2(E2(XS)), XS) + λ1Ld2(D2(E2(XS))). (11.2) 

In the subsequent stage, {E1,D2}. undergo training using the following loss 
function LS ., 

.

LS = Ll2(D2(E1(XL),XS)

+ λ2Ld2(D2(T12(E1(XL)),XS)

+ λ3Lstruc(T12(E1(XL)), E2(XS)).

(11.3) 

where λ1 ., λ2 ., and λ3 . represent hyperparameters that balance various loss terms.Ll2. 

andLstruc. denote the mean square error and structural consistency loss as outlined 
in Eq. (11.7), respectively. Additionally, Ld1. and Ld2. stand for the adversarial 
losses corresponding to LPET and SPET, respectively, each determined by a four-
layer discriminator [11].
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11.3.2 Implementation of Region-Specific Normalization 
in Different Regions 

To enhance the network’s generalization capabilities, various normalization tech-
niques based on global statistics, such as Batch Normalization (BN) [12], Layer 
Normalization (LN) [3], Instance Normalization (IN) [34], and Group Normal-
ization (GN) [40], have been proposed for tasks like classification, segmentation, 
and generation. However, these methods may not be optimal for generating PET 
images, which often exhibit significant intensity variations across different regions, 
as depicted in Fig. 11.1. Therefore, we introduce Region-adaptive Normalization 
(RN) in this study to adaptively learn distributions for different regions under 
segmentation guidance. Our goal is to generate SPET images that are noise-reduced 
yet exhibit clear organ boundaries. 

To provide semantic guidance for RN operation, we utilize the TotalSegmen-
tator [39], an openly available tool based on nnU-Net and trained with over 
one thousand samples, to segment multiple organs from the aligned CT images 
corresponding to their respective PET images in the spatial domain. For simplicity, 
we group these 104 anatomical structures into 8 independent tissues, comprising 
the heart, liver, spleen, lungs, stomach, kidneys, spine, and ribs. Additionally, we 
employ erosion operations to minimize small overlaps between different tissues. 
Given that the TotalSegmentator was trained on a diverse dataset of over a 
thousand samples, its segmentation performance is robust and sufficiently reliable 
for integration into our SPET generation algorithm. Selected segmentation results 
are presented in Fig. 11.4. 

As depicted in Fig. 11.3, we integrate RN into the structure of encoder blocks, 
replacing BN. Following a methodology akin to [30, 44], the RNmodule utilizes two 
convolutional layers to learn region-specific affine transformation parameters β . and 
γ . from semantic segmentation m, with the first convolutional layer being shared 
to economize computational resources. Serving as adaptable functions applied to 
the input semantic map m, the modulation parameters γ . and β . are no longer C-
dimensional vectors but tensors of identical dimensions as m, exhibiting varying 
values across different spatial locations. 

Fig. 11.3 Illustration of Region-adaptive Normalization (RN). The left side shows the differences 
between the RN encoder and traditional encoders, where BN is replaced with RN. The right side 
illustrates the specific operational details of RN
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Fig. 11.4 Four typical cases of segmentation results, where the segmentation maps are overlayed 
on the PET images 

Consider x as the input feature map of a batch comprising N samples, each 
having spatial dimensions of H × W × Z . and C channels. For the n-th sample 
in the c-th channel, xn,c,i,j,k . represents the activation at spatial position (i, j , k) 
before normalization. Initially, we calculate the mean μc . and standard deviation σc . 

as follows: 

.μc = 1

NHWZ

Σ

n,i,j,k

xn,c,i,j,k, (11.4) 

.σc =
┌   || ⎦ 1

NHWZ

Σ

n,i,j,k

((xn,c,i,j,k)2 − (μc)2) + ∈, (11.5) 

where ∈ . is a small constant for avoiding invalid denominators. Then, the normalized 
activation hn,c,i,j,k . at spatial location (i, j , k) can be computed as: 

.hn,c,i,j,k = γc,i,j,k

xn,c,i,j,k − μc

σc

+ βc,i,j,k. (11.6)
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11.3.3 Constraint of Multi-Level Structural Consistency 

Because of artifacts and noise present in LPET images, certain small tissues with 
fuzzy boundaries (such as pulmonary bronchial structures) may vanish after the 
generation of SPET images from LPET data. To address this issue, we introduce a 
structural consistency loss. This loss initially establishes specific structural relation-
ships among input image patches and subsequently ensures that these relationships 
are maintained in the resulting SPET images. It’s important to note that the structural 
consistency loss is computed exclusively in the feature space to mitigate noise 
interference and computational burden. Specifically, the process involves feeding 
seven pairs of LPET and SPET patches into the network simultaneously. One pair 
is initially cropped from the entire PET image, while the remaining six pairs are 
taken from its surrounding areas. Theoretically, these six pairs can be selected at 
any distance and direction around the central patch. However, for simplicity, we 
choose patches in six directions along the positive and negative axes (x, y, z) with 
equal Euclidean distances. During training, the central patch is selected randomly, 
but sequentially during testing. In cases where the central patch is located at the 
image’s edge, the number of surrounding patches may be fewer than six, with only 
three in extreme scenarios (such as corners). 

LPET patches are processed through RN Encoder E1 . and Transfer Module T12 . 
(i.e., two 1×1×1. convolutional layers) to yield the estimated standard-dose features 
f ES = {f ES

i }7i=1 .. Similarly, SPET patches obtained from the same spatial locations 
traverse RN Encoder E2 . to produce the standard-dose features f S = {f S

i }7i=1 .. 
The subsequent step involves calculating the structural consistency loss between 
f S

. and f ES
. across hierarchical levels, specifically, the vertex level and line level. 

Here, each cropped patch fed into the network is regarded as a vertex. The vertex-
level loss Lvertex . quantifies the error in patch generation, while the line-level loss 
Lline .measures the patch-to-patch distance computed from f S

. and f ES
.. Thus, the 

structural consistency loss is formulated as follows: 

.

Lstruc(f
ES, f S) =

7Σ

i=1

Lvertex(f
S
i , f ES

i )+

α

7Σ

i=1

7Σ

j=1

Lline(f
S
i − f ES

i , f S
j − f ES

j ),

(11.7) 

where the hyperparameter α . is employed to weigh the loss terms in Lstruc.. 
Lvertex . and Lline . represent the functions utilized to gauge similarity at the vertex 
and line levels, respectively, employing MSE and cosine similarity, respectively.
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11.4 Experiments 

11.4.1 Materials 

To assess our proposed SPET image generation framework, PET images are sourced 
from the (total-body) uEXPLORER PET/CT scanner [45]. Paired LPET and SPET 
images are obtained through list mode scanning with an injection of 256 MBq 
of [ 18 .F]-FDG. Specifically, SPET images are reconstructed using 1200 s data 
acquired between 60 and 80 min post-injection via the ordered-subsets expectation 
maximization (OSEM) algorithm [27]. Simultaneously, corresponding 1/10th LPET 
images are reconstructed using 120 s data sampled uniformly from the 1200 s 
data. Additionally, unpaired SPET images are collected from other research efforts 
conducted on the uEXPLORER scanner. Ultimately, the PET dataset we compile 
comprises 50 unpaired SPET images and 20 paired LPET and SPET images. 

In the first stage, 10 LPET images (from 10 randomly-selected sets of paired 
LPET and SPET images) are used for training the RN Encoder E1 . and Decoder 
D1 ., while 60 SPET images (including those 10 SPET images from 10 selected sets 
of paired LPET and SPET images) are used for training the RN Encoder E2 . and 
Decoder D2 .. In the second stage, those 10 selected sets of paired LPET and SPET 
images in the first stage are used for training the E1 ., Transfer Module T12 ., and D2 ., 
while the rest 10 paired LPET and SPET images are used for testing. 

11.4.2 Experiment Setup 

During the data preprocessing, all images are resampled to a voxel spacing of 
2 × 2 × 2 mm3

. with dimensions of 256 × 256 × 160.. Intensity normalization 
is applied to bring the intensity range within [ 0, 1.] using min-max normalization. 
To expand the training dataset and mitigate GPU memory dependency, we extract 
overlapping patches sized 96×96×96. from the whole PET image. Specifically, for 
calculating the structural consistency loss, we randomly select the first patch and 
then crop six additional pairs from its neighboring areas, each located 98 voxels 
away from the centroid of the first patch. Additionally, to ensure result stability and 
minimize randomness, we conduct two-fold cross-validation during evaluation. The 
experiment is repeated five times with varying dataset splits, and the average and 
standard deviation of the results are reported. 

We employ the Adam optimizer with an initial learning rate of 0.001. for network 
training. All experiments are conducted on the PyTorch platform using an NVIDIA 
Tesla V100 GPU. Empirically, we set λ1 ., λ2 ., and λ3 . in Eqs. (11.1), (11.2), and 
(11.3) to 1, 1, and 0.5, respectively, and α . in Eq. (11.7) is set to 0.2. Quantitative 
assessment adopts three metrics: Normalized Root Mean Squared Error (NMSE), 
Peak Signal to Noise Ratio (PSNR), and Structural Similarity Index (SSIM).
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Table 11.1 Quantitative comparison with state-of-the-art SPET image generation methods, in 
terms of PSNR, SSIM, and NMSE 

Method PSNR (dB) ↑. SSIM ↑. NMSE ↓. 

LPET 17.735 ± 2.145. 0.974 ± 0.014. 0.028 ± 0.004. 

Cycle-GAN 21.531 ± 1.872. 0.980 ± 0.011. 0.025 ± 0.003. 

3D-cGAN 23.266 ± 1.339. 0.982 ± 0.009. 0.024 ± 0.003. 

CT-assisted 22.947 ± 1.531. 0.984 ± 0.007. 0.024 ± 0.003. 

LA-GAN 24.258 ± 1.276. 0.985 ± 0.006. 0.023 ± 0.002. 

AR-GAN 24.845 ± 1.037. 0.987 ± 0.006. 0.022 ± 0.001. 

Our proposed 25.154 ± 0.933. 0.989 ± 0.005. 0.021 ± 0.001. 

The optimal results are highlighted in bold

Fig. 11.5 Visual comparison of SPET images produced by six different methods. From left to 
right are the LPET images, results of five other comparison methods (2nd–6th columns) and our 
approach (7th column), and the GT (SPET image). The corresponding difference maps between 
the generated results and GT are shown in the 2nd (axial view) and 4th (coronal view) rows 

11.4.3 Comparison with State-of-the-Art Methods 

We conducted a comprehensive comparison between our proposed approach and 
several state-of-the-art SPET generation methods, namely Cycle-GAN [46], 3D-
cGAN [37], CT-assisted [23], LA-GAN [38], and AR-GAN [25]. The results, both 
quantitative and qualitative, are presented in Table 11.1 and Fig. 11.5, respectively. 

Quantitative results obtained by various methods, including PSNR, SSIM, and 
NMSE, are presented in Table 11.1, highlighting the superior performance of our 
proposed approach. Notably, compared to Cycle-GAN, which demonstrates the 
worst results, our method showcases significant enhancements in PSNR, SSIM, and 
NMSE by 3.623. dB, 0.009., and 0.004., respectively. This demonstrates that, even if 
the same additional unpaired SPET can be used, reasonable network architecture
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and utilization are still needed to help SPET generation. Even though both our 
approach and Cycle-GAN can use additional unpaired SPET data, our method 
achieves better SPET generation performance due to a more rational design of 
framework and utilization strategy. Additionally, paired t-test analysis reveals that 
the p-value between our approach and each of the other methods is less than 
0.05, indicating a statistically significant improvement achieved by our proposed 
approach. 

The visual comparisons among different methods are depicted in Fig. 11.5. 
Our approach showcases the generation of SPET images with enhanced clarity in 
boundaries and reduced noise. Notably, our method excels in producing superior 
results, particularly in regions prone to ambiguity, such as the bronchial region 
illustrated in the third row of Fig. 11.5. Furthermore, when comparing our approach 
with CT-assisted and LA-GAN, both of which utilize additional CT images either 
directly or indirectly, it is evident that SPET images generated by CT-assisted 
exhibit noticeable oversaturation, retaining excess content from CT images. This 
underscores the limitations of simply integrating additional CT images in enhancing 
SPET generation. Moreover, the difference maps highlight that our approach gener-
ates SPET images with minimal difference from the ground truth, further confirming 
its superiority over existing state-of-the-art methods, a conclusion supported by 
visual inspection of the results. 

11.4.4 The Roles of Different Components 

In our proposed method, we incorporate three primary strategies, i.e., semi-
supervised strategy, region-adaptive normalization, and structural consistency con-
straint. To assess the effectiveness of each strategy in SPET image generation, 
we conduct comprehensive experiments in this section. We establish a baseline 
approach, referred to as blNet, comprising an encoder, two convolutional layers, 
a decoder, and a discriminator arranged sequentially. Subsequently, we enhance 
blNet by integrating the self-supervised strategy, region-adaptive normalization, and 
structural consistency loss, resulting in blNet-SS, blNet-SS-RN, and blNet-SS-RN-
SC, respectively. All models undergo training under identical settings, and their 
performance is evaluated based on results presented in Fig. 11.6 and Table 11.2. 

Semi-supervised Strategy When training the end-to-end SPET generation net-
work with paired PET images, different components are tasked with learning various 
functionalities. For instance, an encoder extracts features from LPET images, 
while a decoder reconstructs SPET images from these extracted features. This 
versatility can also be achieved through training with unpaired PET images. Hence, 
we introduce the semi-supervised strategy to enable the utilization of additional 
unpaired data for network training. 

A comparison between the performance of blNet and blNet-SS, as presented in 
the first and second rows of Table 11.2, reveals the benefits of the semi-supervised
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Fig. 11.6 Visual comparison of SPET images generated by different network components and 
loss functions. From left to right are the LPET image, results by four different methods (2nd–5th 
columns), and the ground truth (GT) (last column). The corresponding difference maps are shown 
in the second row. (a)  LPET.  (b)  blNet.  (c) blNet-SS. (d) blNet-SS-RN. (e) blNet-SS-RN-SC. ( f)
GT

Table 11.2 Performance comparison of SPET images generated by different network compo-
nents and loss functions, in terms of PSNR, SSIM, and NMSE 

Method PSNR (dB) ↑. SSIM ↑. NMSE ↓. 

blNet 21.176 ± 1.932. 0.979 ± 0.012. 0.026 ± 0.003. 

blNet-SS 22.532 ± 1.617. 0.981 ± 0.010. 0.024 ± 0.003. 

blNet-SS-RN 24.463 ± 1.112. 0.986 ± 0.007. 0.022 ± 0.002. 

blNet-SS-RN-SC 25.154 ± 0.933. 0.989 ± 0.005. 0.021 ± 0.001. 

The optimal results are highlighted in bold

strategy in SPET image generation. Notably, there is a consistent enhancement 
across all three metrics (PSNR, SSIM, and NMSE) with the adoption of the semi-
supervised approach. Moreover, visual samples in Fig. 11.6b and c showcase that 
SPET images generated by blNet-SS exhibit reduced noise and clearer boundaries 
compared to blNet. This observation underscores the efficacy of our proposed semi-
supervised strategy, which leverages both paired and unpaired PET images for 
training, rather than relying solely on paired PET images. 

Region-Adaptive Normalization Batch Normalization (BN) is a widely used 
technique in deep learning networks, known for its ability to significantly enhance 
training efficiency. However, as a method relying on global-wise (batch-wise) 
statistics, BN may not be the optimal choice for the SPET image generation 
task. This is because PET images exhibit wide intensity variations across different 
regions, and applying the same normalization operation to all regions can potentially 
diminish the contrast differences between them, leading to blurred boundaries in the 
resulting SPET images. 

This observation is supported by the typical sample depicted in Fig. 11.6c and d, 
where blNet-SS utilizes BN and blNet-SS-RN replaces BN with RN within the same 
network framework. Comparing the results, the SPET image generated by blNet-SS-
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RN exhibits notably stronger regional variance. Particularly, the boundaries of the 
spine and ribs are clearer in the results of blNet-SS-RN, as highlighted by the red 
boxes and arrows. This validates our hypothesis that RN can better preserve regional 
variance compared to BN for the SPET image generation task. Moreover, the 
quantitative results presented in Table 11.2 demonstrate that blNet-SS-RN improves 
the PSNR, SSIM, and NMSE by 1.931. dB, 0.005., and 0.002. respectively, compared 
to blNet-SS. This further confirms the superiority of RN over BN for SPET image 
generation. 

Structural Consistency Constraint PET images originate from real human tis-
sues, implying that neighboring patches in PET images exhibit certain associations. 
Consequently, we devised the structural consistency loss to uphold such associations 
during the generation process, thereby aiding in the generation of unclear regions 
(e.g., pulmonary bronchial) by leveraging information from neighboring regions 
(e.g., heart). We conducted specific experiments to confirm the efficacy of our 
proposed structural consistency loss, presenting the results in Table 11.2 and 
Fig. 11.6e. 

From the visual outcomes depicted in Fig. 11.6d and e, it is evident that blNet-
SS-RN-SC significantly enhances the clarity of previously unclear regions (i.e., the 
bronchi highlighted by the red box) compared to blNet-SS-RN. Additionally, the 
corresponding difference maps exhibit smaller discrepancies (indicated by lighter 
colors) with the ground truth. The quantitative results in Table 11.2 further support 
this observation, demonstrating that blNet-SS-RN-SC achieves improvements in 
PSNR, SSIM, and NMSE by 0.691. dB, 0.003., and 0.001., respectively, compared 
to blNet-SS-RN without the structural consistency loss. These findings serve as 
evidence of the efficacy of our devised structural consistency loss in enhancing the 
generation of SPET images. 

11.5 Discussion 

11.5.1 The Effect of Region-Adaptive Normalization 

As illustrated in Fig. 11.1, PET images exhibit noticeable intensity variations across 
different regions, which is the important image information. In our endeavor to 
capture these variances during SPET image generation, we integrate the Region-
adaptive Normalization (RN) module into our proposed framework. To underscore 
the benefits of RN, we conduct a comparative analysis with Batch Normalization 
(BN) [12] and Instance Normalization (IN) [34], commonly employed in gener-
ation tasks. Specifically, employing a 3D-UNet as the baseline, we replace the 
normalization technique with BN, IN, and RN, respectively, while maintaining other 
conditions constant. The results of these experiments are presented in Fig. 11.7.
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Fig. 11.7 Visual comparison of two SPET images of two subjects, produced by three different 
normalization methods. The first column shows the coronal views of the PET image, and the second 
column shows the corresponding region-wise intensity distributions. From top to bottom are the 
(a)  LPET  image,  (b) GT (SPET image), and three results using (c)  BN,  (d)  IN,  and  (e)  RN  (the  
3rd–5th rows), respectively. Red boxes and red arrows show detailed results for comparison

In Fig. 11.7, SPET images generated with RN exhibit clearer inter-region bound-
aries and fewer artifacts in hypermetabolic regions compared to other normalization 
methods. Additionally, focusing on intensity distribution, the region-wise intensity 
variation of RN is more distinct and closely resembles the ground truth (GT). This 
highlights the superior normalization performance of RN in the context of SPET 
generation, surpassing both BN and IN. 

The segmentation of multiple organs derived from CT images inevitably contains 
some errors, primarily stemming from two sources. Firstly, spatial misalignment 
between PET and CT images due to physiological motion introduces errors. Sec-
ondly, errors in the prediction of CT segmentation masks contribute to inaccuracies. 
Concerning the former, PET attenuation correction relies on corresponding CT
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Fig. 11.8 Multi-organ segmentation achieved by TotalSegmentator with different accuracy. (a) 
m1 ..  (b) m2 ..  (c) m3 ..  (d) m4 ..  (e) m5 ..  (f) m6 ..  (g)  “G  T”

Table 11.3 Quantitative results of SPET generation with different segmentation accuracy 

Multi-organ segmentation SPET generation 

Dice (%) IoU PSNR (dB) ↑. SSIM ↑. NMSE ↓. 

m1 . 80.72 ± 2.53. 67.67 ± 7.33. 20.543 ± 1.987. 0.978 ± 0.013. 0.026 ± 0.004. 

m2 . 83.62 ± 2.14. 71.85 ± 5.28. 21.457 ± 1.447. 0.980 ± 0.009. 0.025 ± 0.003. 

m3 . 87.41 ± 1.86. 77.64 ± 4.86. 23.654 ± 1.245. 0.982 ± 0.008. 0.024 ± 0.003. 

m4 . 92.27 ± 1.73. 85.65 ± 3.15. 24.813 ± 0.987. 0.987 ± 0.007. 0.023 ± 0.002. 

m5 . 94.11 ± 1.58. 88.87 ± 2.52. 24.875 ± 0.965. 0.988 ± 0.007. 0.023 ± 0.002. 

m6 . 97.03 ± 1.19. 94.23 ± 1.27. 25.087 ± 0.942. 0.989 ± 0.005. 0.021 ± 0.001. 

“GT” 100.00. 100.00. 25.154 ± 0.933. 0.989 ± 0.005. 0.021 ± 0.001. 

images to compute attenuation coefficients, thereby inheriting spatial misalignment 
errors (e.g., induced by breathing) during the attenuation correction process. Hence, 
such errors are inherent in the attenuated PET images themselves and cannot be 
mitigated by our SPET generation algorithm. Regarding the latter, we conducted 
additional experiments to assess the impact of segmentation accuracy on our SPET 
generation approach. 

Specifically, we retrained the TotalSegmentator [39] and applied it to our dataset, 
producing seven sets of multi-organ segmentations by controlling the number of 
training epochs. Since ground truth segmentation data for our dataset are unavail-
able, we approximate the last group, exhibiting the most favorable visualization, 
as pseudo “GT” and then compute the Dice and IoU metrics for the remaining 
six groups relative to this pseudo “GT”. Figure 11.8 provides a visual illustration 
of the seven groups of multi-organ segmentations, while Table 11.3 presents the 
corresponding SPET generation results under varying segmentation accuracy. 

Observing Table 11.3, we note the robustness of our approach to segmentation 
accuracy when segmentation results are satisfactory (e.g., m4 ., m5 ., and m6 .). 
However, in cases of notably poor segmentation outcomes (e.g., m1 ., m2 ., and m3 .), 
our approach exhibits sensitivity to segmentation accuracy, with SPET generation 
performance deteriorating. Notably, the performance of SPET generation is even 
inferior to that without utilizing multi-organ segmentation maps (i.e., the generated 
results with m1 . and m2 . are inferior to those by the blNet-SS in Table 11.2).
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11.5.2 The Diagnostic Value of Generated PET Images 

To evaluate the impact of different network components and loss functions on 
the detectability of lesion areas, we manually curated and annotated six samples 
featuring pulmonary nodular lesions, crucial early indicators of lung cancer, with 
guidance from radiologists possessing over five years of diagnostic expertise. 
Standard uptake value (SUV) serves as a prevalent reference indicator in PET tumor 
diagnosis. Following the methodology outlined in [7, 23], we leveraged the biases 
of SUVmean . and SUVmax . to quantitatively appraise the detectability of lesion areas. 
Here, SUVmean . corresponds to the average value computed across all voxels within 
the nodule’s ROI, while SUVmax . represents the highest uptake observed among the 
individual nodule voxels. The calculation is delineated below: 

.Bias = SUV ES
mean/max − SUV S

mean/max

SUV S
mean/max

× 100%, (11.8) 

which indicates difference in nodule quantification between estimated SPET and 
true SPET. The smaller bias means that the nodule area of the estimated SPET is 
more similar to that of true SPET, i.e., the nodule is more easily to be detected. 

We designed four groups of experiments to investigate the influence of different 
components of our approach on nodule detection, denoted as blNet, blNet-SS, 
blNet-SS-RN, and blNet-SS-RN-SC, where blNet is composed of encoder, two 
convolutional layers, decoder, and discriminator in sequence, and blNet-SS, blNet-
SS-RN, and blNet-SS-RN-SC are adopted semi-supervised strategy, region-adaptive 
normalization, and structural consistency constraint sequentially based on blNet. 

The biases of SUVmean . and SUVmax . for these six samples are illustrated in 
Fig. 11.9. It is evident from the figure that the biases of SUVmean . and SUVmax . 

progressively decrease from blNet to blNet-SS-RN-SC. This trend indicates a 
gradual reduction in the differences in nodule area between the estimated SPET and 
the ground truth SPET, thereby suggesting an enhancement in the detectability of 

Fig. 11.9 (a) SUVmean . and (b) SUVmax . biases of generated SPET under different network 
components and loss functions



11 Enhancing PET with Image Generation Techniques: Generating Standard. . . 225

pulmonary nodular lesion areas. Thus, the semi-supervised strategy, region-adaptive 
normalization, and structural consistency constraint are all useful in enhancing the 
detection of pulmonary nodular lesion areas. 

11.5.3 The Impact of Variations in Radionuclide Dosage 

To assess the robustness of our semi-supervised approach to changes in radionuclide 
dosage, we acquired a separate external dataset using the methodology outlined in 
Sect. 11.4.1. This dataset comprises 40 samples, each containing six PET images 
acquired at different doses. Specifically, the SPET images were reconstructed using 
1200 s data collected between 60 and 80 min post-injection, while the remaining 
five LPET images were reconstructed using 600, 300, 200, 120, and 90 s data, 
uniformly sampled from the 1200 s data, respectively. Additionally, to ensure the 
robustness of our models, this external dataset was sourced from new PET scans 
distinct from those used in Sect. 11.4.1. Consequently, the 120 and 1200 s data from 
the external dataset were not part of the original dataset. The reconstructed SPET 
and LPET images are depicted in Fig. 11.10, where shorter durations correspond to 
lower doses. Subsequently, we compared our approach with a conventional fully-
supervised SPET generation method, 3D-cGAN [37], across various doses and 
provided quantitative results in Fig. 11.11. It is noteworthy that both our approach 
and 3D-cGAN are trained in Sect. 11.4.3 and tested on the new external dataset only. 

From the findings, our approach consistently outperforms 3D-cGAN across 
all doses. Additionally, the reduction rates in PSNR and SSIM are notably gen-
tler compared to those of 3D-cGAN as the dose diminishes (i.e., time duration 
decreases), suggesting that our approach exhibits greater resilience to dose varia-
tions. This resilience can be attributed to the incorporation of a semi-supervised 
strategy, enabling the utilization of a larger dataset (i.e., 50 unpaired SPET images) 
for network training, in contrast to the fully-supervised 3D-cGAN. Generally, 
semi-supervised methodologies tend to demonstrate greater robustness than fully-
supervised approaches when confronted with a certain volume of unpaired training 
data, a phenomenon corroborated by numerous studies [9, 16, 33]. 

Fig. 11.10 PET images of different doses obtained by reconstructing the event counts collected at 
different time durations during imaging, with shorter time duration indicating lower dose. (a)  GT  
(1200 s). (b) 600 s. (c) 300 s. (d) 200 s. (e) 120 s. (f)  90 s
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Fig. 11.11 Influence of dose change to fully-supervised method (3D-cGAN) and semi-supervised 
method (Ours), respectively 

11.6 Conclusion 

In this study, we present a novel and efficient approach for tackling three primary 
challenges encountered in SPET generation: (1) the scarcity of paired training 
data, (2) the presence of blurred boundaries in generated SPET images, and (3) 
the difficulty in accurately reproducing unclear regions. Specifically, we introduce 
a semi-supervised methodology that integrates both supervised and unsupervised 
techniques, allowing for the utilization of both paired and unpaired PET images 
during network training. Additionally, we incorporate region-adaptive normaliza-
tion (RN) and a structural consistency constraint into our framework to leverage 
semantic information from CT scans. This integration helps prevent the generated 
SPET images from retaining extraneous content and enhances structural details, 
particularly in regions with blurred boundaries, by leveraging information from 
clearer regions. We validate the efficacy of each proposed strategy through com-
prehensive ablation experiments conducted on real human chest-abdomen PET 
images. Furthermore, extensive experimentation demonstrates that our approach 
outperforms existing state-of-the-art methods both quantitatively and qualitatively. 
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Chapter 12 
EyesGAN: Synthesize Human Face from 
Human Eyes 

Xiaodong Luo and Xiang Chen 

Abstract Face recognition has achieved notable success across various domains, 
including mobile payment, authentication, criminal investigation, and urban man-
agement. Despite these advances, face occlusion remains a critical challenge in 
person identification, particularly in anti-terrorism efforts, criminal cases, and public 
security contexts. To address this issue, we introduce an enhanced deep generative 
adversarial network (EyesGAN) designed to synthesize human faces from eye 
images, offering a promising approach for masked face recognition. BicycleGAN 
is chosen as the baseline and effective improvements have been achieved. First, 
the self-attentional mechanism is introduced so that the improved model can more 
effectively learn about the internal mapping between human eyes and face. Second, 
the perceptual loss is applied to guide the model cyclic training and help with 
updating the network parameters so that the synthesized face can be of higher-
similarity to the ground truth face. Third, EyesGAN has been designed by getting the 
utmost out of the performance of the perceptual loss and the self-attentional mech-
anism in GANs. To train and evaluate EyesGAN, we have reconstructed a dataset 
for eyes-to-face synthesis, leveraging public face datasets. The synthesized faces 
generated by EyesGAN have been rigorously compared with existing methods, both 
quantitatively and qualitatively. Extensive experiments demonstrate that our method 
outperforms state-of-the-art techniques across multiple metrics including Average 
Euclidean Distance, Average Cosine Similarity, Synthesis Accuracy Percentage, 
Fréchet Inception Distance. Notably, we achieved a Baidu face recognition rate 
of 96.1% on 615 test samples from the CelebA database. This study explores the 
feasibility of facial synthesis from eye images, with the attention map indicating 
that our network can accurately predict other facial regions based on the eyes 
alone. Furthermore, we extend our investigation to assess the performance of our 
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proposed method in the recovery of noisy X-ray images. Our approach successfully 
synthesizes high-quality images that demonstrate a high degree of consistency with 
the corresponding ground truth images, underscoring its potential for enhancing 
image quality in medical imaging applications. 

12.1 Introduction 

Over the past decades, face recognition technology has experienced a remark-
able surge, permeating various sectors to address a multitude of practical chal-
lenges, such as mobile payments, authentication, and public security. Despite these 
advancements, the recognition of occluded faces remains a significant hurdle in the 
field. In real-world applications, particularly in counter-terrorism, criminal investi-
gations, and public safety, the need to identify individuals wearing facial coverings 
is paramount. However, recognizing occluded faces is exceedingly challenging due 
to the limited visible information, typically restricted to the eyes and adjacent areas. 
To tackle this issue, researchers have integrated computer vision techniques into 
surveillance systems, offering tangible assistance for face recognition in occluded 
conditions. The typical approach to masked face recognition involves two stages: 
synthesizing a face from the visible information, followed by applying recognition 
algorithms to the synthesized image. Consequently, the efficacy of the face synthesis 
methodology is directly linked to the accuracy of masked face recognition. Like 
the majority of face synthesis techniques, our approach is fundamentally grounded 
in generative adversarial networks (GANs) [15]. To synthesize human faces from 
masked faces, extensive, high-quality datasets are essential. However, constructing 
a robust dataset of real masked faces is a formidable task, and no public database 
is available. In this paper, we propose a novel three-step process for masked face 
recognition. The initial phase involves extracting the human eyes from the masked 
face image. This is succeeded by the synthesis of the human face from the extracted 
eyes, and the final phase encompasses face recognition. The operational principle is 
depicted in Fig. 12.1. 

The main work of this paper is to study the second step, and the datasets of 
eyes-to-face synthesis can be constructed based on the general face datasets. The 
human eye is one of the most distinctive features of the face, encapsulating a 

Fig. 12.1 A potential scheme 
for masked face recognition
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wealth of unique characteristics. Zhou et al. [45] identified a comprehensive set 
of 68 facial landmarks, including detailed inner points for the eyes, eyebrows, 
mouth, and nose, totaling 51, and 17 contour points along the face’s periphery. 
Notably, the eyes and eyebrows alone account for over 20 of these feature points. 
Because of the internal relational mapping between human eyes and the face, it 
is possible that a photorealistic face can be constructed based on the information 
of human eyes. The objective of eyes-to-face synthesis is to generate a facial 
image that aligns with the original at both the pixel level and within the semantic 
space—a challenging yet promising task. This process falls within the realms of 
face synthesis, image generation, and image translation. The GANs have garnered 
significant acclaim since their inception, particularly in the domains of image 
generation and translation. The majority of synthetic face research has concentrated 
on generating faces of varying ages, expressions, and hairstyles, and translating 
photos into face sketches. 

In recent years, there has been a growing interest in the field of completing 
incomplete face images. The synthesis of faces from eye images represents an 
emerging research direction, fraught with technical hurdles that require innovative 
solutions. Chen et al. [6] were the pioneers in this space, developing a method 
to synthesize human faces from eye images, building upon the conditional GAN 
pix2pix framework proposed by Isola et al. [22]. However, there is still a discernible 
discrepancy between the synthesized faces and the ground truth, particularly in 
aspects such as age, expression, resolution, and semantic similarity. To surmount 
these obstacles, this study introduces a novel methodology designed to narrow 
the gap between synthetic and ground truth faces, advancing the state-of-the-art. 
This work provides a robust technical foundation for masked face recognition 
applications. 

In this study, we have undertaken several innovative steps to achieve eyes-to-
face synthesis. We have constructed a novel dataset tailored for this task, leveraging 
two publicly available face datasets, CelebA [25] and LFW [21], to facilitate 
model training and testing. Building upon the BicycleGAN framework [46] as  
our baseline network, we introduce several key enhancements. A pre-trained face 
feature extraction model, Resnet [18], is employed to extract feature vectors from 
both the synthetic face and the ground truth. The Euclidean Distance between 
these feature vectors is computed and incorporated into the total loss function as 
a perceptual loss. Drawing from recent successes in the application of self-attention 
mechanisms in GANs [29, 36, 41], which have significantly bolstered performance 
in image generation, we have designed a new end-to-end network, EyesGAN. This 
network fully exploits the self-attention mechanism to learn the internal connections 
between human eyes and the face, enabling the synthesis of high-quality faces in 
both pixel level and semantic space. To substantiate the superiority of our proposed 
network, the synthetic faces generated have been rigorously evaluated across three 
dimensions: pixel level, semantic space, and validity. Our results, benchmarked 
against existing methods, demonstrate that EyesGAN consistently produces high-
quality images, achieving optimal scores across all four metrics. Furthermore, 
we have utilized the Baidu face recognition API (https://ai.baidu.com/tech/face/

https://ai.baidu.com/tech/face/compare
https://ai.baidu.com/tech/face/compare
https://ai.baidu.com/tech/face/compare
https://ai.baidu.com/tech/face/compare
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compare) to evaluate the synthesized faces, providing additional evidence that our 
method generates faces with the highest similarity to the ground truth. 

Overall, the main contributions of this paper are four aspects. 

• In this work, an effective solution for face occlusion recognition has been 
explored, including three steps: eye extraction, eyes-to-face synthesis and face 
recognition. 

• A new end-to-end deep generative adversarial network EyesGAN has been 
designed to synthesize the human face from human eyes, which takes advantage 
of the perceptual loss function and the self-attentional mechanism in GANs. 

• Our evaluation demonstrates that EyesGAN outperforms existing methods across 
all metrics. Furthermore, we employ a real-world face recognition algorithm, the 
Baidu face recognition API, to assess the synthesized faces. Notably, EyesGAN 
achieves an accuracy of 96.10% on a test set of 615 images from the CelebA 
database, surpassing the performance of current methods and indicating its 
potential as a solution for face occlusion recognition. 

• This work delves into the feasibility of human face synthesis from eye images. By 
analyzing the attention maps generated by our model, we reveal that EyesGAN 
can predict the remainder of the face, including features such as the nose, mouth, 
chin, age, and skin colour, based solely on the input of the eyes. 

12.2 Related Work 

The purpose of synthesizing human faces from human eyes is to explore a scheme 
of masked face recognition, which belongs to image inpainting, image translation or 
image generation. This work has benefited from these technological breakthroughs. 

12.2.1 GAN-Based Image Generation 

With the continuous development of the deep neural network, GANs are widely 
applied in the field of computer vision, which are usually composed of a generator 
and discriminator for training in an adversarial way, and can generate high-definition 
images [27, 28]. Although these algorithms can generate high-resolution images in 
pixel level, the synthesized images were random in semantic space. The purpose 
of image-to-image translation is to convert an image into another one or more 
with a particular target. Recently, significant achievements were made in the 
image-to-image translation [12, 42]. Because of the lack of datasets, most studies 
focused on unsupervised methods [9, 28]. Typically, the StarGAN proposed by 
Choi et al. [9] is a multi-domain unsupervised image transformation model, which 
can complete facial expression translation, face gender change, and hair colour 
change. Recently, a novel unsupervised Groupwise-Deep Whitening-and-Coloring

https://ai.baidu.com/tech/face/compare
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Transformation (GDWCT) [8] network was allowed end-to-end training in image 
translation for delivering esoteric style semantics. Besides, conditional GANs are 
also widely explored, and researchers have made significant achievements in the 
field of image translation. For instance, pix2pix proposed by Isola et al. [22] 
utilised the conditional GANs to construct the mapping equation between input 
and output images of multi-domain. BicycleGAN [46] was a hybrid model based 
on the conditional GANs, which combined advantages of cVAE-GAN [23, 24] and 
cLR-GAN [13, 14] to learn a multi-modal mapping between two image domains. 

12.2.2 Face Recognition 

Recently, face recognition technology has been rapidly developed and applied to 
solve many practical problems. For example, Wang et al. [37] proposed a feature 
augmentation method termed Large Margin Feature Augmentation (LMFA) to 
improve the face recognition rate effectively. Deng et al. [11] designed Additive 
Angular Margin Loss (ArcFace) to obtain highly discriminative features for face 
recognition, which required negligible computational overhead. Abudarham et 
al. [1] found the critical features for which humans had high perceptual sensitivity 
to detect differences between different identities. Goswami et al. [16] studied three 
aspects related to the robustness of DNNs for face recognition. Other researchers 
have also made major breakthroughs in face recognition and graphic recogni-
tion [44]. Till now, these research mainly focused on unshaded face recognition, and 
the authors promoted the improvement of face recognition accuracy from different 
angles. In practical applications, face occlusion recognition is a challenging task 
for us. Cao et al. [5] proposed a new face recognition method based on RPCA and 
facial symmetry to provide a solution for face occlusion recognition. Chen et al. [7] 
proposed the nuclear norm-based matrix regression method to recover low-rank 
error images in the presence of severe occlusion and illumination changes. Song 
et al. [35] designed a mask learning strategy to find and discard corrupted feature 
elements from recognition, which can effectively solve the partial occlusion of face 
recognition. These schemes are effective at partial face occlusion recognition, but 
not for masked face recognition. Therefore, synthesizing photorealistic human faces 
from human eyes can provide more effective technical support for masked face 
recognition than existing methods. 

12.2.3 Face Synthesis 

In recent years, significant breakthroughs have been made in the field of computer 
vision, drawing increasing numbers of researchers to the area of face synthesis. 
Generally, the research community has concentrated on three principal areas. The 
first of these is face completion. The methods realized the recovery of local face
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occlusion, and the quality of synthetic face was also improved [17, 33]. For example, 
Wang et al. [38] proposed a deep generative adversarial network with a Laplacian 
pyramid mechanism, that recover the spatial information of missing face regions 
in a coarse-to-fine manner. The second is facial style transfer, such as expression 
changes, posture changes, hair colour changes and face sketch image generation [26, 
40]. Zhao et al. [43] designed a Dual-Agent Generative Adversarial Network (DA-
GAN) model to synthesize the realistic profile face from the front face. Bao et al. [3] 
proposed a new GAN to recombine different identities and attributes for identity-
preserving face synthesis in open domains. The third is face attribute editing. For 
example, TraVeLGAN [2] based on preserving intra-domain vector transformations 
in a potential space learned with a siamese network, which can successfully realize 
the wearing and removing of hats, glasses and other ornaments. There is no doubt 
that recent studies have addressed key challenges in the realm of face synthesis. 
However, existing models typically operate on full-pixel-sized input and output face 
images, focusing primarily on partial face occlusion scenarios. Furthermore, they 
fall short when it comes to the task of facial recovery using only the eye region. 
Consequently, these methods cannot effectively synthesize a human face that closely 
resembles the ground truth based solely on the information available from the eyes. 

12.3 Method 

This section provides a comprehensive overview of our proposed methodology. Syn-
thesizing a face from eye images is to generate a photorealistic facial representation 
that closely resembles the ground truth. To achieve this, we introduce an end-to-
end architectural framework designed to synthesize a human face image Y i

. base 
on eyes image Xi

A ., by forming a mapping function G(x)., which can synthesize the 
corresponding faces from given human eye images, formulated as Eq. 12.1: 

.Y i = G
 ⎛
Xi

A

⎞ 
. (12.1) 

In this work, an improved GANs has been proposed to realize such a mapping 
function G(x).. To train such a network, the pairs of human eyes and corresponding 
ground truth face image

{
Xi

A,Xi
B

]
. are set as input, Y i

. is set as output, Xi
B . is set 

as ground truth face. Both the input Xi
A . and output Y i

. come from pixel level and 
semantic space. The network’s parameters θG . have been optimized by minimizing 
a specifically designed synthesis loss Lgn .. For the training datasets with N. training 
pairs of

{
Xi

A,Xi
B

]
., the optimization problem can be formulated as Eq. 12.2: 

.θ̂G = arg min
θG

N∑
n=1

Lgn

(
GθG

(
Xn

A

)
, Xn

B

)
, (12.2)
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Fig. 12.2 BicycleGAN architecture, (a) cVAE-GAN started from a ground truth image B and 
encoded it into the latent space. The generator then attempted to map the input image A along with 
a sampled z back into the ground truth image B. (b) cLR-GAN randomly sampled a latent code 
from a known distribution, used it to map A into the output B̂ ., and then tried to reconstruct the 
latent code from the output. (c) The BicycleGAN method combined constraints in both directions 

where Lgn . is defined as a weighted sum of several losses that jointly constrain an 
image to reside in the desired manifold. In the following parts, we describe these 
loss functions and the proposed model in detail. 

12.3.1 Baseline: BicycleGAN (B → z → B̂ and z → B̂ → ẑ). 

BicycleGAN initially proposed by Zhu et al. [46] shows high-quality results in the 
image-to-image translation setting, learning a multi-modal mapping between two 
image domains. BicycleGAN combined with Conditional Variational Autoencoder 
GAN (cVAE-GAN) and Conditional Latent Regressor GAN (cLR-GAN) [22, 24] 
objectives in a hybrid model, the formulation was illustrated in Fig. 12.2. (a) cVAE-
GAN forced the latent code z to directly map the ground truth B to it which used 
an encoding function E. The generator G then used both the latent code z and 
the input image A to synthesize the desired output B̂ .. The distribution Q(z/B). of 
latent code z used by the encoder E was a Gaussian assumption. (b) cLR-GAN 
started from a randomly drawn latent code z and recovered it with ẑ = E(G(A, z))., 
which enforced the generator G to utilize the latent code embedding z, while stayed 
close to the actual test time distribution p(z).. The encoder E here produced a point 
estimate for ẑ. not a Gaussian distribution. (c) BicycleGAN combined constraints in 
both directions. 

BicycleGAN was proposed to train with constraints in both directions, aiming 
to take advantage of both cycles B → z → B̂ and z → B̂ → ẑ.. The total loss 
function is described as Eq. 12.3: 

.

G∗, E∗ = arg min
G,E

max
D
LV AE

GAN(G,D,E) + λ1LV AE
1 (G,E)

+LGAN(G,D) + λlatentLlatent
1 (G,E) + λKLLKL(E)

, (12.3)



238 X. Luo and X. Chen

where G is the generator, D is the discriminator, E is an image encoder, L. is the 
loss function, λ. are hyper-parameters to weigh the corresponding losses. 

The BicycleGAN framework is designed to facilitate the translation of a single 
image into multiple variations and to amalgamate various targets, thereby fostering 
a bijective mapping between the latent and output spaces. Achieving such a mapping 
is particularly challenging because it requires the encoding of semantically mean-
ingful attributes that enable controlled image-to-image transformations. Directly 
enforcing a specific distribution in the latent space is a complex task due to the 
intricate nature of these attributes. To surmount this challenge, this study introduces 
a novel approach that harnesses the self-attention mechanism to encode the latent 
information, thereby driving the synthesis of a single object image. 

12.3.2 Proposed Framework 

The framework of our proposed approach is shown in Fig. 12.3. To synthesize 
a photorealistic human face from eyes, a new GAN is proposed, containing two 
generators which share the training parameters. 

G1 .Model The G1 . generator based on cLR-GAN. The latent code embedding z is 
utilized by the generator network to stay close to the actual test time distrib ution
p(z).. The noise vector N(z). starts from a randomly drawn underlying code z and 
attempts to recover it with ẑ = E(G(A, z)).. Note that ẑ. produced by the encoder E 
is an estimate function rather than a distribution. Particularly, the residual netwo rk

Fig. 12.3 Overview of proposed model. (1) Eye image A is simultaneously input into two 
generators for encoding and decoding, both G1 . and G2 . models have shared training parameters. 
(2) In encoder-decoder network, the self-attention mechanism is added to extract attention feature 
map. (3) G2 . starts from a ground truth image B and encode it into the latent space. The generator 
then attempts to map the input image A along with a sampled z back into the original image B. G1 . 
randomly samples a latent code from a known distribution N(z)., uses it to map A into the output
B̂ ., and then tries to reconstruct the latent code from the output. (4) Proposed model combines the 
constraints in perceptual loss and attention map
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proposed by He et al. [18] is used as the encoder E to translate the image into 
the feature vectors effectively. The discriminator loss L1GAN(G,D). on B̂ . is used 
to facilitate the network to synthesize photorealistic faces. The loss functions are 
expressed as Eq. 12.4 and Eq. 12.5, respectively, 

.L1(G,E) = EA∼P(A),Z∼P(Z)||z − E(G(A, z))||1, (12.4) 

.G∗, E∗ = arg min
G,E

max
D

L1GAN(G,D) + λ1L1(G,E). (12.5) 

G2 . Model The G2 . generator based on cVAE-GAN, which has used both the 
distribution Q(z/B). of latent code z by the encoder E and the input eyes A to 
synthesize the desired output face B̂ .. This model can be easily understood as the 
reconstruction of ground truth faces B, the latent encode Q(z/B). is encoded with 
B as a prior condition and the A combine to guide the mode training in pairs, and 
expect the output face B̂ . close to ground truth face B. This scheme is similar to an 
autoencoder [20]. As a conditional scenario, the distribution Q(z/B). of latent code 
z is no longer an estimate but a Gaussian assumption [46], Q(z/B) ≜ E(B).. During  
model hyper-parametric training, sampling z ∼ E(B). is allowed to be directly back-
propagation [23]. The G2 . GAN loss can be shown as Eq. 12.6: 

.

L2GAN =EA,B∼P(A,B)[log(D(A,B))]+
EA,B∼P(A,B),z∼E(B)[log(1 − D(A,G(A, z)))], (12.6) 

L2(G). loss is also added to make the reconstructed face image B̂ . close to ground 
truth face image B on the pixel level, the value is given as E q. 12.7: 

.L2(G) = EA,B∼P(A,B),z∼E(B)||B − G(A, z)||1, (12.7) 

further, the distribution Q(z/B). of latent code z by E(B). is encouraged to approach 
a random Gaussian distribution N(z). to enable sampling at inference time. The KL 
loss function is given as Eq. 12.8: 

.LKL(E) = EB∼p(B) [DKL(E(B)||N(0, I ))] , (12.8) 

whereDKL(p||q) = − ∫
p(z) log p(Z)

q(Z)
dZ.. L2GAN ., L2 ., LKL . are weighted together 

formed the synthesis loss function, a conditional version of the VAE-GAN [24, 46] 
is given as Eq. 12.9: 

. G
∗, E∗ = arg min

G,E
max

D
L2GAN(G,D,E) + λ2L2(G,E) + λKLLKL(E) .

(12.9) 

Proposed Generator Model A growing body of research has demonstrated the 
effectiveness of integrating self-attention mechanisms into GANs to enhance their
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performance. The self-attention mechanism is particularly adept at assessing the rel-
evance of different positions within a sequence by considering the entire sequence, 
as illustrated in [29]. Parmar et al. [30] incorporated self-attention into an image 
transformer for image generation, setting new benchmarks for the state-of-the-
art. In a similar vein, Zhang et al. [41] introduced the SAGAN, which integrates 
self-attention between convolutional layers within the generator. Self-attention 
mechanism GANs excel at identifying both global and long-term dependencies 
within the internal representations of images, providing a more nuanced and 
comprehensive approach to image generation and synthesis. 

BicycleGAN [46] and pix2pix [22] models shown high-quality results in image-
to-image translation. Chen et al. [6] proposed a GAN model which made a 
breakthrough in the task of synthesizing the human face from the eyes. These 
methods all used the traditional convolutional U-net [31] as the generator. Tradi-
tional convolutional GANs generate high-resolution details by relying solely on 
spatially local points within lower-resolution feature maps. This approach, while 
effective, can be limited in capturing long-range dependencies within the data. 
In contrast, the self-attention mechanism offers a superior balance for modelling 
these long-range dependencies. It maintains computational efficiency and statistical 
effectiveness, generating a response at a given position as a weighted sum of 
features across all positions. The weights, or attention vectors, are determined with 
minimal computational overhead. In this study, we have integrated the self-attention 
mechanism [41] into our encoder-decoder framework, specifically calculating the 
self-attention map between two convolutional layers of the U-net architecture. 
The enhanced generator framework is depicted in Fig. 12.4. The self-attention 
module is a supplement to convolutions, helping to establish long-term, multi-
level dependencies between adjacent regions of the image. By introducing this 
mechanism, our network can effectively find global and long-term dependence in 
the internal representation of the face, which can facilitate generators to synthesize 
more a photorealistic face. 

In the proposed generator architecture, the self-attention mechanism is shown in 
Fig. 12.5. 

Fig. 12.4 The proposed 
generator architecture conv 3Х3, ReLU 

conv 3 3, ReLU 

Self-attention 

Input image Output  map 

U-net Self-attention 

conv 3 3, ReLU 

conv 3 3, ReLU 

conv 3 3, ReLU 

copy and crop
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Fig. 12.5 Samples of 
eyes-to-face datasets. The 
size of each data pair image is 
512 × 256. pixels, the left of 
each image is eyes A and the 
right is the corresponding 
ground truth human face B

The feature vectors of the image from the previous hidden layer x ∈ R
c×N

. are 
transformed into three feature spaces f, g, h. to calculate the attention map, where 
f (x) = Wf x, g(x) = Wgx, h(x) = Whx .. First, f (x), g(x). matrix multiplication 
are made to calculate a feature map βj,i . as in Eq. 12.10: 

.βj,i = exp
(
sij

)
∑N

i=1 exp
(
sij

) , sij = f (xi)
T g

(
xj

)
, (12.10) 

where βj,i . indicates the extent to which the model attends to the ith location 
when synthesizing the j th region. Then the output of the attention layer is o =(
o1, o2, o3, . . . , oj , . . . , oN

) ∈ R
C×N

. as Eq. 12.11: 

.oj =
N∑

i=1

βj,ih(xi ), (12.11) 

in the above formulation, Wf ∈ R
C̄×C,Wg ∈ R

C̄×C,Wh ∈ R
C×C

. are the 
learned weight matrices, they are implemented as 1 × 1. convolutions. To match 
the convolution layer, C̄ = C/8. is used in this experiment. 

Besides, the output of the attention layer o multiplies by a scale parameter β . and 
adds the feature vectors x of the previous convolutional layer to form the output y, 
and y is as an input of the following convolution layer. y is given as Eq. 12.12: 

.y = βo + x, (12.12) 

where β . is initialized as 0. Experimental results show that this scheme is effective 
in the task of human face synthesis. 

Proposed Perceptual Loss Function Unlike style transfer [8] and multi-domain 
image translation [9, 46], the eyes-to-face synthesis is more concerned about the 
consistency and similarity between the synthesized face and the ground truth. 
Chen et al. [6] used a pre-trained VGG19 model [34] to extract the feature of the 
synthesized face and ground truth, and then calculated the loss of every feature 
maps between them. The VGG19 model is adept at linearizing the manifold of the 
original image into a subspace within the global Euclidean depth feature space [4].
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In this work, a pre-trained Resnet model [18] has been used to extract feature vectors 
pertaining to the synthesized and ground truth human faces. We then calculate the 
Euclidean Distance between these vectors, with the resulting value being fed back to 
the generator as the perceptual loss. Our experimental results indicate that the pre-
trained Resnet model outperforms the pre-trained VGG19 in the extraction of facial 
features, such as eyes, eyebrows, nose, mouth, age, and contour. This superiority 
can be attributed to the fact that the pre-trained Resnet has been specifically 
trained on the large-scale face recognition dataset CASIA-WebFace [39], which is 
specialized for face recognition tasks. In contrast, the pre-trained VGG19 model 
has been trained to extract general image features and is commonly used for image 
classification tasks. The perceptual loss function of feature maps between synthesis 
face and ground truth is shown as Eq. 12.13: 

.PL (EPR) = E⁀B,B∼P(⁀B,B)

||||EPR(⁀B) − EPR(B)
||||

2 , (12.13) 

where EPR(⁀B). and EPR(B). represent the feature maps of the synthesized face and 
the ground truth face outputs by the pre-trained Resnet model, respectively. 

Proposed Total Loss Function As mentioned above, the final loss function 
proposed in this paper can be expressed as Eq. 12.14: 

. Lgn = arg min
G,E

max
D

L1GAN(G,D) + L2GAN(G,D,E)

+ λ1L1(G,E) + λ2L2(G,E)

+ λKLLKL(E) + λPLPL (EPR) , (12.14) 

where the hyper-parameters λ1 ., λ2 ., λKL . and λPL . are the weights of each part, 
which is to be decided in the experiments. They can be dynamically adapted to 
different mission objectives. The values of these hyper-parameters require abundant 
experiments to excavate. 

12.4 Experiments and Discussion 

12.4.1 Datasets 

To accomplish the task of synthesizing photorealistic human faces from eye images, 
our proposed EyesGAN model necessitates appropriate dataset training. In this 
study, we have constructed an eyes-to-face synthesis dataset leveraging two well-
known face datasets: CelebA [25] and LFW [21]. The construction process is 
outlined as follows: First, the size of the original face image should be reshaped 
as 256 × 256., and the normalized face images are taken as the ground truth face B. 
Second, the human eyes in the face is detected, and replace the RGB information
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of the face except for the eyes with black, then the image of only eyes A can be 
obtained. Third, the eyes image A and ground truth image B combine in left-to-
right order to form a size of 512 × 256. data image, the examples of the database 
are shown in Fig. 12.5. These paired datasets form a novel collection for eyes-
to-face synthesis. In total, 20,150 eyes-to-face image pairs have been assembled, 
comprising 6730 pairs from the LFW dataset, 13,220 pairs from the CelebA dataset, 
and an additional 200 pairs sourced from publicly available online resources. In 
the experimental design of this work, 12,605 image pairs from CelebA have been 
designated as the training dataset, with the remaining 615 CelebA pairs and all 6730 
LFW pairs selected as the test datasets. The faces in this new dataset exhibit a diverse 
range of characteristics, including various skin colours, genders, facial expressions, 
ages, poses, and resolutions. 

12.4.2 Experimental Design 

Prior to training the proposed model, it is essential to establish the hyper-parameters 
for the total loss function with fixed values. Extensive experimental validation has 
indicated that setting the hyper-parameters to λ1 = 1.0., λ2 = 0.5., λKL = 1.0. and 
λPL = 0.2., yields superior performance for our model. The initial learning rate 
for both the generator and discriminator is configured at 0.0002. Furthermore, the 
computational requirements for our model necessitate a GPU setup that is at least 
on par with a GTX1080Ti. The model presented in this paper was trained utilizing 
a batch size of 16 over 300 epochs, employing the PyTorch framework. 

12.4.3 Qualitative Evaluation 

The objective of eyes-to-face synthesis is to generate synthetic human faces that 
closely approximate the ground truth across multiple dimensions, including pixel 
accuracy, gender, age, skin colour, and facial features. In accordance with the 
experimental procedures outlined previously, the results of our study have been 
compared with those of state-of-the-art methods. A qualitative comparative analysis 
of the results is presented in Fig. 12.6, offering a visual representation of the 
performance of different algorithms in the context of eyes-to-face synthesis. 

The experimental outcomes demonstrate that the BicycleGAN’s performance 
in the task of eyes-to-face synthesis is suboptimal. The generated faces exhibit 
a lower degree of similarity to the ground truth, with some images displaying 
blurring and a lack of clarity in defining facial features, such as the nose and 
mouth. BicycleGAN, originally designed for one-to-many image translation tasks, 
excels in generating multiple target outputs. However, it shows limited capability 
in capturing the intricate internal mapping between human eyes and the overall 
facial structure when tasked with generating a human face from eye images alone.
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Fig. 12.6 Comparison of different algorithms to synthesize the human faces from the human eyes 

When the perceptual loss function PL (EPR). is added into BicycleGAN to guide 
the training, the quality of the generated images is improved. Obviously, they are 
almost the same as that of Chen et al. [6]. This consequence shows that it is useful 
to add the perceptual loss function to the primary network. 

The results indicate that EyesGAN outperforms other algorithms in synthesizing 
high-quality human faces, particularly in the rendering of fine details. EyesGAN 
demonstrates its capability to generate more realistic faces that closely resem-
ble the ground truth across various attributes, including image resolution, age, 
facial expression, and head posture. The comparative analysis of the experimental 
outcomes suggests that EyesGAN effectively captures the mapping relationship 
between human eyes and facial features. 

Synthetic Face Analysis on CelebA 
The proposed method underwent rigorous verification on the test set from CelebA. 
To comprehensively demonstrate the performance of EyesGAN, this study selected 
human eye images varying in age, skin colour, and gender as inputs to evaluate 
the synthesized facial outputs. The experimental results are illustrated in Fig. 12.7. 
While the synthesized faces do not precisely replicate the ground truth faces, they 
exhibit a high degree of resemblance, encompassing facial expressions, gender 
characteristics, skin colouration, head orientation, and features such as the nose and 
mouth. The synthesized faces are remarkably photorealistic, closely mirroring the 
original images in both pixel-level detail and semantic attributes. 

Extensive experimental results have demonstrated that the quality of synthesized 
faces on both the LFW and CelebA datasets is predominantly influenced by the 
quality of the input human eye images and the richness of the information they 
contain. In general, the synthesis of a high-definition face is contingent upon the 
use of high-resolution eye images. The integrity and completeness of the eye 
information are instrumental in producing a generated face that closely resembles
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Fig. 12.7 Samples of synthesized faces on CelebA. For each set of samples, the left column is 
input eyes, the middle column is ground truth, and the right column is synthetic face. The faces are 
of different genders, ages, skin tones, facial expressions, postures 

the ground truth. Our EyesGAN model, when trained on one dataset, such as 
CelebA, exhibits the capacity to perform effectively on other datasets, including 
LFW. This capability underscores the generalization and robustness of EyesGAN, 
highlighting its ability to adapt and provide reliable performance across varied 
datasets. 

12.4.4 Quantitative Evaluation 

To underscore the advanced nature of EyesGAN, we have conducted comparative 
analyses with state-of-the-art methods [6, 46]. Building upon the evaluation criteria 
proposed by Chen et al. [6], this study introduces three additional metrics to 
assess the quality of synthesized faces: the FID, verification through the Baidu face 
recognition API, and the computational time required for face synthesis. The quality 
of the synthesized faces is quantitatively evaluated from the following four aspects. 

Euclidean Distance (ED) For facial images, even small pose variations from the 
same person would lead to significant differences in the pixels. Consequently, 
directly calculating the ED between the pixels of synthesized and ground truth faces 
to assess their consistency is not a valid approach. In this work, we have utilized a 
pre-trained face recognition model, ResNet, to extract 128-byte feature vectors from 
both the synthesized and original faces. The ED of these vectors is then computed 
to provide a quantitative evaluation of the synthesized faces. 

Cosine Similarity (CS) Cosine Similarity (CS) measures the cosine of the angle 
between two vectors, providing a metric to assess the similarity between them. The 
value of CS ranges from 0 to 1, where a higher cosine value indicates greater 
similarity, reflecting a smaller angular difference between the vectors. Inspired 
by the concepts presented in previous works [6], we employ a pre-trained face
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recognition model, ResNet, to extract 128-byte feature vectors from both the 
synthesized and original faces. 

Synthesis Accuracy Percentage (SAP) Drawing upon the principles established 
by FaceNet [32], the ED is utilized as a foundational measure for face recognition, 
with a threshold set at 1.1. 

Fréchet Inception Distance (FID) The Fréchet Inception Distance (FID), intro-
duced by Heusel et al. [19], is a metric designed to assess the similarity between 
generated images and their original counterparts. 

Consequently, the four proposed criteria—Average Euclidean Distance (AED), 
Average Cosine Similarity (ACS), Synthesis Accuracy Percentage (SAP), and 
Fréchet Inception Distance (FID)—are subjected to a final averaging calculation. 
The experiments were conducted using test datasets derived from CelebA, compris-
ing 615 test samples, and LFW, comprising 6730 test samples. 

To substantiate the stability and generalization capabilities of EyesGAN, we con-
ducted comparative experiments with other state-of-the-art algorithms on the LFW 
test set, which comprises 6730 test samples. The outcomes of these experiments 
for each algorithm are detailed in Table 12.1. The analysis of the results leads to 
the conclusion that our proposed EyesGAN method outperforms other algorithms 
across all four evaluation metrics. 

Baidu Face Recognition API Furthermore, we conducted an evaluation using a 
contemporary face recognition technology, the Baidu face recognition API. This 
assessment was applied to 615 test faces based on the CelebA dataset. We compared 
the recognition scores, recognition rates, average scores, as well as the lowest and 
highest scores against existing methods. The comparative results are presented in 
Table 12.2. 

Table 12.1 The comparison results of different algorithms on CelebA (615 test data) and LFW 
(6730 test data) 

Evaluation indicators AED ↓. ACS ↑. SAP ↑. FID ↓. 

CelebA 

BicycleGAN [46] 0.9094 78.55%. 85.53%. 24.55 

BicycleGAN+Perceptual loss (PL) 0.8300 82.01%. 93.33%. 25.32 

Chen et al. [6] 0.8002 83.26%. 95.29%. 22.04 

EyesGAN(ours) 0.7547 85.14% 98.04% 20.51 
LFW 

BicycleGAN [46] 0.9954 74.57%. 60.86%. 34.93 

BicycleGAN+Perceptual loss (PL) 0.9300 77.00%. 83.36%. 27.37 

Chen et al. [6] 0.8686 80.51%. 91.87%. 26.67 

EyesGAN(ours) 0.8493 81.38% 94.19% 26.53

The bold values denote the best performance over the rest results
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Table 12.2 Authentication results comparison by Baidu face recognition algorithm (API) on the 
CelebA (615 test data) 

Evaluation indicators Lowest score Highest score Average score Face recognition rate 

BicycleGAN [46] 4.54 95.38 73.88 20.30%. 

BicycleGAN+Perceptual 
loss (PL) 

7.55 97.97 90.57 85.40%. 

Chen et al. [6] 32.43 96.51 84.40 64.07%. 

EyesGAN(ours) 65.32 98.73 94.21 96.10% 

The bold values denote the best performance over the rest results

Fig. 12.8 Extension of the proposed method to X-ray images 

Both qualitative and quantitative evaluation results show that EyesGAN can 
synthesize high-quality faces from human eyes, which exceeds the currently optimal 
results, and provide a potentially effective solution for face occlusion recognition. 

12.4.5 Extension of Our Approach on Medical Images 

The methodologies developed for image completion from limited regions are 
equally applicable to medical imaging scenarios. To further assess the efficacy of 
our proposed method, we selected X-ray images from the Open-i dataset [10] for  
the task of image completion. To address potential issues with corrupted images, 
we introduced random occlusions in certain regions of the original images. These 
noisy images were then utilized as inputs for the image completion process, with 
corresponding adjustments made to the network as depicted in Fig. 12.8. The  
outcomes of the X-ray image completion task are detailed in Fig. 12.9. The results 
demonstrate that our proposed method is capable of predicting high-quality images 
that exhibit a high degree of consistency with the ground truth images. Notably,
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Fig. 12.9 Synthesised 
images from noisy X-ray 
images, using our proposed 
method 

the occluded regions in the input images are effectively restored in the synthesized 
outputs. This illustrates the potential of our method as a valuable tool for image 
augmentation and recovery, particularly within the context of medical imaging 
applications. 

12.5 Conclusion and Future Work 

This study introduces an innovative approach for eyes-to-face synthesis, leveraging 
the information contained within the eyes as a potential solution for face occlusion 
recognition. To address this challenge, we have designed EyesGAN, an end-to-end 
deep neural network that incorporates an enhanced perceptual loss function and a 
self-attention mechanism to guide the training of the generator. Our experimental 
results indicate that our proposed method surpasses existing optimal methods 
across four key evaluation metrics. The faces synthesized by EyesGAN exhibit 
greater realism compared to those generated by existing methods. Furthermore, we 
employed the Baidu face recognition API, a real-world face recognition algorithm, 
to assess the synthesized faces. Our model achieved a higher recognition accuracy, 
demonstrating its effectiveness. Additionally, the experimental results of our model 
performance analysis confirm that the proposed network possesses high stability. 
We have also explored the application of our method in medical imaging scenarios, 
yielding promising results that highlight the method’s efficiency and potential as an 
image augmentation tool and for image recovery. 

While EyesGAN has exhibited remarkable capabilities in part-to-whole synthe-
sis, there are specific scenarios where the quality of the generated images does not 
meet the highest standards, especially when the input region’s information is of low 
clarity. These challenges underscore the need for future enhancements, particularly 
in improving the resolution and fidelity of the generated images. Addressing these 
aspects is crucial for ensuring that the technology can be seamlessly integrated into 
practical applications and deliver reliable results across various conditions.
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Part IV 
Various Applications



Chapter 13 
Deep Generative Models for 3D Medical 
Image Synthesis 

Paul Friedrich , Yannik Frisch , and Philippe C. Cattin 

Abstract Deep generative modeling has emerged as a powerful tool for syn-
thesizing realistic medical images, driving advances in medical image analysis, 
disease diagnosis, and treatment planning. This chapter explores various deep 
generative models for 3D medical image synthesis, with a focus on Variational 
Autoencoders (VAEs), Generative Adversarial Networks (GANs), and Denoising 
Diffusion Models (DDMs). We discuss the fundamental principles, recent advances, 
as well as strengths and weaknesses of these models and examine their applications 
in clinically relevant problems, including unconditional and conditional generation 
tasks like image-to-image translation and image reconstruction. We additionally 
review commonly used evaluation metrics for assessing image fidelity, diversity, 
utility, and privacy and provide an overview of current challenges in the field. 

13.1 Introduction 

Medical imaging plays a critical role in diagnosing, monitoring, and treating 
disease by providing unique structural, functional, and metabolic information about 
the human body. While natural images usually capture data in two dimensions, 
medical practice often requires the acquisition of three-dimensional volumes like 
Magnetic Resonance Imaging (MRI), Computed Tomography (CT), or Positron 
Emission Tomography (PET) scans. Acquiring these volumetric scans can be time-
consuming, costly, limited by scanner availability, and in the case of CT and 
PET scans, expose patients to harmful radiation. In addition, privacy and ethical 
concerns make it difficult to share medical data. Together, these factors limit the 
availability of large-scale medical image datasets for scientific studies, deep learning 
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in medical image analysis, or physician training. Driven by advances in generating 
synthetic natural images, the application of deep generative models to medical 
images has emerged as a promising solution to address data scarcity and enable 
various medical image analysis tasks [25, 26]. However, the three-dimensionality 
and distinct distribution characteristics of medical images present unique challenges 
for image synthesis, requiring a careful adaptation of standard methods [100]. This 
chapter explores the basics of popular image generation models such as Variational 
Autoencoders (VAEs), Generative Adversarial Networks (GANs), and Denoising 
Diffusion Models (DDMs), discusses the advantages and disadvantages of each 
model type, reviews their applications in various medical image analysis tasks, and 
takes a look at common evaluation metrics for assessing model performance. 

13.2 Background on Deep Generative Models 

13.2.1 Deep Generative Models 

Generative models are a class of machine learning models that aim to learn the 
underlying distribution pdata . of some input data x to (1) generate new samples 
from that same distribution or (2) assign probability values to existing samples, 
allowing for certain downstream tasks. In Deep Generative Models (DGMs), this 
probability density estimation task is solved using deep neural networks that either 
explicitly model the distribution pmodel . or parameterize a model that can sample 
from pmodel . without explicitly estimating it. This general principle of finding a 
model that accurately represents the underlying data distribution of some input data 
x is shown in F ig. 13.1. In recent years, deep generative modeling has been applied 
to various data modalities, including text, audio, shapes, and images, using models 
such as Restricted Boltzmann Machines [23], Normalizing Flows [79], Variational 
Autoencoders [51], Generative Adversarial Networks [29], and Denoising Diffusion 
Models [37, 85]. 

13.2.2 Variational Autoencoders 

The basic principle of VAEs [51] builds on that of standard autoencoders. Both 
encode an input x into a low-dimensional latent representation z = E(x). using 
an encoder network E. The original image x' = D(z). is then reconstructed from 
this representation z using a decoder network D. VAEs, however, differ in the way 
they parameterize this latent representation. Instead of directly encoding the image 
x into a single vector z, they encode it into the parameters of a normal distribution 
by designing the encoder in a way to predict the mean μ = Eμ(x). and variance 
σ 2 = Eσ (x). of that distribution. The latent representation z can then be drawn from
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Fig. 13.1 The basic principle of generative modeling. Using data from the data distribution pdata ., 
we try to find a model pmodel . that closely follows this distribution. We can then use this model to 
generate new samples that resemble the original data distribution 

Fig. 13.2 The basic principle of Variational Autoencoders. An input image x is encoded into a KL 
regularized latent representation z = E(x). and is subsequently reconstructed as x' = D(z).. By  
minimizing the reconstruction error, as well as the KL-divergence between the latent and a standard 
normal distribution, the model learns to generate new data and encode data in a meaningful way 

N(μ, σ 2).. As backpropagating through this stochastic part would be impossible, 
VAEs apply a reparameterization trick and instead sample an auxiliary variable 
∈ ∼ N(0, I ). to define z = μ + σ 2 ⊙ ∈ .. In addition, VAEs apply a KL-divergence 
regularization term to this latent distribution to make it close to a standard normal 
distribution. This allows generating new samples by drawing z ∼ N(0, I ). and 
passing it through the trained decoder network. This general setup is shown in 
Fig. 13.2. Combining these two principles, VAEs can be trained by minimizing the 
reconstruction error between input and reconstructed image, as well as by applying 
the KL-divergence regularization, which results in the following training objective: 

.LV AE = ||x − D(E(x))||2
2 + DKL(N(Eμ(x), Eσ (x))||N(0, I )). (13.1) 

This objective maximizes the evidence lower bound (ELBO) on the log-likelihood 
of the data. The model, therefore, learns to generate new data and compress data 
into a meaningful latent representation. While VAEs have a relatively short inference 
time and are known for their ability to produce diverse images, they suffer from poor 
sample quality and often produce blurry images [104]. To overcome this problem,



258 P. Friedrich et al.

Fig. 13.3 The basic principle of Generative Adversarial Networks. The generator G and the 
discriminator D play an adversarial game against each other, where the generator tries to synthesize 
realistic images that the discriminator cannot distinguish from the real training data

variations such as Vector Quantized VAEs (VQ-VAEs) [93] were proposed that 
map to a discrete learned instead of a continuous static latent distribution. Another 
commonly used variant is VQ-GAN [21], which combines the VQ-VAE concept 
with the adversarial training of GANs, another DGM we will discuss in next section. 

13.2.3 Generative Adversarial Networks 

In recent years, GANs [29] have successfully been used to generate medical images, 
and form the basis of many applications in the medical field. Unlike most other 
generative models, GANs don’t explicitly model the underlying data distribution in 
terms of a probability density function but take a different approach by implicitly 
modeling the distribution through a process of adversarial training. GANs are 
trained following a two-player min-max game shown in Fig. 13.3, and generally 
consist of two networks: the Generator G(z). that aims to generate realistic fake 
samples from random noise z ∼ N(0, I ). and the Discriminator D(x). that tries to 
distinguish real and fake samples by solving a classification task. Both networks are 
iteratively optimized using the following training objective: 

. min
G

max
D
LGAN(D,G) = Ex∼pdata

[log D(x)] + Ez∼N(0,I )[log(1 − D(G(z)))]
(13.2) 

Intuitively, the generator aims to produce increasingly realistic fake data to fool 
the discriminator, while the discriminator tries to get better at distinguishing real 
data from fake data. While GANs have demonstrated impressive image generation 
capabilities [46], they often suffer from problems such as training instabilities and 
convergence problems. These issues can be caused by a mismatch between the 
capacity of the generator and the discriminator or an overconfident discriminator 
that makes it difficult for the generator to learn and optimize its parameters.
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Another common problem is mode collapse, where the generator learns to output 
limited variations of samples by ignoring certain modes of the data distribution. To 
overcome these problems, various GAN modifications that apply improved training 
techniques, regularization strategies, or loss modifications have been introduced. 
Those include Wasserstein GAN (WGAN) [2], WGAN with Gradient Penalty 
(WGAN-GP) [32], Spectral Normalization GAN (SNGAN) [70], or Least Squares 
GAN (LSGAN) [66]. These adaptations have successfully reduced GAN-related 
problems but do not completely eliminate them. 

13.2.4 Denoising Diffusion Models 

Denoising Diffusion Models [37, 85] are latent variable models that sample from 
a distribution by reversing a defined diffusion process. This diffusion or forward 
process progressively perturbs the input data with Gaussian noise and maps the data 
distribution to a simple prior, namely a standard normal distribution. To generate 
new samples, we aim to learn the reverse process, which maps from this prior to 
the data distribution. New samples are generated by drawing random noise from 
the prior and passing it through the reverse process. This general principle is shown 
in Fig. 13.4. The diffusion process consists of T timesteps and can be described as 
a Markov chain, with each transition being a Gaussian that follows a predefined 
variance schedule β1, . . . , βT .: 

. q(x1:T |x0) :=
T⨅

t=1

q(xt |xt−1), with q(xt |xt−1) := N(
√

1 − βtxt−1, βt I ).

(13.3) 

Fig. 13.4 The basic principle of Denoising Diffusion Models. The diffusion model consists of two 
main components: a fixed diffusion process that gradually perturbs input data with Gaussian noise 
and maps the data distribution to a simple prior, and a learned reverse process with each transition 
being a Gaussian parameterized by a time-conditioned neural network
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The reverse process can also be described as a Markov chain with learned Gaussian 
transition kernels, starting at a simple prior distribution p(xT ) = N(0, I ).: 

. pθ(x0:T ) :=
T⨅

t=1

pθ(xt−1|xt ), with pθ(xt−1|xt ) := N(μθ (xt , t), Σθ (xt , t)).

(13.4) 

While Σθ(xt , t). is often fixed to the forward process variances βt ., μθ(xt , t). is 
usually estimated by a time-conditioned neural network. This network is trained by 
minimizing the variational lower bound of the negative log-likelihood. Following a 
reparameterization trick [37], we can configure the network to predict the noise 
∈θ (xt , t). to be removed from a corrupted sample xt . and simplify the training 
objective to an MSE loss, with αt = 1 − βt ., ᾱt = ⨅t

s=1 αs ., and ∈ ∼ N(0, I ).: 

.Lsimple = ||∈ − ∈θ (xt , t)||2
2, where xt = √

ᾱt x0 + √
1 − ᾱt ∈. (13.5) 

Given a trained network ∈θ (xt , t). and a randomly drawn starting point xT ∼
N(0, I )., we can iteratively produce a new sample by applying the following 
equation T times: 

.xt−1 = 1√
αt

 ⎛
xt − 1 − αt√

1 − ᾱt

∈θ (xt , t)

⎞ 
+ σt∈ (13.6) 

While diffusion models have demonstrated impressive image generation capabilities 
[16], their iterative nature requires multiple network evaluations for generating a 
single sample, making them slow and resource-intensive. To speed up this sampling 
process, several adaptations have been introduced, such as the Denoising Diffusion 
Implicit Model (DDIM) [86], which formulates a deterministic non-Markovian 
process to sample with fewer steps, different knowledge distillation methods, such 
as consistency distillation [87], or combinations of different approaches, such as 
adversarial training of the denoising network, as proposed in DDGAN [104]. 

13.2.4.1 Latent Diffusion Models 

To reduce the computational complexity of standard DDMs, Latent Diffusion Mod-
els (LDMs) [80] have been introduced. While LDMs share the same fundamental 
principle as standard denoising diffusion models, they operate on a learned, more 
compact latent representation of the data rather than directly on the images. Training 
LDMs begins with training an autoencoder, such as VQ-GAN [21], to generate 
a meaningful low-dimensional latent representation of the data. Subsequently, the 
diffusion model is trained on this latent representation z instead of the original 
high-dimensional data x, resulting in a more computationally efficient approach. 
This principle is illustrated in F ig. 13.5. To generate new samples, the reverse 
diffusion process is applied starting from random noise zT ∼ N(0, I ). in the latent
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Fig. 13.5 The basic principle of Latent Diffusion Models (red) and Wavelet Diffusion Models 
(blue) 

space, producing a synthetic latent representation z0 .. This latent representation 
is then decoded back into the image space using the trained decoder. Although 
LDMs effectively reduce the computational complexity of training and sampling 
from denoising diffusion models, they depend on a well-performing autoencoder. 
Training such an autoencoder for high-resolution medical volumes is challenging 
itself and often constrained by computational resources. 

13.2.4.2 Wavelet Diffusion Models 

Wavelet diffusion models (WDMs) [25, 75], shown in Fig. 13.5, are a promising 
alternative to LDMs. While both approaches share a similar idea, wavelet diffusion 
models take a different approach to spatial dimensionality reduction by applying 
Discrete Wavelet Transform (DWT). This approach is learning-free in the sense that 
it does not require a pre-trained autoencoder. The diffusion model then operates 
on the wavelet coefficients z of the images. To generate new images, WDMs start 
with random noise zT ∼ N(0, I ). and apply the reverse diffusion process to produce 
synthetic wavelet coefficients z0 .. These coefficients can then be transformed back 
to the image space using Inverse Discrete Wavelet Transform (IDWT). As WDMs 
do not rely on an autoencoder network, they have an even smaller memory footprint 
than LDMs, which is particularly important in 3D medical image synthesis tasks 
that are typically constrained by the available GPU memory. 

13.3 Applications in Medical Image Computing 

The following section provides an overview of DGMs in 3D medical image 
synthesis, including unconditional image generation, image-to-image translation 
and image reconstruction. It is important to note that this only covers a subset 
of potential applications of DGMs in medicine. Additional tasks, such as image 
registration [49], classification [59], segmentation [102], anomaly detection [101],
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image inpainting [20] and anatomical shape completion [24] can also be addressed 
using generative networks. 

13.3.1 Unconditional Image Generation 

Unconditional image generation involves the synthesis of new images without any 
specific condition and simply demonstrates the ability of a generative model to 
learn the underlying distribution of some given training data. These models can 
be applied to augment datasets with synthetic images [107] or improve downstream 
applications fairness under distribution shifts [52]. Unconditional image generation 
is commonly used to demonstrate the performance of novel architectures, which 
serve as a foundation for developing methods for conditional generation tasks. An 
overview of publications that present unconditional 3D medical image synthesis 
models is given in Table 13.1. 

Although VAEs are widely used for modeling 2D medical images, their applica-
tion to unconditional 3D image generation remains relatively unexplored. Volokitin 
et al. [94] used 2D slice VAEs to model high-resolution 3D brain MR images by 
combining a VAE with a Gaussian model that allows for sampling coherent stacks 
of latent codes that decode into a meaningful volume. Kapoor et al. [45] took a 
different approach by transforming a reference MRI with multi-scale morphological 
transformations predicted by a 3D VAE. 

GAN-based approaches have been extensively explored for 3D medical image 
synthesis, with early applications successfully modeling brain MR images. Kwon 
et al. [54] and Segato et al. [83] adapted the α .-GAN framework [65] for this 
purpose, while Hong et al. [38] presented a 3D version of StyleGAN [46]. While 
these early approaches were constrained to relatively low resolutions, Chong and Ho 
[13] were the first to scale GAN-based methods to higher resolutions by applying 
morphological transformations and texture changes to reference volumes. Sun et al. 
[89] reached similar resolutions following a hierarchical approach. Liu et al. [63] 
relied on pretraining 2D models and inflating the 2D convolutions [10] to improve 
the performance of 3D models. 

Dorjsembe et al. [17] were the first to adapt DDPMs [37] for modeling 3D 
medical data, achieving promising results on brain MR image generation. Despite 
their success, the computational complexity and long sampling times associated 
with simple 3D adaptations posed significant challenges. Peng et al. [74] explored 
a 2.5D approach that models 3D volumes by iteratively predicting 2D slices 
conditioned on their predecessors and generates new volumes in an autoregressive 
fashion. Further advances were made by Pinaya et al. [76] and Khader et al. [47], 
who applied latent diffusion models to high-resolution 3D data, effectively reducing 
the computational complexity and sampling times. Friedrich et al. [25] proposed 
to apply discrete wavelet transform for spatial dimensionality reduction, which 
effectively scaled 3D diffusion models to high resolutions without requiring a pre-
trained autoencoder.
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13.3.2 Image-to-Image Translation 

Multimodal data plays an important role in medical imaging. However, its acces-
sibility is often limited by challenges such as acquisition time and cost, scanner 
availability, and the risk of additional radiation exposure. To address these limita-
tions, image-to-image translation models aim to generate synthetic images y of a 
missing modality given an available source modality image x. In other words, these 
models try to find a mapping function F : X → Y . that maps from the source domain 
X to the target domain Y , such that y = F(x).. This problem can be addressed 
in a paired setting, where training samples {xi, yi}Ni=1 . consist of corresponding 
images xi ∈ X . and yi ∈ Y . from the different domains, or in an unpaired setting, 
where the training data {xi |xi ∈ X}Ni=1 . and {yj |yj ∈ Y }Mj=1 . consists of unrelated 
samples, requiring different training strategies. Table 13.2 provides an overview of 
publications on image-to-image translation models for 3D medical images. 

A common task in medical image computing is MRI-to-MRI translation (e.g. 
T1 ↔. T2, or 1.5T ↔. 3T), which serves several purposes. First, it provides 
physicians with different contrasts of the images to aid in diagnosis and treatment 
planning. Second, it can improve the performance of downstream applications such 
as segmentation tasks by providing the segmentation model with multiple MRI 
contrasts to work with. Finally, it allows for harmonizing scans from different MR 
scanners, reducing potential biases in the acquired datasets. These problems have 
been tackled using VAE-based [39], GAN-based [77, 90, 110] or DDM/LDM-based 
approaches [19, 50, 111] and have also been addressed in scientific challenges like 
the MICCAI 2023 Brain MR Image Synthesis for Tumor Segmentation challenge 
[4]. 

Another application involves generating CT or PET scans from MR images. This 
enables downstream tasks to be performed on the target modalities without exposing 
patients to additional CT or PET imaging radiation. Graf et al. [30] performed MRI-
to-CT translation to enable segmentation networks trained on CT scans to be applied 
to MR images. Recently, the SynthRAD challenge [41], which aims to provide tools 
for radiation-free radiotherapy planning by translating MR images to CT scans, has 
drawn significant attention to this task and highlights the need for well-performing 
image-to-image translation methods. The task of MRI-to-CT/PET translation has 
been tackled using different GAN-based [39, 56, 62, 84, 96, 99, 109] and DDM-
based approaches [60, 73]. 

Medical image-to-image translation is not only used to translate between dif-
ferent contrasts and modalities but has also been adapted for other tasks, such 
as anomaly localization, by transforming pathological images into their pseudo-
healthy versions [82, 101]. These approaches, however, have not yet been explored 
on 3D images. 

Image-to-image translation models have proven to be valuable tools for assisting 
physicians and enabling certain downstream tasks. However, these models have 
inherent limitations and should not be applied naively. Image-to-image translation 
models rely on the information present in the input image and the learned prior
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knowledge of the target modality. This means that if specific clinically relevant 
details are missing or poorly represented in the source image, they cannot be 
accurately generated or inferred in the translated image. In addition, these models 
tend to hallucinate realistic-looking features that do not necessarily correspond to 
the actual anatomical structures that should be present in the image. As a result, a 
translated image may contain elements that falsely appear normal or pathological, 
leading to potential misdiagnosis if naively assumed to be correct. 

13.3.3 Image Reconstruction 

Reconstructing high-quality images from sparsely sampled or partial measurements 
is important in speeding up existing medical imaging tools such as CT, PET, or MRI, 
reducing examination times, harmful radiation exposure to patients, and acquisition 
costs of these methods. Typical medical image reconstruction tasks include, but 
are not limited to: sparse-view computed tomography (SV-CT), limited-angle 
computed tomography (LA-CT), low-dose CT denoising (LDCT-D), compressed-
sensing magnetic resonance imaging (CS-MRI), z-axis super-resolution on MR 
images (ZSR-MRI), or obtaining standard-dose PET (SPET) scans from low-dose 
PET (LPET) scans. While these tasks have extensively been explored on 2D images 
(sliced volumes), research on directly solving these problems on the 3D data is 
limited. An overview of publications on 3D medical image reconstruction is shown 
in Table 13.3. 

Several scientific challenges have drawn attention to the topic and provided 
valuable datasets for evaluating different image reconstruction approaches. These 
challenges include the AAPM 2016 CT Low-Dose Grand Challenge [67], the 
MICCAI 2021 Brain MRI Reconstruction Challenge with Realistic Noise [68], 
the MICCAI 2022 Ultra-low Dose PET Imaging Challenge [53], and the MICCAI 
2023 Cardiac MRI Reconstruction Challenge [11]. Due to the computational 
complexity of directly handling 3D data, most presented approaches still operate 
on 2D slices, highlighting the need for efficient 3D backbones. Existing 3D GAN-
based approaches have mostly focused on synthetic SPET image generation with 
conditional GAN [97], Vision Transformer GANs (ViT-GAN) [64, 98, 108] or  
Classification-Guided GAN [106] and operate on rather low-resolution volumes. 
Diffusion-based approaches primarily focused on SV-CT, LA-CT and CS-MRI. 
They formulate the task as an inverse problem of predicting an unknown image 
x given limited measurements y. The forward model is denoted as y = Ax + ∈ ., 
with A. being a degradation function (e.g. partial sampling of the sinogram for SV-
CT and LA-CT, or k-space for CS-MRI) and the measuring noise ∈ .. The inverse  
task x̂ = Gθ(y). is solved using a DGM Gθ .. They address the problem of dealing 
with high-dimensional 3D data by applying perpendicular 2D models [57, 61], by 
conditioning the model on adjacent slices to form 2.5D models[105], or by applying 
2D models to a triplane representation of the data [35].
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Similar to image-to-image translation models, image reconstruction models can 
hallucinate structures that are not present in the actual anatomy, potentially leading 
to misdiagnosis. To ensure clinically relevant and reliable images, it is essential 
to develop robust models, compile comprehensive training datasets, and perform 
rigorous validation. In addition, these models should be used with caution and an 
understanding of the potential risks. 

13.4 Evaluating Deep Generative Models 

Evaluating deep generative models in medical imaging is not trivial and probably 
deserves its own chapter. Nevertheless, we will give a brief overview of popular 
metrics and discuss various image quality, diversity, utility, privacy, and other non-
image-related metrics that should be considered when evaluating generative models 
and the data they synthesize. 

13.4.1 Image Quality Metrics 

The Fréchet Inception Distance (FID) [36] is a metric that measures image fidelity 
by comparing the distribution of real and generated images without requiring image 
pairs. It has widely been applied to evaluate unconditional image-generation tasks. 
The FID score is calculated by first extracting high-level features from real and 
synthetic images using an intermediate activation of a pre-trained neural network, 
calculating statistics over these features by fitting two multivariate Gaussians to the 
realN(μr,Σr).and synthetic images featuresN(μs,Σs)., and computing the Fréchet 
distance between those distributions: 

.FID = ||μr − μs||2
2 + tr(Σr + Σs − 2

√
ΣrΣs). (13.7) 

A small FID score indicates that the distributions of real and synthetic images are 
similar, suggesting that the model effectively learned the data distribution, which 
results in a good visual appearance. While FID scores are a useful tool for assessing 
image fidelity in unconditional image generation tasks, comparing these scores 
across publications is not straightforward and should be done cautiously. This is 
because FID scores are highly dependent on the choice of feature extraction network 
and the specific feature layer used. Further, metrics like FID are highly dependent 
on a sufficiently large number of samples used to approximate the data distributions 
[12]. Without fulfilling this requirement, these metrics lose their meaningfulness, 
which is an often overlooked problem within limited data regimes such as medical 
imaging. 

For image generation tasks where a ground truth image is available, such as a 
paired cross-modality image synthesis task, metrics like Peak Signal-to-Noise-Ratio
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(PSNR), Structural Similarity Index Measure (SSIM) or Mean Squared Error (MSE) 
can be applied to compare generated and ground truth image. The Peak Signal-
to-Noise-Ratio (PSNR) is a metric originally used to measure the reconstruction 
quality of lossy compressed images. In the context of evaluating conditional image 
generation, it measures the fidelity of the synthetic image S compared to the real 
ground truth R and is defined as

.PSNR = 10·log10

 ⎛
MAX2

R

MSE

⎞ 
= 20·log10(MAXR)−10·log10(MSE), (13.8) 

with MAXR . being the maximum possible intensity value of the images, usually 255 
for uint8 grayscale images, and the Mean Squared Error (MSE) between real and 
synthetic image, which is defined over all voxels N of the v olume:

.MSE = 1

N

NΣ

i=1

(Ri − Si)
2. (13.9) 

While PSNR and MSE are widely applied metrics for assessing image quality, they 
have several limitations. As pixel-level metrics, they can’t capture any structural 
information that is strongly correlated with good visual perception of the generated 
images [96]. This drawback led to the development of the Structural Similarity 
Index Measure (SSIM), which evaluates the perceived change in structural infor-
mation, luminance, and contrast. It is computed over a shifting window of similar 
size, e.g. 11 × 11 × 11., denoted as r for a window of R and s for the same window 
from S. The SSIM i s defined as:

.SSIM = (2μrμs + c1)(2σrs + c2)

(μ2
r + μ2

s + c1)(σ 2
r + σ 2

s + c2)
(13.10) 

with the mean μr . and μs ., and variances σ 2
r . and σ 2

s . over the respective windows 
pixel intensities, the covariance σrs . between them, as well as two constants c1 . 

and c2 . to numerically stabilize the score against division with weak denominators. 
While a small SSIM score indicates that two images significantly differ in structural 
information, luminance and contrast, a score close to 1 indicates high image 
similarity. In addition to the classic SSIM score, several variants such as MS-
SSIM [95], or 4-(G-)SSIM [58] have been proposed to improve the quality metric 
further. A competitive evaluation of several SSIM versions on radiology images has 
been performed in [78], suggesting that 4-MS-G-SSIM provides optimal results and 
strongly agrees with human perception. Image quality can also be assessed using 
the Inception Score [81], Precision [55], or by conduction a Visual Turing Test 
[28].
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13.4.2 Image Diversity Metrics 

While the Structural Similarity Index Measure (SSIM) can be used to measure 
the similarity between image pairs, it has also been applied to assess the diversity 
of the generated images. In [25] and [76], the authors measure image diversity by 
averaging the MS-SSIM over generated images by iteratively comparing a reference 
image to all other generated images. A low SSIM in this case indicates high 
generation diversity, meaning that the generated images are not similar to each other. 
Such quantification of diversity can also be carried out in the feature space of pre-
trained feature extractors. 

Another common way to assess image diversity is the Recall Score [55], 
which measures the fraction of the training data manifold that can be produced 
by the generative network. Similar to computing the FID score, a feature extraction 
network is applied to produce a set of high-level features of real ϕr . and synthetic 
images ϕs .. A feature vector of a single image is denoted as φr . for a real image and 
as φs . for a synthetic image. The Recall score is then defined as 

.Recall = 1

|ϕr |
Σ

φr∈ϕr

f (φr ,ϕs) (13.11) 

with |ϕr |. being the number of images to compute the score, and f (φr ,ϕs). a 
nearest-neighbor-based binary function that determines whether a real image could 
be generated by evaluating whether it lays within the approximated synthetic data 
distribution. A high recall score indicates that the trained network generates diverse 
samples from the entire data distribution, while a low recall score could be a sign of 
mode collapse. 

13.4.3 Utility and Privacy Metrics 

Another common way to evaluate the performance of deep generative networks is to 
assess the utility of the generated data by measuring performance improvements 
on relevant downstream tasks when trained with additional synthetic data. In med-
ical image computing, this has been done by measuring performance improvements 
of classification [26] or segmentation [1] tasks. 

Since deep generative models are known to memorize data [15, 92], assessing 
the privacy of synthetic images and minimizing the risk of re-identification [22] 
before sharing images or weights of models trained on non-public data is crucial. 
To evaluate the privacy of generated images, metrics such as the Rarity Score 
[33] or  Average Minimum Cosine Distance (AMD) [3], which measures the 
uncommonness of generated images as the nearest-neighbor distance of real and 
synthetic data points in a latent space, have been proposed. Other privacy metrics
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rely on model-based re-identification [71] or apply Extraction Attacks [9] to  
measure privacy by trying to extract training images from the trained models. 

13.4.4 Non-image Metrics 

In addition to the discussed image metrics, other factors such as the model’s 
Inference Time, Computational Efficiency, usually measured in Floating Point 
Operations (FLOPs), or Memory Consumption must also be considered in the 
evaluation to ensure the model’s applicability to real-world problems. This is 
especially important for time-critical applications or when the method is to be 
used in a resource-constrained environment. The Ethical and Social Impact of 
the model, i.e. possible bias and fairness of the model as well as potential misuse, 
should also be considered. 

13.5 Current Challenges and Conclusion 

13.5.1 Challenges 

High-resolution data is crucial for a thorough and accurate analysis of medi-
cal images. However, many current DGMs struggle with scaling to such high-
dimensional spaces. Additionally, computational resources are often limited in 
clinical settings, making in-house training of large-scale generative models chal-
lenging. Furthermore, medical image analysis often benefits from longitudinal data, 
e.g. repeated scans of patients at progressive points in time. Modeling such temporal 
data with generative models further increases the required compute significantly 
and is an open and highly relevant research direction [8, 88]. To address these 
challenges, various methods have been proposed to significantly reduce the number 
of model parameters, speed up training and inference times, and lower GPU memory 
requirements. Notable approaches include WDMs [25, 75] and Neural Cellular 
Automata [44]. Despite these advancements, the need for scalable and efficient 
models continues to drive further research in this area. 

The scalability problem also applies to the data itself. Many state-of-the-art 
generative models are trained on excessive amounts of data that are typically 
unavailable for most medical problems. Collecting and annotating such data can 
be a resource/labor-intensive process, further complicated by regulatory issues. In 
addition, the datasets used to train generative models should be as diverse and repre-
sentative as possible to avoid the negative effects of bias. One way to mitigate these 
problems and allow for the development of a robust and useful model is to provide 
data in an open access paradigm. Another way to effectively train generative 
models and fully capture complex data distributions is to develop efficient methods
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for federated learning [42] and solve existing problems related. An example of 
such issues could be the case where a patient—or even an entire institute—opts out 
of a study and withdraws its samples from the training distribution. The process of 
unlearning [27], therefore, needs to be addressed in the context of generative models 
for medical imaging. 

Another commonly faced challenge is related to the evaluation of DGMs in the 
medical domain. Most metrics widely used to evaluate generative models in the 
natural image domain must only be carefully applied to medical images. These 
metrics might only provide reliable quantitative results with adequately pre-trained 
feature extractors [5] and an appropriately large test sample size [12]. In addition, 
the three-dimensionality of medical imaging data is often not considered in such 
metrics, e.g. feature extractors for 3D data might not be publicly available and 
have to be built from scratch. We, therefore, identify the need for more rigorous 
quantitative testing of generative models in the medical domain. 

Further challenges arise when it comes to safely deploying these algorithms, as 
generative models can pose the threat of (unconscious or deliberate) data corruption 
[34]. Especially when these models are deployed as a data augmentation method for 
downstream task models, additional curation is needed to minimize the risk of error 
propagation from the generative to the downstream task model [91]. Additionally, 
the risk of these models hallucinating can potentially lead to drastic consequences, 
e.g. for the tasks of reconstruction or inpainting in the medical domain. 

Most generative models in the medical domain are developed and trained on 
publicly available data. In some cases, in which private data cohorts are also 
considered, privacy protection is an important issue that needs to be taken into 
account. Even releasing the weights of generative models trained on private data 
could lead to privacy violations, since the training data can essentially be extracted 
from these models [9]. The problem of privacy preserving generative models 
needs to be addressed and is an interesting and promising direction for future 
research. 

13.5.2 Conclusion 

Deep generative models have achieved significant success in recent years, proving 
to be a valuable tool for learning complex data distributions and solving medically 
relevant downstream tasks. We reviewed the background of VAEs, GANs, and 
DDMs, highlighting their strengths and weaknesses. In addition, we demonstrated 
their application to unconditional image generation, image-to-image translation, and 
image reconstruction, and discussed commonly used evaluation metrics as well as 
pitfalls associated with these metrics. 

Despite the mentioned advances in DGMs for 3D medical image synthesis, 
several open challenges remain that motivate future research in this area. Finding 
novel, more efficient data representations, developing tools for federated learning, 
or exploring methods to address unlearning and privacy concerns are critical to
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advancing the capabilities of DGMs in the medical domain. The goal of these efforts 
is to create efficient, fair, and reliable algorithms that can provide physicians with 
valuable insights and ultimately improve personalized medicine, enhance predictive 
analytics, and facilitate the development of new therapeutic strategies. 
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Chapter 14 
Cross-Modal Attention Fusion Based 
Generative Adversarial Network for 
Text-to-Image Synthesis 

Xiang Chen and Xiaodong Luo 

Abstract The synthesis of images from attribute descriptors is an emerging and 
intricate domain within the realm of computer vision, which has various application 
potentials in public security and multimedia. Existing attribute vector-to-face (V2F) 
synthesis methods mainly generate faces based on attribute label vectors that 
lack rich semantic feature information, which leads to low-quality generated face 
images. To surmount this limitation, we advocate attribute word-to-face (W2F) 
synthesis, leveraging sequences of attribute words rich in semantic content. A novel 
Cross-Modal Attention Fusion Generative Adversarial Network (CMAFGAN) is 
proposed to generate faces from facial attribute words. CMAFGAN stands out due 
to its incorporation of two innovative components, CMAF and WFT, which are 
proposed to explore the correlation between image features and the corresponding 
attribute word features. Experimental results on the CelebA and LFW datasets 
demonstrate that our CMAFGAN achieves state-of-the-art performance, effectively 
improving the quality of the synthesised faces. In particular, the consistency between 
the predicted images and input attribute words (R-precision) on the CelebA and 
LFW datasets achieved 61.24% and 64.46% respectively, representing a substantial 
improvement over prior techniques. Moreover, CMAFGAN achieves comparable 
or better performance than the current best methods on text-to-image synthesis (R-
precision 83.41% on caltech-ucsd birds-200-2011, CUB). Additionally, we explore 
the application of CMAFGAN for X-ray image synthesis from textual descriptions, 
yielding finely detailed images that exhibit high fidelity to the ground-truth. 
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14.1 Introduction 

The advent of deep learning, particularly generative adversarial networks 
(GANs) [7]), has catalyzed face synthesis into a vibrant research frontier within the 
realm of computer vision. This encompasses a spectrum of innovative applications, 
such as facial attribute editing [8, 22, 23], text-to-face synthesis [3], and face 
inpainting [29], sketch-to-face generation [10], and so on. These tasks have 
enormous potential in public safety, computer-aided design, and multimedia 
applications [30, 32]. In this paper, we explore a novel task, attribute word-to-
face (W2F) synthesis, which aims to achieve face synthesis based on given facial 
attribute words, as shown in Fig. 14.1. Different from the input of the existing 
attribute vector-to-face (V2F) synthesis, which is the attribute label vector of the 
face, the input of W2F is the list of the face attribute words (e.g. hair colour, 
hairstyle, nose, eyes, mouth, and beard). There are three main goals for W2F 
approaches: (1) generating realistic faces, (2) ensuring that the generated face 
images are consistent with input attribute words, and (3) robust face synthesis, 
invariant to the order of attribute words. 

The W2F task holds direct relevance to the tasks of text-to-image and V2F, or 
it can even be seen as a hybrid of both. Similar to text-to-image/face synthesis [20, 
34, 35], W2F is essentially a cross-modal task between language and image. The 
main difference between these two tasks lies in their input, where the former is 
a sentence description, and the latter is a sequence of attribute words. Text-to-
image/face synthesis has drawn increasing attention in recent years [20, 34, 35]. 
Based on multistage synthesis [20, 34, 35], with strategies such as attention and 
dynamic memory [32, 41], they can learn sufficient semantic information from the 
input sentences to generate realistic images. Nonetheless, the performance of text-
to-image generation is easily affected by the phraseology of the input sentence. 
In contrast, W2F synthesis, which operates on a sequence of attribute words, 

Fig. 14.1 Examples of existing attribute vector-to-face (V2F) and the proposed attribute word-
to-face (W2F) synthesis. Given the 40-dimensional attribute vector (‘1’ means containing this 
attribute word, while ‘-1’ means without) of each face on the datasets (CelebA [16]  and  LF  W [12]), 
the attribute words are extracted from the predefined attribute word dictionary of the corresponding 
dataset. Note that, the attribute words instead of the attributes vector are the input of W2F
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demonstrates enhanced resilience to variations in word order, thereby offering a 
more robust framework for image synthesis. 

V2F synthesis represents a closely related yet distinct challenge to W2F syn-
thesis, with the primary distinction lying in the input format. Unlike W2F, which 
leverages descriptive sentences, V2F relies on a fixed-length attribute vector. 
Recently, several pieces of research have been proposed to tackle this issue [5, 
30, 33]. They generally used conditional generative adversarial networks (GANs), 
which combine the facial attribute vector with noise (conforming to a normal 
distribution) to synthesise face images consistent with the given facial attribute 
vectors. However, the fixed-dimensional attribute vector is too strict for realistic 
applications and unable to present sufficient semantic information to the network. 
For example, the attribute vector is generally a 40-dimensional vector (in CelebA 
and LFW), making it a time-consuming and challenging task for an untrained person 
to provide such an attribute vector. Instead, W2F synthesis is more flexible, and can 
be applied to a random number of attribute words, since its input is a list of attribute 
words. In addition, attribute words can provide more sufficient semantic information 
from the given attributes, resulting in more realistic and consistent image synthesis. 
Therefore, instead of using attribute vectors, we propose synthesising face images 
with attribute words, named attribute word-to-face (W2F) synthesis. Inspired by 
text-to-image algorithms [32, 35, 41], a novel cross-modal attention fusion based 
generative adversarial network, CMAFGAN, is designed to directly translate facial 
attribute words into lifelike face images, leveraging the semantic richness of natural 
language to transcend the limitations of vector-based methods. 

The inherent semantic disparities between attribute word features and image 
features present a formidable challenge in establishing a direct semantic mapping. 
To address this challenge, we introduce a novel Word Feature Transformation 
(WFT) module, crafted to restructure attribute word features, thereby aligning 
them with the intrinsic structure of image features. Concurrently, to deepen the 
understanding of the interplay between attribute words and image generation, we 
have designed an innovative Cross-Modal Attention Fusion (CMAF) module. This 
module is tasked with uncovering the subtle correlations that exist between visual 
and linguistic features. The synergistic application of the WFT and CMAF modules 
allows for the seamless integration of features, which in turn, significantly enhances 
the network’s capacity to produce highly realistic images. 

In summary, the contributions of this work are as follows: 

• To achieve more efficient and robust face synthesis from given facial attributes, 
we propose an end-to-end framework, CMAFGAN, to use the corresponding 
attribute words for face synthesis, instead of the original attribute vectors. To 
the best of our knowledge, this work is the first work to solve the task of W2F. 

• To eliminate the semantic gaps between the word and image domains, a WFT 
is proposed to transform the structure of the attribute word feature to match the 
image feature, followed by a CMAF module to explore the correlation between 
word features and image features. Based on cross-attention, CMAF provides 
a better approach to fusing word features and image features than previous 
research.
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• The proposed CMAFGAN framework is flexible, which can be easy to apply 
in realistic applications. CMAFGAN has the advantages of both attribute V2F 
and text-to-face synthesis, and it can be used for training these two types of 
datasets, which is not afforded by previous research. Compared to the V2F, it 
does not require a fixed vector as input. Additionally, our framework establishes 
a robust face synthesis process that remains consistent, regardless of variations 
in individual descriptive styles, a common challenge in text-to-face synthesis. 

• We comprehensively evaluate the proposed method across two publicly available 
datasets, CelebA and LFW, and compare it with state-of-the-art V2F methods, 
showcasing its exceptional performance in terms of image synthesis quality 
and fidelity. In addition to attribute-to-face synthesis, our method also achieves 
exciting performance in text-to-image synthesis on the CUB [28] dataset and 
Open-i X-ray image dataset [4], further underscoring its versatility and efficacy. 

14.2 Related Work 

W2F synthesis represents a specialized subfield within the broader domain of face 
synthesis, focusing on the translation of descriptive attribute words into visual 
representations. Our proposed framework, CMAFGAN, fundamentally operates as 
a text-to-image synthesis network, distinguished by its integration of cross-modality 
modules that facilitate the transition between linguistic and visual domains. There-
fore, we first summarize the related work on face synthesis, followed by detailed 
introductions on text-to-image synthesis and cross-modal attention module. 

14.2.1 Face Synthesis 

Deep learning-based face synthesis aims to generate face images from given 
conditions (e.g., noise [1], incomplete facial images [2, 17], text, and attribute 
vectors [5, 30, 33]). In this section, we first discuss those research focusing on 
general face synthesis and then consider diving into text/attribute-to-face synthesis. 

General Face Synthesis Face synthesis is a hot topic in computer vision. Early 
GANs were proposed to synthesise images by sampling noise vectors fromGaussian 
distribution [7]. Subsequent research had achieved controllable face synthesis based 
on conditional GAN, including image-based synthesis (e.g., face in-painting and 
face reorientation) and semantic-based synthesis [2, 17] (e.g. attribute V2F synthesis 
and facial attribute editing). Among those tasks, face in-painting and face facial 
attribute editing were two of the most common applications. 

Text-to-Face Synthesis Text-to-face synthesis is a more challenging task com-
pared with the aforementioned tasks, since the inputs (text sentence description 
of facial attributes) and outputs (facial images) belong to two different modalities.
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This topic has drawn some attention in recent research. Gatt et al. [6] constructed 
a dataset named Face2Text that contains 400 face images, each face of which 
contained at least 3 sentence descriptions. Although this dataset is built for face 
description and the corresponding description of faces is not detailed, it is also 
an early dataset that can be used for text-to-face synthesis. Subsequently, Chen et 
al. [3] constructed a new dataset SCU-text2face that contains 1000 images based 
on CelebA [16], where each image contains 5 different refined sentences. They 
further proposed a novel FTGAN network to substantially improve the quality of 
text-generated face images. Zhou et al. [39] proposed a cyclic generative adversarial 
network, and introduced a pre-trained BERT basic model to extract feature vectors 
of text to generate high-resolution face images, and achieved good results in the 
FFHQ-Text [38] dataset. 

Attribute Vector-to-Face Synthesis Recently, there has been a surge of interest in 
V2F synthesis [5, 30], a domain closely allied with W2F synthesis. Di et al. [5] 
proposed a two-stage scheme to synthesise face images according to the given 
attribute vectors, where the first step was to synthesise facial sketches based on the 
Gaussian noises and sketch attribute vectors, and the second step was to generate 
the real-world face images from the synthesised sketch and facial attribute vectors. 
The fixed-dimensional attribute vector used in V2F synthesis poses limitations in 
practical scenarios. The rigid structure often falls short of capturing the nuanced 
semantic information necessary for the network to produce varied and realistic 
face images. In light of these challenges, we advocate for an alternative approach: 
utilizing attribute words for face synthesis. This method is capable of extracting 
comprehensive semantic insights from the given attribute words, thereby enabling a 
more adaptable and robust synthesis process. 

14.2.2 Text-to-Image Synthesis 

Our proposed CMAFGAN also draws inspiration from advancements in text-to-
image synthesis, which leverage textual descriptions of facial attributes as input. 
Text-to-image generation methods generally include two categories: single-stage 
and multistage generation. The single-stage method consists of a single generator 
and discriminator, such as in [19, 27], in which the generated images were generally 
at low-resolution. The multistage method mainly adopted the cascade of several 
generators and discriminators, where low-resolution images were generated in the 
initial stage, and then, higher-resolution images were synthesised gradually in 
the subsequent stages. In recent work, multistage synthesis structures have been 
widely applied in text-to-image synthesis [34, 35, 40]. For example, AttnGAN [32] 
designed a three-stage generation network, with an attention module to calculate the 
corresponding region of the word representation in the image. However, existing 
methods often concatenate independent image and text features for subsequent 
layers, bypassing a deeper exploration of the semantic interplay between modalities.
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14.2.3 Cross-Modal Schemes for Language and Vision 

Learning the mapping from input attribute words to generated images necessitates 
effective integration of information across different modalities—a challenge that 
has not been fully resolved in prior text-to-image synthesis research. Recently, 
cross-modal attention mechanisms have emerged as pivotal in bridging the gap 
between computer vision and natural language processing, as evidenced by a series 
of influential studies [11, 14, 24, 31]. Li et al. [14] proposed Unicoder-VL to learn 
joint representations of vision and language in a pretraining manner, which achieved 
significant improvements in image-text retrieval and visual commonsense reasoning 
tasks. Similarly, Wang et al. [31] proposed cross-modal adaptive message passing 
(CAMP) for text-image retrieval. CAMP introduced a language and image cross-
modal aggregation module to aggregate the image features and text features, and the 
cross-fusion feature was used to predict the matching score to improve the accuracy 
of text-image retrieval. The performance of incorporating cross-modal encoders was 
also demonstrated in ADCANs [11], and LXMERT [24]. Drawing inspiration from 
these advances, we design a CMAF module to capture the semantic correlation 
between synthetic face images and attribute words. 

14.3 CMAFGAN 

The proposed CMAFGAN is a three-stage generative adversarial network, that 
synthesises delicate images in three steps, as shown in Fig. 14.2. In the first stage, a 
decoder composed of four upsampling layers is used to transform the input global 
feature predicted by a trained Bi-LSTM text-encoder (TE). into a low-resolution 
image (64×64.). Building upon this foundation, the second and third stages advance 
the synthesis by taking the low-resolution image features from the preceding stage 

Fig. 14.2 The scheme of our proposed CMAFGAN, which is highlighted by the word feature 
transformation (WFT) and cross-modal attention fusion (CMAF). The WFT is designed to learn 
the word features, while the CMAF is proposed to learn the correlation between word features and 
image features
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and leveraging the word features to predict increasingly higher-resolution images. 
To facilitate a more coherent integration of word features and image features, WFT 
and CMAF blocks are introduced in the second and third stages. For each stage 
of image refinement, a corresponding discriminator operates at the resolutions of 
64 × 64.,128 × 128., and 256 × 256. respectively. Furthermore, the loss function 
is meticulously computed across all three outputs to refine the learning process. 
Subsequent sections include the overall structure of CMAFGAN, the WFT module, 
CMAF module, and the design of the loss function. 

14.3.1 Three-Stage Generation Network 

Different from previous attribute V2F synthesis methods [5, 30, 33] that use the 
given attribute vector as input directly, we preprocess the original facial attribute 
vector to a description text (i.e., a text composed of all attribute words, using a 
comma as a gap, as shown in Fig. 14.1). Consequently, our network aligns more 
closely with text-to-image synthesis networks, accepting attribute words as input. 
Then the text of attribute words is fed into the pre-trained TE . to obtain the word 
feature vector f. and global feature vector g..  Th  e g. is the encoding of the entire 
attribute text, a fixed-dimension feature vector. The f. is the word embedding code 
for each word, which is a feature vector with variable length, and its dimension 
is consistent with the number of attribute words. The g. concatenated with random 
Gaussian noise z. is used as the input of the initial network Stage0 ..  Th  e f. serves as 
the input of the subsequent Stage(1,2) ., to further refine and guide the synthesis of 
high-quality images. 

Similar to the previous text-to-image synthesis network [32, 33, 35, 41], our 
proposed CMAFGAN is based on a conditional generative adversarial network, 
which includes three cascaded generators G0 ., G1 ., and G2 ., as shown in Fig. 14.2. 
The G0 ., G1 ., and G2 . synthesise images at 64 × 64., 128 × 128., and 256 × 256., 
respectively. Among the three generators, the G0 . is essential, since the initial image 
plays a dominant contribution in the final image. G0 . takes the concatenation of 
g. and z. as input and predicts images at 64 × 64. after the fully-connected layer, 
reshape, and four upsampling layers. G1 . and G2 . have similar structures, composing 
a WFT, a CMAF module, two residual module layers, an upsampling layer, and 
a 3 × 3. convolution layer. In our three-stage generative adversarial network, each 
stage Gi . has a corresponding discriminator Di .. Similar to DM-GAN [41], in each 
discriminator, a spectral normalization [18] layer is added after the 3×3. convolution 
layer to optimize the convergence of gradient descent. 

14.3.2 WFT Module 

For text/word-to-image synthesis, how to convert language information into image 
information is a challenging problem. In the proposed three-stage generation



286 X. Chen and X. Luo

Fig. 14.3 The structure of word feature transformation (WFT) block, where “ ⊗.”  is  matrix  
multiplication. WFT transforms the word feature into image space, converting the unfixed length 
word vectors f. into the fixed-size image-like feature yi (i = 0, 1). 

solution, the global feature g. is introduced as conditional input in the initial stage. In 
the latter two stages, the word feature f. and image feature vi (i = 0, 1). synthesised in 
the previous stage are fused to guide the image synthesis. The word feature vector 
and the image feature map originate from distinct domains, each with its unique 
structure, posing a significant hurdle in establishing a robust semantic link between 
linguistic and visual information. To bridge this gap, we introduce a WFT module to 
restructure the word features, aligning their architectural form with that of the image 
features, thereby facilitating a more coherent semantic association. The variability 
in the number of input attribute words across the dataset results in a variable-length 
word feature vector f., which introduces complexities in the tensor operations within 
the network. However, our WFT module adeptly addresses this challenge, enabling 
seamless integration despite the fluctuating length of the word feature vector. In 
WFT, we use transpose and self-multiplication operations to fix the length of the 
word feature. As shown in Fig. 14.3, the new word feature w. is obtained from the 
word feature vector f., the formula can be given as, 

.w = f × fT, (14.1) 

where f ∈ R
D×N

., w ∈ R
D×D

., D is the dimension of word embedding vector, we 
set D = 64. during our model training. N is the number of input words, which is 
usually variable. The fixed-length word feature w. is further transformed into a new 
feature space with the same dimension as the image feature vi (i = 0, 1). through a 
fully connected (FC) and a reshape layer, formulated as, 

.

y0 = reshape(A1 ∗ w + B1),

y1 = reshape(A2 ∗ w + B2),
(14.2) 

where A1 ., B1 ., A2 ., B2 . are the weights learned automatically by optimisation, y0 ∈
R

C×W0×H0 ., y1 ∈ R
C×W1×H1 ., where C is the number of channels, W0 × H0 . and 

W1 ×H1 . are the sizes of the generated image from stage0 . and stage1 ., respectively. 
The reshape(·).means reshape operation.
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Fig. 14.4 The architecture of our CMAF module. The “ ⊗.” is matrix multiplication, and “ ⊕.” 
stands for plus. CMAF is used to capture the correlation between visual features and text features 
by computing cross-modal attention. The incorporation of CMAF helps to generate higher-quality 
images and advance the consistency between generated images and input text 

14.3.3 CMAF Module 

Attribute W2F synthesis is a sophisticated task that entails discerning the correlation 
between descriptive words and facial imagery. Central to this challenge is bridging 
the semantic chasm between the visual and linguistic domains. Inspired by [24, 
36], we propose a CMAF module to jointly learn visual and linguistic information, 
as shown in Fig. 14.4. The reconstructed feature yi (i = 0, 1). is learned by the 
pretrained Bi-LSTM text encoder and WFT. The image feature vi (i = 0, 1). is from 
the hidden layer of Stage0 . and Stage1 ., respectively. The yi . and vi . are  used  to  learn  
the cross-modal attention map ci . from each other in the CMAF module. Then the 
fused feature ci . is fed into the next generator to generate an image. 

In the CMAF, due to the limitations of GPU memory, the size of the features 
used to calculate the cross-modal attention needs to be reduced, the vi . and yi . 

are transformed into new size features x. and y. by a fully connected (FC) layer, 
respectively. They are presented as, 

.

x = A3 ∗ vi + B3,

y = A4 ∗ yi + B4,
(14.3) 

where A3 ., B3 ., A4 ., B4 . are the weights learned automatically by optimisation, x ∈
R

C×W×H
. and y ∈ R

C×W×H
., W × H . is the new size after dimension reduction. 

By 1 × 1. convolution layers ( q1 ., k1 ., q2 ., k2 .), the new image features x. and the 
new word feature y. are transformed into two different feature spaces to calculate 
the pixel-level cross-modal attention. First, the matching degree between the image 
feature space and word feature space is calculated, and they can be given as,
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.

βj,i = exp(sij )
ΣS

i=1 exp(sij )
, where sij = q1(xi)

T k2(yj ),

ρj,i = exp(tij )
ΣS

i=1 exp(tij )
, where tij = q2(yi)

T k1(xj ),

(14.4) 

where S = W × H ., q1(x) = Wq1x., k1(x) = Wk1x., q2(y) = Wq2y., k2(y) =
Wk2y., and βj,i . / ρj,i . indicates the matching degree between the ith/j th region in 
the generated image and the j th/ith region in the word feature. 

Then, the matching degree calculated in the previous step is multiplied by the 
value of the feature to obtain the cross-modal attention maps ox . and oy ., 

.

ox = (ox1, ox2, ox3, . . . , oxi , oxj , . . . , oxS) ∈ R
C×S,

oy = (oy1, oy2, oy3, . . . , oyi , oyj , . . . , oyS) ∈ R
C×S,

oxj =
SΣ

i=1

ρj,iv1(xi), where v1(xi) = Wv1xi,

oyj =
SΣ

i=1

βj,iv2(yi), where v2(yi) = Wv2yi,

(14.5) 

in these formulas, Wq1 ∈ R
C×C

., Wk1 ∈ R
C×C

., Wv1 ∈ R
C×C

. and Wq2 ∈ R
C×C

., 

Wk2 ∈ R
C×C

.,Wv2 ∈ R
C×C

. are the weight matrices automatically learned by 1×1. 
convolutions. In our experiments, we use C = C

8 .. 
The cross-modal attention maps ox . and oy . are restored into the same size features 

as vi . by linear transformation (FC) layer, the formulas are as, 

.

ov = A5 ∗ (ox + x) + B5,

ow = A6 ∗ (oy + y) + B6,
(14.6) 

where A5 ., B5 ., A6 ., B6 . are the weights to be learned automatically in training. 
Finally, the new cross-modal attention maps ov ., ow ., and the image feature vi . 

obtained in the previous stage are combined as the input (CMAF features ci .)  of  the  
subsequent residual layer, expressed as,

.ci = concat (γ1 ∗ ov + vi , ow),where (i = 0, 1), (14.7) 

where γ1 . is the weight of ov . (learned automatically), and concat (·). is concatenation.
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14.3.4 Loss Function 

The loss function of CMAFGAN includes two parts, the generator loss LG . and the 
discriminator loss LDi

..  The LG . further consists of the adversarial loss LGi
. for Gi ., 

Deep Attentional Multimodal Similarity Model (DAMSM) loss LDAMSM . (details 
can be found in [32]), and conditioning augmentation loss LCA . [41], formulated as, 

.LG =
2Σ

i=0

LGi
+ λ1LDAMSM + λ2LCA, (14.8) 

where λ1 . and λ2 . are the corresponding weights of DAMSM loss and LCA .. 
The LCA . is utilized to augment training data and avoid over-fitting by re-

sampling the input global feature vectors from an independent Gaussian distribution. 
The LCA . is obtained by calculating the Kullback-Leibler Divergence between the 
standard Gaussian distribution and the Gaussian distribution of the input sentence, 
and its formula can be expressed as, 

.LCA = DKL(N(μ(g),
Σ

(g)) || N(0, I )), (14.9) 

where g. is a global feature, μ(g). and
Σ

(g). are the corresponding mean and 
the diagonal covariance matrix. Let Gi . be the ith generator and Di . be the ith 
discriminator, the adversarial loss LGi

. is defined as, 

.
LGi

=
unconditional loss

, ,, ,

−1

2
Evi∼pGi

[log(Di(vi)]
conditional loss

, ,, ,

−1

2
Evi∼pGi

[log(Di(vi, g)],
(14.10) 

where vi . is the image feature from the ith generator Gi ., and g. stands for the 
global feature vector of the input. The unconditional loss function serves to discern 
the authenticity of the images, differentiating between real and synthetic outputs. 
Concurrently, the conditional loss function assesses the congruence between the 
generated images and the provided attribute descriptions, ensuring that the synthe-
sized visuals align with the specified characteristics. 

CMAFGAN contains three discriminators, each with discriminator loss LDi
., 

.

LDi
=

unconditional loss
, ,, ,

− 1

2
Eri∼pdatai

[logDi(ri )] − 1

2
Evi∼pGi

[log(1 − Di(vi ))]−

conditional loss
, ,, ,
1

2
Eri∼pdatai

[logDi(ri , g)] − 1

2
Evi∼pGi

[log(1 − Di(vi , g))],

(14.11) 

where ri . is from the ground-truth image distribution pdatai
. at the ith scale.
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14.4 Experiments 

In this section, we conduct a comprehensive evaluation of our proposed CMAFGAN 
framework, employing both qualitative and quantitative metrics across three distinct 
datasets, including two face image datasets (CelebA [16], LFW [12])  and  a  text-
to-image synthesis dataset (CUB [28]). To ensure a robust comparison, we have 
selected state-of-the-art networks from both the text-to-image synthesis domain and 
the attribute vector-to-face synthesis domain. 

14.4.1 Implementation Details, Datasets and Evaluation 
Metrics 

Implementation Details We implement our CMAFGAN based on Python 3.6, 
PyTorch 1.7.1 and CUDA 11.2, with a single GeForce RTX 3090 GPU. The 
hyperparameters λ1 ., λ2 ., and λ3 . for our model are set as 1.0, 5.0, and 10.0, 
respectively (the same in all three datasets). The learning rate of all discriminators is 
0.0002 and the learning rate for all generators is 0.0001. During training, the batch 
size is 32. We train the network sufficiently on each dataset, with ∼.120 epochs on 
the CelebA, ∼.1100 epochs on the LFW, and ∼.1850 epochs on the CUB. 

Datasets To assess the efficacy of our proposed approach, we utilize two publicly 
accessible facial image datasets: CelebA and LFW. Given that each individual 
in these datasets is represented by a 40-dimensional attribute vector, an initial 
preprocessing step is necessary to convert these vectors into descriptive attribute 
words. These words are then concatenated into a single text string, separated 
by commas, as illustrated in Fig. 14.1. Following this preprocessing, the CelebA 
dataset, which comprises 202,599 pairs of face images and their corresponding 
attribute words, is further divided into a training set of 162,080 pairs and a testing set 
of 40,519 pairs. Similarly, the LFW dataset, consisting of 13,143 face-attribute pairs, 
is partitioned into training and testing subsets of 10,143 and 3000, respectively. 
We have also extended the evaluation of our CMAFGAN framework to text-to-
image synthesis tasks, using CUB dataset. The CUB dataset encompasses a diverse 
collection of 11,788 bird images categorized into 200 distinct classes. In our 
evaluation, 8855 images are allocated for training, with the remaining 2933 images 
for testing. 

Evaluation Metrics For attribute W2F synthesis, we compare the performance of 
our CMAFGAN with previous methods on the Fr é .chet inception distance (FID) [9], 
R-precision [32], face similarity score (FSS), and face similarity distance (FSD) [2]. 
For text-to-image synthesis, the inception score (IS) [21], FID, and R-precision are 
used to evaluate the performance. To compute those metrics, each method synthe-
sises 80,000 face images on the CelebA test dataset and 30,000 face images on the 
LFW test dataset. Consistent with previous methods [13, 15, 25, 26, 32, 37, 41], 
30,000 images are synthesised for evaluation on CUB.
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14.4.2 Attribute Word-to-Face (W2F) Synthesis 

Our CMAFGAN is essentially a text-to-image generation network. Therefore, we 
choose state-of-the-art text-to-image synthesis methods as the baseline methods for 
the attribute W2F synthesis. We compared the CMAFGAN model with AttnGAN 
[32], ControlGAN [13], DFGAN [27] and DM-GAN [41] on the CelebA and LFW 
datasets. The performance of each method is shown in Tables 14.1 and 14.2. 

The experimental results on CelebA are shown in Table 14.1. A discernible 
enhancement in performance is observed for our CMAFGAN when compared 
to existing state-of-the-art techniques, particularly in the R-precision metric. Our 
method achieves an R-precision of 61.24%, surpassing the previous benchmark 
of 49.63%. This improvement underscores the enhanced alignment between the 
generated face images and their corresponding input attributes, indicative of a 
higher degree of consistency. Moreover, CMAFGAN demonstrates superior image 
quality, as evidenced by a lower Frechet Inception Distance (FID), when juxtaposed 
with AttnGAN, DFGAN, ControlGAN, and DM-GAN. This comparative analysis 
further substantiates the efficacy of our approach. While CMAFGAN exhibits a 
slight deficiency in FSS and FSD metrics in comparison to the state-of-the-art DM-
GAN, it is noteworthy that CMAFGAN’s R-precision significantly outperforms that 
of DM-GAN. This underscores the method’s capability to predict face images with 
a heightened degree of consistency relative to the provided attributes. 

Table 14.1 Quantitative comparison between current optimal methods and our CMAFGAN on 
CelebA test dataset. CMAFGAN achieves better FID and R-precision, but its FSD and FSS are 
marginally weaker than that of DM-GAN 

Method FID ↓. FSD ↓. FSS(%) ↑. R-precision(%) ↑. 

AttnGAN [32] 56.00 1.286 ±. 0.128 58.18 ±. 8.17 34.97 ±. 0.47 

DM-GAN [41] 30.10 1.263 ±. 0.134 59.63 ±. 8.41 49.32 ±. 0.37 

ControlGAN [13] 65.81 1.284 ±. 0.131 58.34 ±. 8.34 29.88 ±. 0.47 

DFGAN [27] 31.89 1.277 ±. 0.132 58.75 ±. 8.37 43.40 ±. 0.24 

CMAFGAN(Ours) 29.99 1.266 ±. 0.131 59.47 ±. 8.22 61.24 ±. 0.71 

The results highlighted in bold denote the best performance over the rest results in the table

Table 14.2 Quantitative comparison between current optimal methods and our CMAFGAN on 
LFW test dataset, where CMAFGAN achieves the best performance 

Method FID ↓. FSD ↓. FSS(%) ↑. R-precision(%) ↑. 

AttnGAN [32] 31.61 1.280 ±. 0.129 58.60 ±. 8.19 40.01 ±. 0.75 

DM-GAN [41] 21.00 1.278 ±. 0.139 58.64 ±. 8.72 61.55 ±. 0.89 

ControlGAN [13] 43.71 1.288 ±. 0.132 58.05 ±. 8.39 37.52 ±. 0.84 

DFGAN [27] 18.19 1.285 ±. 0.134 58.21 ±. 8.52 50.17 ±. 0.13 

CMAFGAN(Ours) 17.77 1.272 ±. 0.133 59.11 ±. 8.38 64.46 ±. 0.81

The results highlighted in bold denote the best performance over the rest results in the table



292 X. Chen and X. Luo

Fig. 14.5 Qualitative comparison between DM-GAN [41], AttnGAN [32], ControlGAN [13], 
DFGAN [27] and our CMAFGAN on the CelebA dataset. The given attribute words are on the 
left, with the corresponding ground-truth and generated images on the right. Those attributes 
corresponding to obvious improvements are highlighted with different colours 

The quantitative comparison conducted on the LFW dataset is presented in 
Table 14.2. Our CMAFGAN model delivers a consistent performance, outperform-
ing state-of-the-art methods across all evaluated metrics. It achieves higher image 
quality and greater fidelity to the ground-truth, as evidenced by the lowest FID 
and FSD, and the highest FSS and R-precision. Contrasting the results observed 
on the CelebA dataset, CMAFGAN excels across the board when tested on LFW, 
surpassing even the DM-GAN on every metric. This comprehensive outperformance 
underscores the robustness and superiority of our method, which can generate 
images that are not only of higher quality but also more closely aligned with the 
ground-truth. 

To further evaluate the performance of each model in attribute W2F synthesis, 
we also visually present the results of CMAFGAN and state-of-the-art methods in 
Fig. 14.5. Compared with other methods, the face generated by CMAFGAN mainly 
has the following advantages: higher fidelity, better fine-grained features, and a 
higher matching degree with input attributes. Among them, the matching degree 
with input attributes is especially significant, which is mainly reflected in the beard, 
hair colour, hairstyle, mouth shape, expression, age, and ornaments (glasses and 
hats). Although DM-GAN and DFGAN also synthesise some high-quality faces 
(mainly in terms of high fidelity), some of their synthetic faces are poor at fine-
grained features and in the consistency with input attributes (e.g. in the 1st row of 
Fig. 14.5).
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Table 14.3 Quantitative comparison between attribute V2F synthesis methods and our CMAF-
GAN on CelebA and LFW datasets. The input of attribute V2F synthesis methods is attribute 
vector, while that of CMAFGAN is attribute words 

Dataset Method Input FID ↓. FSD ↓. FSS(%) ↑. 

CelebA Di et al. [5] Attribute vector 35.21 1.277 ±. 0.136 58.68 ±. 8.57 

AFGAN [33] Attribute vector 36.76 1.285 ±. 0.131 58.11 ±. 8.31 

CMAFGAN(Ours) Attribute words 29.99 1.266 ±. 0.131 59.47 ±. 8.22 
LFW Di et al. [5] Attribute vector 25.36 1.289 ±. 0.125 57.93 ±. 7.26 

AFGAN [33] Attribute vector 26.31 1.291 ±. 0.129 57.12 ±. 8.21 

CMAFGAN(Ours) Attribute words 17.77 1.272 ±. 0.133 59.11 ±. 8.38 

The results highlighted in bold denote the best performance over the rest results in the table

14.4.3 Attribute Vector-to-Face (V2F) Synthesis 

To ensure a thorough comparison, we have pitted our CMAFGAN against existing 
V2F synthesis methods [5, 33] on the CelebA and LFW datasets. Our quantitative 
analysis is grounded in the FID, FSD, and FSS, which are standard metrics for 
evaluating the quality of synthesized images. Given that the input for traditional 
V2F methods is an attribute vector, not descriptive attribute words, it is not 
feasible to calculate the R-precision metric, which measures the alignment between 
textual descriptions and generated images. The comparative results are detailed in 
Table 14.3. It is evident that CMAFGAN outperforms existing methods across all 
evaluated metrics on both the CelebA and LFW datasets. Specifically, our method 
has achieved a notable reduction in FID, scoring 7 to 9 points lower than previous 
V2F methods [5, 33], indicating a significant advancement in the fidelity of the 
generated images. 

14.4.4 Text-to-Image Synthesis 

Given that CMAFGAN is fundamentally a text-to-image synthesis network, we 
deemed it essential to evaluate its efficacy on this task to underscore the network’s 
capabilities. The performance of CMAFGAN on the text-to-image synthesis dataset 
is presented in Table 14.4. Our model achieves the highest scores in both IS and 
R-precision, key indicators of the quality and relevance of the synthesized images. 
Although the FID of CMAFGAN is slightly greater than that of TIME [15], this 
marginal difference does not detract from the overall performance. The R-precision 
of CMAFGAN shows a notable increase, with an 11.10% improvement (from 
72.31% to 83.41%) over the current leading method [41]. This enhancement under-
scores CMAFGAN’s ability to significantly bolster the alignment between synthetic 
images and their corresponding textual descriptions, without compromising image 
quality.
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Table 14.4 Quantitative comparison between the state-of-the-art methods and our CMAFGAN 
on CUB dataset 

Method IS ↑. FID ↓. R-precision(%) ↑. 

AttnGAN [32] 4.36 ±. .03 23.98 67.82 ±. 4.43 

DM-GAN [41] 4.75 ±. .07 16.09 72.31 ±. 0.91 

SEGAN [25] 4.67 ±. .04 18.16 (–) 

ControlGAN [13] 4.58 ±. .09 (–) 69.33 ±. 3.23 

KT-GAN [26] 4.85 ±. .04 17.32 (–) 

DTGAN [37] 4.88 ±. .03 16.35 (–) 

TIME [15] 4.91 ±. .03 14.30 71.57 ±. 1.20 

CMAFGAN(Ours) 4.91 ±. .07 15.13 83.41 ±. 0.53 

The results highlighted in bold denote the best performance over the rest results in the table

Through rigorous quantitative and qualitative evaluations across two principal 
tasks, word-to-face and text-to-image generation, the proposed CMAFGAN model 
has demonstrated several key advantages: (1) In cross-modal tasks involving 
natural language and image synthesis, CMAFGAN is adept at thoroughly learning 
semantic information from provided attributes, enabling the generation of fine-
grained images. (2) CMAFGAN’s images exhibit a higher visual similarity to 
original images, indicating a superior ability to capture detailed characteristics. 
(3) Compared to other methods, CMAFGAN constructs a more accurate semantic 
mapping between natural language descriptions and the corresponding images, 
ensuring that the synthesized outputs are highly consistent with the given attributes. 
(4) The model exhibits strong generalization capabilities and application potential, 
evidenced by its outstanding performance in both attribute-based W2F and text-to-
image synthesis tasks. These strengths position CMAFGAN as a robust and versatile 
framework, well-suited for advancing the field of image synthesis driven by natural 
language inputs. 

14.4.5 Ablation Study 

To clearly understand the contribution of the proposed components in image 
generation, we conduct ablation studies on the WFT and CMAF. Three different 
networks are constructed: baseline, baseline+WFT, and baseline+WFT+CMAF 
(CMAFGAN). The baseline is cascaded by three generators, without the WFT and 
CMAF modules, which use the global feature g. of attribute words and Gaussian 
noise to guide the network to generate images, without using the word feature 
vector f.. The results on the CelebA, and LFW datasets are shown in Table 14.5. 
It can be found that, the baseline network shows comparable performance with 
DM-GAN. Incorporating the WFT into the baseline network, FID, FSD, FSS, 
and R-precision on CelebA are significantly improved, by 2.81, 0.003, 0.19%, 
and 2.19%, respectively. Similarly, WFT improves the FID, FSD, FSS, and R-
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precision by 0.28, 0.018, 0.98%, and 0.55% on the LFW dataset, respectively. After 
further utilising the CMAF block, the overall performance of the network varies in 
different datasets. On the CelebA dataset, the FSD, FSS, and R-precision metrics 
are further improved, except of a marginal decrease in FID (from 29.18 to 29.99). 
In contrast, the FID and R-precision on the LFW dataset increased by 1.08 and 
3.88%, respectively, while the FSD and FSS decreased marginally. These findings 
underscore that the R-precision metric consistently improves, indicating that the 
CMAF module can effectively enhance the congruence between the generated 
images and their corresponding input attributes. In summary, the WFT module has 
been demonstrated to significantly enhance the fidelity of the generated images, 
particularly in terms of aligning the feature distribution with that of the original 
images. Furthermore, the CMAF module brings about notable improvements in the 
fine-grained features of the synthetic images, as well as in the degree of matching 
between the images and the input attribute words. The synergistic integration of 
both the WFT and CMAF modules serves to amplify the network’s performance. 
This combined approach harnesses the strengths of each module, leading to a more 
robust and effective image synthesis process. 

14.4.6 Extension to Medical Scenarios 

To underscore the efficacy of our proposed approach, we extend the application 
of CMAFGAN to X-ray image synthesis from descriptive texts, leveraging the 
Open-i dataset [4]. This dataset encompasses 6423 X-ray images paired with their 
corresponding caption sentences. In this application, CMAFGAN is employed 
directly as a text-to-image synthesis network. The resulting synthesized X-ray 
images, as demonstrated in Fig. 14.6, exhibit high semantic alignment with the 
input captions and are consistent with the ground-truth X-ray images, capturing 
fine-grained details. In the immediate term, the synthesis of X-ray images from text 
has the potential to serve as a data augmentation technique and as an instructional 
tool for medical students. Looking further ahead, we anticipate more exploration of 
additional applications for this technology, broadening its utility in this task. 

14.5 Conclusions 

In this study, we delved into the novel domain of image synthesis driven by attribute 
words. We deviated from the conventional approach of utilizing attribute vectors 
and instead opted for input in the form of text composed of descriptive attribute 
words. This innovative strategy has resulted in higher-quality image synthesis and 
has introduced a degree of order invariance that is inherently flexible with respect 
to the arrangement of attribute words. We introduced a pioneering model termed 
CMAFGAN, which is distinguished by the integration of WFT and CMAF blocks.
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Fig. 14.6 X-ray image synthesis from descriptions 

These components were designed to thoroughly investigate the interplay between 
textual and visual domains, facilitating a more nuanced synthesis process. Our 
comprehensive experimental evaluation, conducted across the CelebA, LFW, CUB, 
and Open-i datasets, has conclusively demonstrated that CMAFGAN surpasses 
current state-of-the-art methods in image quality and fidelity to input attribute 
words. The results of X-ray image synthesis further demonstrate the efficiency of 
our proposed CMAFGAN, achieving promising results in terms of high-quality 
images and high semantic consistency. Despite these advancements, there remain 
instances of irregularity and ambiguity within the synthesis outcomes generated by 
our method. Looking ahead, we are committed to further refining the quality of the 
generated images, aiming to address these challenges and push the boundaries of 
what is achievable in the realm of attribute-based image synthesis. 
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Chapter 15 
CHeart: A Conditional Spatio-Temporal 
Generative Model for Cardiac Anatomy 

Mengyun Qiao, Shuo Wang, Huaqi Qiu, Antonio de Marvao, 
Declan P. O’Regan, Daniel Rueckert, and Wenjia Bai 

Abstract Cardiac image analysis often involves assessing the heart’s anatomy 
and motion from images and understanding their association with clinical factors 
like gender, age, and diseases. While image segmentation and motion tracking 
algorithms address the first issue, modeling the second remains challenging. In 
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this work, we propose a novel conditional generative model to describe the 4D 
spatio-temporal anatomy of the heart and its interaction with non-imaging clinical 
factors. By integrating these clinical factors as conditions, our model can investigate 
their influence on cardiac anatomy. We evaluate the model’s performance on two 
main tasks: anatomical sequence completion and sequence generation. It achieves 
high performance in anatomical sequence completion, comparable to or surpassing 
state-of-the-art generative models. For sequence generation, the model generates 
realistic synthetic 4D sequential anatomies that align with real data distributions 
given clinical conditions. The code and trained generative model are available at 
https://github.com/MengyunQ/CHeart. 

15.1 Introduction 

Cardiac imaging is crucial for cardiovascular image diagnosis and management 
[10]. Techniques like cine cardiac magnetic resonance (CMR) or ultrasound scans 
reveal the heart’s anatomical structure and its contraction and relaxation patterns 
[24]. A well-established research challenge is to investigate the relationships 
between three-dimensional (3D) cardiac anatomy and other non-imaging clinical 
factors, such as age, gender, and diseases [5]. In addition to 3D anatomical data, 
the heart’s temporal dynamic motion also provides valuable information for clinical 
diagnosis and therapy selection [19, 29, 43]. Developing computational tools to link 
spatial-temporal imaging features with non-imaging clinical factors is of particular 
interest. In this study, we aim to enhance our understanding of spatial-temporal 
cardiac anatomy and clinical factors through a generative modeling approach. We 
introduce a conditional generative model to capture the interaction between imaging 
features and clinical factors. Given clinical factors as conditions, the proposed 
model can generate corresponding 4D spatial-temporal cardiac anatomies. We 
show that the generated 4D anatomies are realistic and align with the actual data 
distribution. Recently, the field of conditional generative modeling has seen signif-
icant advancements, largely driven by deep learning methods such as conditional 
generative adversarial networks (GAN) [31], conditional variational autoencoders 
(VAEs) [27, 44], flow-based models [38], and diffusion models [33]. These methods 
enable efficient approximation of the underlying conditional distributions and the 
generation of high-quality samples. Advances in conditional generative models 
have been marked by numerous developments in various generation tasks: image-
to-image translation [13, 22, 25], style and lyrics-to-music generation [16], and 
text-to-image synthesis [12]. 

Besides generating static images [33], generative models have also been utilized 
for sequential data, including videos [42, 48] and music [16]. In these scenarios, 
it is crucial to develop a model that can capture the intrinsic connections within 
temporal sequences. To achieve this, long short-term memory (LSTM) [26, 47] and 
transformers [51] have been investigated to understand the sequential progression 
of latent representations in samples. Some studies also incorporate spatiotemporal 
convolution and attention layers to learn temporal dynamics from video collections

https://github.com/MengyunQ/CHeart
https://github.com/MengyunQ/CHeart
https://github.com/MengyunQ/CHeart
https://github.com/MengyunQ/CHeart
https://github.com/MengyunQ/CHeart
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[42]. Sequential data encompass both structural variations and motion information. 
Disentangled representation learning methods like DiSCVAE [54] have been pro-
posed to separate motion features from structural features. In the realm of medical 
imaging, several studies have examined the integration of non-imaging clinical 
factors into the image generation process. Dalca et al. [15] introduced a learning 
framework for constructing deformable brain image templates based on age. Xia et 
al. [49] developed a model to generate synthetic brain images conditioned on age 
and Alzheimer’s disease status. For cardiac images, Biffi et al. [7] presented LVAE 
for the interpretable classification of anatomical shapes into different clinical con-
ditions. Krebs et al. [28] proposed a probabilistic motion model for spatio-temporal 
cardiac image registration. Reynaud et al. [37] introduced a causal generative model 
to produce synthetic 3D ultrasound videos based on a given input image and an 
expected ejection fraction. Campello et al. [9] proposed a conditional generative 
model in cardiac imaging to extract longitudinal patterns related to aging. Duchateau 
et al. [17] developed a method for synthesizing pathological cardiac sequences from 
real healthy sequences. Amirrajab et al. [1] created a framework for simulating 
cardiac MRI with varying anatomical and imaging characteristics. For cardiac 
temporal modeling, some studies [52, 55, 56] demonstrated that dynamic cardiac 
data could be represented by low-dimensional latent spaces, such as a conditional 
autoencoder to capture latent representations [56] or temporal smoothness applied as 
a regularization term in the reconstruction loss function [55, 56]. These studies offer 
valuable insights for conditional medical image generation. However, generating 
sequences of spatio-temporal cardiac anatomies from multiple clinical factors 
remains underexplored. 

In this study, we introduce a conditional generative model capable of producing 
realistic cardiac anatomical sequences based on non-imaging factors such as age, 
gender, weight, height, and blood pressure. We refer to this Conditional Heart 
generation model as CHeart. The model utilizes a variational autoencoder to capture 
latent representations of cardiac anatomies and a condition encoder to incorporate 
clinical conditions into a condition latent vector. Subsequently, a Temporal Module 
is crafted to generate the condition-related sequential latent space using the anatomy 
latent representations and the condition latent vector. The proposed model exhibits 
high diversity and fidelity in generation, assessed through structural overlaps, 
surface distance metrics, and clinical measure distributions (ventricular volume and 
mass). The primary contributions of this work are outlined as follows:

• We introduce a spatio-temporal generative model for 3D cardiac anatomy that 
considers both spatial and temporal variations, such as motion during the cardiac 
cycle.

• We utilize both imaging and non-imaging clinical data to train the model, 
enabling it to generate cardiac anatomical sequences conditioned on multiple 
clinical factors.

• We incorporate a temporal module into the latent space of cardiac anatomy and 
conditions to capture the complex sequential patterns of a beating heart.

• We show that the model can produce highly realistic and diverse cardiac 
anatomical sequences that align with real data distributions.
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15.2 Methods 

The proposed generative model uses non-imaging clinical factors as input to 
produce a cardiac anatomical sequence. Figure 15.1 depicts the overall structure. 
The subsequent sections delve into more technical specifics. Initially, we present 
the conditional generative model. Next, we explain the temporal module for 
learning sequential latent representations attributable to cardiac motion. Finally, 
we showcase two applications of the generative model during the inference phase: 
anatomical sequence completion and anatomical sequence generation. 

15.2.1 Conditional Generative Model 

Consider a dynamic sequence of anatomical data for a subject, xt (t = 0, 1, · · · , T −
1)., where xt . represents the anatomical segmentation at the t-th frame, and T is the 
total number of frames in the sequence. Additionally, we observe clinical conditions 
c for this subject, which may include factors such as age, gender, weight, height, 
blood pressure, etc. Our goal is to learn the probability distribution of t he anatomy

Encoder 
MLP 

Sequence Completion 

Sequence Generation 

Encoder 

Decoder 

Decoder 

TrainingInference 

MLP 

Decoder 

Temporal Module 

time 

Fig. 15.1 Summary of the CHeart model, detailing both the training and inference phases. 
During the training phase, an encoder is utilized to capture the latent representations zc . and z0 . 
corresponding to the clinical conditions c and the anatomy at the initial time frame x0 .. A temporal 
module then tracks the path of zc

0:T −1 . in the latent space over time, starting from the initial latent 
vectors zc . and z0 .. The decoder reconstructs the 4D cardiac anatomy sequence x0:T −1 . from these 
latent vectors along the temporal path. This training process facilitates two inference methods 
during testing: sequence completion and sequence generation. For sequence completion, the model 
receives x0 . and c, and predicts the subsequent anatomical sequence in the cardiac cycle. For 
sequence generation, a random latent code z0 . drawn from the prior distribution and c are provided 
to the model and the temporal module to create the latent vector sequence zc

0:T −1 ., which is then 
used to generate a synthetic cardiac anatomical sequence x'

0:T −1 .
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x conditioned on c using a chosen model, pθ(x|c)., where θ . represents the model 
parameters. We aim to find a model pθ(x|c). that is flexible enough to describe 
the data x. Deep neural networks are often employed for this modeling due to 
their complex modeling capacity [20, 27, 44]. Without loss of generality, we first 
attempt to learn the distribution of anatomy at the initial time frame, pθ(x0|c)., 
which is typically the end-diastolic (ED) frame in cardiac imaging. We utilize the 
conditional β .-VAE model [20, 27, 44] to learn the data distribution. The condition 
c is embedded as a conditional latent vector zc . by the MLP, which integrates 
multiple clinical factors and facilitates exploration across the conditional latent 
space. The model comprises a decoder pθ(x0|z0, zc). and an encoder qφ(z0|x0, zc).. 
The decoder pθ(x0|z0, zc). with parameters θ . maps the latent variables z0, zc . to 
the anatomy x0 .. We assume a prior distribution p(z0). over the latent variable 
z0 .. The prior and the decoder together define a joint distribution, denoted as 
pθ(x0, z0|zc)., parameterized by θ .. To make the intractable posterior inference and 
learning problem tractable, we introduce a parametric encoder model qφ(z0|x0, zc). 

with φ . as the variational parameters, which approximates the true but intractable 
posterior distribution pθ(z0|x0, zc). of the generative model, given an input x0 . and 
condition space zc .: 

.qφ(z0|x0, zc) ≈ pθ(z0|x0, zc) (15.1) 

where qφ(z0|x0, zc). often adopts a simpler form, e.g. the Gaussian distribution. By 
introducing the approximate posterior qφ(z0|x0, zc)., the log-likelihood of pθ(x0|zc). 

can be formulated as: 

.

log pθ(x0|zc) = Ez0∼qφ(z0|x0,zc) log [pθ(x0|zc)]

= Ez0∼qφ(z0|x0,zc) log

⎾   
pθ(x0, z0|zc)

qφ(z0|x0, zc)

⏋ 

+ Ez0∼qφ(z0|x0,zc) log

⎾   
qφ(z0|x0, zc)

pθ (x0|z0, zc)

⏋ (15.2) 

where the second term denotes the Kullback-Leibler (KL) divergence DKL(qφ ||
pθ)., between qφ(z0|x0, zc). and pθ(z0|x0, zc).. It is non-negative and zero only 
if the approximate posterior qφ(z0|x0, zc). equals the true posterior distribution 
pθ(z0|x0, zc).. Due to the non-negativity of the KL divergence, the first term in 
Eq. 15.2 is the lower bound of the evidence log[pθ(x0|zc)]., known as the evidence 
lower bound (ELBO). Instead of optimising the evidence log[pθ(x0|zc)]. which is 
often intractable, we optimise the ELBO: 

. max
θ,φ

ELBO = log[pθ(x0|zc)] − DKL (15.3) 

To better control the encoding representation capacity and encourage more 
efficient latent encoding, we adopt β .-VAE by modifying VAE with an adjustable
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hyperparameter β . [20]. As a result, the loss function of the generative model is 
formulated as: 

.

Lθ,φ = − Ez0∼qφ(z0|x0) log[pθ(x0|z0, c)]
+ β · DKL[qφ(z0|x0, c) || pθ(z0)]

(15.4) 

where the sign is negated so as we can minimise the loss function. 
In practice, we use the reconstruction loss for the first term, i.e. how accurate the 

generative model pθ(x0). can be for reconstructing the anatomy x0 . from the latent 
vector z0 . using the decoder. The reparameterization trick is applied to replace the 
subscript of the expectation and express the random variable z0 ∼ qφ(z0|x0, zc). as 
some differentiable and invertible transformation of another random variable ϵ ., so  
the expectation does not rely on q itself. 

15.2.2 Motion Modelling in the Latent Space 

In the preceding section, we formulated qφ(z0|x0, zc). and pθ(x0|z0, zc). for 
the initial frame x0 . in a sequence. To model the entire anatomical sequence 
x0, x1, ..., xT −1 . under clinical conditions c, we introduce a Temporal Module built 
using a one-to-many LSTM architecture [34] with parameters ω ., which produces 
the condition-related sequential latent codes based on z0 . and zc .. The detailed 
architecture of the temporal module is shown in Fig. 15.2. LSTM [13] is a type of 
recurrent neural network that includes gating mechanisms and cell memory blocks. 
The first LSTM cell of the module receives the concatenation of the anatomy latent 
representation z0 . and the condition latent representation zc . as input, denoted as 
zc

0 .. With the hidden state h0 . and cell state cell0 . initialized to zero, it infers the 
latent zc

1 . at the next time step. Each subsequent LSTM cell, sharing weights, takes 
zc
t−1 . as input, updates the hidden state ht . and cell state cellt ., and infers the latent 

zc
t .. All LSTM cells share weights. Each latent code zc

t . encapsulates information 
about both the anatomy at time t and the clinical conditions c. The cardiac anatomy 
of a dynamic sequence forms a temporal sequence zc

t . in the latent space, where 
t = 0, 1, . . . , T .. Once the temporal module computes the latent codes zc

0:T −1 . 

across all time frames, the decoder generates the anatomical sequence x'
t . from zc

t ., 
as illustrated in Fig. 15.1. The overall loss function for modelling the anatomical 
sequence generation is formulated based on Eq. 15.4: 

.

Lθ,φ,ω = −
T −1⎲
t=0

Ez0∼qφ(z0|x0)(log(pθ (xt |zt , zc)))

+ βDKL(qφ(z0|x0, zc) || pθ(z0))

(15.5)
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Fig. 15.2 The temporal 
module for generating the 
sequential latent codes 
z0:T −1 ., constructed with a 
one-to-many long short-term 
memory (LSTM) structure LSTM 

cell 
LSTM 
cell 

LSTM 
cell 

Temporal Module 

LSTM 
cell 

The training loss function consists of two components: (1) the reconstruction 
accuracy across all time frames, evaluated using cross-entropy to assess the per-
formance in reconstructing segmentation maps; (2) the KL divergence term, which 
penalizes the difference between the learned prior and posterior distributions. The 
entire training process is conducted end-to-end, with the encoder, temporal module, 
and decoder being trained simultaneously. The VAE allows the model to learn a 
low-dimensional latent space that captures the underlying anatomical variations. By 
integrating the temporal module, the model can effectively capture the temporal 
dynamics in cardiac images, enabling the generation of anatomically consistent and 
coherent sequences over time. 

15.2.3 Inference 

To illustrate the effectiveness of the proposed generative model during inference, 
we perform two benchmark tasks: anatomical sequence completion and anatomical 
sequence generation, as depicted in the right panel of Fig. 15.1. 

In anatomical sequence completion, the model receives the anatomy at the initial 
time frame x0 . along with clinical conditions c. It is tasked with generating the 
subsequent sequence of anatomies throughout the cardiac cycle. The model maps 
x0 . and c to their latent representations z0 . and zc ., predicts the sequential latent codes 
zc

0:T −1 . via the temporal module, and ultimately reconstructs the entire sequence of 
cardiac anatomy x'

0:T −1 . using the shared-weight decoders. 
In anatomical sequence generation, the model is conditioned solely on the 

clinical factors c and does not require any anatomical input. Given that the model 
has learned the distribution of the anatomical latent variable pz0 ., we can sample 
z0 . in the latent space from a Gaussian distribution N(0, 1). and concatenate it with 
the clinical latent code zc .. We then feed the concatenated latent code zc

0 . into the 
temporal module to predict zc

0:T −1 . and generate the complete anatomical sequence 
x'

0:T −1 . using the decoder.
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15.2.4 Evaluation 

To assess the conditional generative model, we utilize quantitative metrics to 
evaluate the generated anatomy and clinical metrics to examine the distribution 
similarity. First, we use the Dice coefficient, Hausdorff distance (HD), and average 
symmetric surface distance (ASSD) to compare the similarity between the generated 
cardiac anatomy and the ground truth anatomy under the same clinical conditions. 
Second, we derive five imaging phenotypes: left ventricular myocardial mass 
(LVM), LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), right 
ventricular end-diastolic volume (RVEDV), and RV end-systolic volume (RVESV). 
We assess the differences between the generated data and real data with the 
same clinical conditions, denoted as dphenotype .. Additionally, these phenotypes are 
closely related to age and gender [5]. We compute the distributions of the imaging 
phenotypes against age and gender and compare the generated data to the real data. 
The comparison is shown qualitatively using density plots and quantitatively using 
the Kullback–Leibler (KL) divergence and Wasserstein distance (WD). The KL 
divergence [14] is an information-theoretic measure of the similarity between two 
probability mass functions. Similarly, WD [2] quantifies the distance between two 
probability distributions and can be calculated as: 

.WD = inf
γ∼Π

(P,Q)
E(u,v)∼γ [||u − v||] (15.6) 

where
Π

(P,Q). is the set of all joint distributions over u and v. WD. can be seen as 
the minimum work needed to transform one distribution to another, where work is 
defined as the amount of mass that must be moved from u to v to transform P to Q 
and the distance to be moved.

15.3 Experiments 

15.3.1 Data Sets 

A dataset of 1383 subjects, featuring short-axis 3D cardiac MR images, was 
obtained from Hammersmith Hospital, Imperial College London. Each cardiac 
cine image sequence consists of 20 time frames (T = 20.) that capture a full 
cardiac cycle, with a spatial resolution of 1.25 mm × 1.25 mm × 2 mm.. The  
temporal resolution varies between 0.041 and 0.048 seconds per frame to account 
for differences in heart rates. The cardiac anatomy is represented by an image 
segmentation map with four labels: background, left ventricle (LV), myocardium 
(Myo), and right ventricle (RV). Ground truth segmentation for end-diastolic (ED) 
and end-systolic (ES) frames was generated using a multi-atlas segmentation 
method [3], and subsequently quality controlled and manually corrected by an
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experienced cardiologist using itkSNAP [53]. A state-of-the-art nnU-net model [21] 
was trained on the ED and ES segmentations and then applied to all time frames 
to produce the 3D-t segmentations, followed by manual quality control. To remove 
the influence of image orientations during generation, all 3D-t segmentations were 
rigidly aligned to a template space using MIRTK [39, 41] and cropped to a 
standard size of 128 × 128 × 64.. This ensures that the generative model focuses 
on learning subject-specific anatomical variations rather than image orientations. 
Regarding demographic information, all subjects were healthy volunteers, including 
775 females and 608 males, aged 18–73 years, weighing between 33 and 131 kg, 
with heights ranging from 142 to 195 cm, and systolic blood pressure (SBP) between 
79 and 183 mm Hg. Age was represented as a categorical factor with seven age 
groups in 10-year intervals from 10 to 80 years old for the clinical information 
incorporated into the model. The dataset was randomly divided into three subsets 
for training (n = 968.), validation (n = 138.), and testing (n = 277.). 

15.3.2 Experimental Setup 

15.3.2.1 Implementation 

The model was developed using PyTorch [34]. The encoder qφ . comprised four 3D 
convolutional layers, a flatten layer, and a bottleneck layer, producing the latent 
code z0 .. The condition mapping network was designed with an MLP, generating the 
latent code zc . for the input conditions c. Both  z0 . and zc . had a latent dimension of 32, 
while the concatenated latent vector zc

0 . had a dimension of 64. The decoder included 
a flatten layer and four 3D transposed convolutional layers. All convolutional and 
transposed convolutional layers in both the encoder and decoder had a kernel 
size of 4. The temporal module was constructed with one-layer LSTMCells. The 
regularization weight β . in β .-VAE was set to 0.001. The model was trained with the 
Adam optimizer at a learning rate of 5 · 10−4

. and a batch size of 8. Training was 
conducted for 500 epochs with early stopping based on validation set performance. 
The training process took 17 hours on an NVIDIA RTX A6000 GPU. 

15.3.2.2 Baseline Methods 

Currently, there is no other existing work for performing conditional generation of 
3D-t cardiac anatomies. For comparison, we implemented the following baseline 
generation methods developed in other application domains, extending them from 
2D image generation to 3D-t data generation: 

CGAN A conditional version of the generative adversarial network (GAN) orig-
inally developed for MNIST images [31]. Note that the model can only perform 
cardiac sequence generation, not sequence completion.
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CVAE The conditional generative model CVAE [44]. It was modified to adapt to 
this application. CVAE applied condition incorporation by concatenating conditions 
and anatomies in both the encoder and decoder. 

CVAE-GAN A conditional variational generative adversarial network proposed 
in [6]. It is a general learning framework that combines a VAE with a GAN for 
synthesizing natural images in fine-grained categories. 

PCA The principal component analysis (PCA) [23]. It is a classical method for 
dimensionality reduction, which aims to preserve as much of the variation in data 
as possible using the principal components. Note that the PCA is only used for 
performing sequence completion, but not for sequence generation. 

15.3.3 Sequence Completion 

A common challenge in generative modeling is the difficulty in evaluation, as we 
typically lack access to the ground truth data distribution, such as the distribution 
of all possible cardiac anatomies in our case. Consequently, we use anatomical 
sequence completion as a proxy task to evaluate model performance. The sequence 
completion experiments were carried out to assess the model’s ability to capture 
sequential information given the first frame of a cardiac anatomy sequence. An 
example of sequence completion is illustrated in Fig. 15.3. The figure shows that the 
generated anatomies over time maintain the same heart structures as the ED frame 
and capture the temporal motion pattern, initially contracting and then expanding. 

The sequence completion accuracy is assessed by comparing the generated 
anatomy to the ground truth across the entire sequence using the Dice metric, HD, 
and ASSD for three structures: LV, Myo, and RV. Table 15.1 presents the sequence 
completion accuracy of the proposed model and compares it to other generative 
models, including CVAE-GAN [6], CVAE [44], and PCA [23]. The results indicate 
that the proposed model achieves a good sequence completion accuracy with an 
average Dice metric of 0.874, HD of 5.842 mm, and ASSD of 1.462 mm, which is 
comparable to or outperforms the other three generative models in most metrics. 

Fig. 15.3 An example of sequence completion, arranged in two rows with the left-to-right and 
top-to-bottom order. With the end-diastolic (ED) frame in time t = 0. and conditions c as input, 
the model generates the remaining anatomical sequence at time frame t = 1.–19, shown within the 
gray box. The top row depicts anatomy images at time frame t = 0.–9, and the bottom row depicts 
at time frame t = 10.–19
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Table 15.1 The Sequence Completion Performance of Different Models in terms of Dice, Haus-
dorff distance (HD), average symmetric surface distance (ASSD). Mean and standard deviation are 
reported. Asterisks indicate statistical significance ( ∗ .: p  ≤. 0.05; ∗∗ .: p < 0.05) when using a paired 
Student’s t-test comparing the performance of the proposed method to other methods 

LV Myo RV Average 

Dice (unit: 1) 

CVAE-GAN [6] 0.845∗±0.028 . 0.697∗±0.054 . 0.832∗±0.028 . 0.791∗±0.032 . 

CVAE [44] 0.900±0.023 . 0.800∗±0.040 . 0.894±0.023 . 0.864∗±0.026 . 

PCA [23] 0.906±0.022 . 0.810±0.038 . 0.901±0.023 . 0.872±0.025 . 

Proposed 0.908∗∗±0.023 . 0.814∗∗±0.037 . 0.902∗∗±0.021 . 0.874∗∗±0.024 . 

HD (unit: mm) 

CVAE-GAN [6] 10.361∗±1.475 . 9.571∗±1.379 . 14.070∗±3.736 . 11.334∗±1.849 . 

CVAE [44] 5.920∗±1.335 . 5.891∗±1.055 . 6.525±1.076 . 6.112∗±1.049 . 

PCA [23] 5.517∗∗±1.029 . 5.710±1.125 . 6.165∗∗±1.072 . 5.797∗∗±0.978 . 

Proposed 5.535±1.180 . 5.576∗∗±0.955 . 6.445±1.067 . 5.842±1.017 . 

ASSD (unit: mm) 

CVAE-GAN [6] 2.120∗±0.390 . 1.670∗±0.236 . 2.244∗±0.399 . 1.983∗±0.306 . 

CVAE [44] 1.657∗±0.348 . 1.376∗±0.212 . 1.622±0.305 . 1.461±0.280 . 

PCA [23] 1.565±0.324 . 1.319∗±0.221 . 1.519∗∗±0.301 . 1.490±0.305 . 

Proposed 1.535∗∗±0.330 . 1.298∗∗±0.208 . 1.620±0.323 . 1.462∗∗±0.266 . 

Additionally, evaluations were conducted at the basal, mid-cavity, and apical 
slices. The proposed model achieved average Dice metrics of 0.929, 0.927, and 
0.878 for LV at these locations, surpassing the corresponding metrics of the other 
three generative models. We also performed paired Student’s t-tests between the 
results generated by our method and those of competing methods. The performance 
metrics of the proposed model marked with an asterisk in Table 15.1 were 
significantly better than other methods at a p value smaller than 0.05. In a different 
cardiac MR dataset, [4] reports average Dice metrics of 0.94, 0.88, and 0.90 for LV, 
myocardium, and RV, respectively, for inter-observer variability in manual cardiac 
image segmentation (Table 3 of [4]). The Dice metric of the proposed generative 
model is close to this value, indicating its high performance and capability for 
anatomical sequence completion. 

15.3.4 Sequence Generation 

In addition to the sequence completion task, we also carry out anatomical sequence 
generation and assess the similarity between the generated anatomical sequences 
and the actual data. In this study, we create new synthetic heart anatomies by 
using clinical conditions as the sole input to the model. Due to the stochastic
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Table 15.2 Comparison of sequence generation performance between CGAN, CVAE, CVAE-
GAN and the proposed model, in terms of mean and best Dice metric and contour distance 
metrics for the average performance over LV, RV and Myo. The best value across 20 samples for 
Dice metric (maximum), HD (minimum) and ASSD (minimum) are reported. Asterisks indicate 
statistical significance ( ∗ .: p  ≤. 0.05; ∗∗ .: p < 0.05) when using a paired Student’s t-test comparing 
the performance of the proposed method to other methods 

Dice (unit: 1) HD (unit: mm) ASSD (unit: mm) 

Model Mean Best/max Mean Best/min Mean Best/min 

CGAN [31] 0.713∗∗±0.061 . 0.717∗±0.061 . 15.533∗±2.258 . 13.956∗±2.326 . 3.004∗∗±0.714 . 2.862∗±0.712 . 

CVAE [44] 0.694±0.056 . 0.789±0.049 . 11.461∗±1.809 . 8.321±1.536 . 3.380∗±0.710 . 2.317∗±0.540 . 

CVAE-GAN [6] 0.645∗±0.052 . 0.774±0.039 . 16.844∗±2.008 . 12.105∗±1.815 . 3.693∗±0.709 . 2.185±0.394 . 

Proposed 0.713∗∗±0.058 . 0.793∗∗±0.052 . 10.940∗∗±2.343 . 8.166∗∗±1.621 . 3.023±0.757 . 2.049∗∗±0.521 . 

characteristics of VAE generation, multiple anatomical sequences can be produced 
for each set of input conditions. We extract 20 random samples from the Gaussian 
distribution of the latent vector and subsequently generate 20 synthetic anatomical 
sequences for this set of input conditions. 

We compare synthetic anatomies to real ones under identical clinical conditions, 
assessing mean and best similarities across 20 samples using the Dice metric, HD, 
ASSD, and clinical measure differences. This approach is similar to random average 
or random best evaluations in recent computer vision studies [35]. Table 15.2 
shows that our model achieves a mean Dice of 0.713, HD of 10.940 mm, and 
ASSD of 3.023 mm. The best values are a Dice of 0.793, HD of 8.166 mm, and 
ASSD of 2.049 mm, indicating the model’s ability to generate anatomies closely 
resembling real ones. Table 15.3 shows lower clinical measure differences, with 
mean differences of 25.93 mL, 11.74 mL, 34.63 mL, 15.54 mL, and 17.34 g, and 
minimum differences of 6.87 mL, 3.54 mL, 6.88 mL, 5.12 mL, and 2.95 g for 
LVEDV, LVESV, RVEDV, RVESV, and LVM, respectively. These results suggest 
our model achieves comparable (Dice) or superior (HD, ASSD, clinical measure 
differences) accuracy relative to other methods. The best metric values highlight the 
high fidelity of our model, showing how closely generated samples resemble real 
ones [32, 40]. Note that the model aims to generate plausible anatomies meeting 
specific conditions, not replicate existing ones. 

We visualised two examples of anatomical sequence generation in Fig. 15.4. For  
each, we show five random synthetic samples sharing the same clinical conditions 
as the real sample. The LV and RV structures look realistic and similar to real 
anatomy. The contracting pattern of the ventricles and myocardium from ED to 
ES frame also appears realistic. This shows our model captures the overall anatomy 
and temporal dynamics of the heart. The five samples with the same conditions also 
show variations, demonstrating the diversity of synthetic data. This results from the 
Gaussian sampling process and reflects individual differences between hearts due to 
genetic, environmental, lifestyle, and other factors.
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Fig. 15.4 Visualisation of synthetic anatomies (last five columns) generated by the model, 
compared to the real anatomy (first column) with the same clinical conditions (text annotation). 
The whole anatomical sequence is generated but only ED and ES frames are shown here. The first 
and second rows of each example show the ED and ES frames of the cardiac anatomical sequence 

To rigorously assess the fidelity and diversity of the generated samples relative 
to the actual samples, we examine the divergence between their distributions, 
conditioned on age, a prevalent variable of interest in clinical research. Beyond 
quantitative evaluations, we performed qualitative comparisons by scrutinizing the 
distributions of five clinical metrics for both real and synthetic anatomies across age, 
including LVM, LVEDV, LVEV, RVEDV, and RVEF, as depicted in Fig. 15.5. In  
comparison to alternative methodologies, the synthetic data distributions produced 
by our model exhibit a close resemblance to the real distributions and encapsu-
late the complete variability of the actual samples. Table 15.4 presents the KL 
divergence and Wasserstein distance between synthetic and real data distributions. 
The proposed model attains superior KL or WD metrics in the majority of clinical 
measurements, with KL divergence values of 0.034, 0.043, 0.034, 0.039, 0.031, and 
WD values of 15.053, 5.773, 12.214, 9.182, 9.215 for LVEDV, LVESV, RVEDV, 
RVESV, and LVM, respectively. These findings indicate that the synthetic data 
generated by our model preserves a distribution with respect to age that is analogous 
to the real data. 

15.3.5 Condition Manipulation 

Using the conditional generative model, we simulate anatomical changes under 
varying conditions (e.g., age). Figure 15.6a shows generated anatomies as age 
increases, with other conditions and latent vectors fixed. The difference map 
between aged anatomy and that at 10–20 years shows subtle LV and RV changes. 
We generate 200 random samples of synthetic ageing anatomies and derive clinical 
measures. Figure 15.6b shows the longitudinal evolution of these measures by
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Fig. 15.5 Distributions of clinical measures for real data and synthetic data. Each graph displays 
a kernel density plot of an imaging phenotype (LVM, LVEDV, LVESV, RVEDV, RVESV) against 
age. For each plot, the x-axis denotes age and the y-axis denotes the value of the imaging 
phenotype. Darker areas in the plot indicate the regions where the data is more concentrated. 
Lighter areas show the regions where the data is sparser 

gender. We observe an increasing trend in LVM and a decreasing trend in LVEDV 
during ageing, consistent with clinical literature [18] (Figure 3 of [18]). This model 
shows potential for simulating anatomical data distributions. However, caution is 
needed in interpretation, as our training data is cross-sectional, and cardiac ageing 
is influenced by more factors (genetics, lifestyle, etc.) than the five conditions used. 

15.4 Discussion 

The proposed model, based on a β .-VAE, learns the latent space of cardiac anatomy. 
It includes a conditional branch to model clinical factors and a temporal module 
for anatomical latent vectors during cardiac motion. Experiments show good 
performance in sequence completion and generation tasks, both qualitatively and 
quantitatively. The model allows manipulation of conditions to demonstrate clinical 
factors’ impact on anatomical shape variation. Using common clinical measures 
(ventricular volumes and mass), the generated anatomies’ distribution closely
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Fig. 15.6 (a) The simulated evolution of clinical measures (LVM, LVEDV, LVESV, RVEDV, 
RVESV) by generating 200 samples of gender-specific ageing cardiac anatomy and plotting their 
mean measures with 95%. confidence interval. (b) An example of the synthetic cardiac anatomy 
during ageing. The first and third rows show the cardiac anatomies at end-systolic (ES) and end-
diastolic (ED) frames. The second and fourth rows show the difference maps between the aged 
anatomy 20–80 years old and the anatomy at 10–20 years old 

matches real data visually (Fig. 15.5) and quantitatively (Table 15.4), indicating 
fidelity and diversity. While the model generates anatomically coherent structures, 
further improvement is needed to better match the real data distribution. Addition-
ally, exploring the relationship between cardiac motion and clinical conditions is 
promising. 

We foresee several downstream tasks for the generative cardiac anatomy model: 
discovering patterns in large datasets, facilitating out-of-distribution detection, 
and generating synthetic data. Training a generative model on a large dataset of 
cardiac anatomies captures complex patterns and variations associated with clinical 
factors, aiding in understanding population characteristics, identifying risk factors, 
and informing public health strategies. By learning the distribution of normal 
cardiac anatomy and dynamics, the model can detect deviations indicating potential 
anomalies. As a conditional generative model, it can learn norms for specific 
conditions (e.g., gender and age group) and evaluate deviations in a personalized 
manner. The model can also generate synthetic data for tasks like data augmentation 
for machine learning models [8], creating synthetic fair data to improve prediction 
model fairness [11, 46], and performing in-silico trials [50]. Diverse and realistic 
synthetic data will address data scarcity in the medical field, where real data are 
often limited or hard to share, and support privacy-preserving research [36, 45].
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This work has a few limitations. First, the high computational cost of training 
to learn spatio-temporal patterns from 4D data, even after cropping images to 
128 × 128 × 64. and using sequences of 20 time frames. Future work could reduce 
the computational complexity of high-dimensional and high-resolution medical 
imaging data. Second, we use a segmentation map to represent anatomy, allowing 
the generative model to focus on anatomical variations instead of intensity image 
styles. Future research could explore generating intensity images for the heart [1] or  
using mesh representations [30], which may be more efficient. Third, we train the 
generative model on a cross-sectional dataset of mainly healthy volunteers due to the 
difficulty of curating large-scale longitudinal datasets with high spatial resolution. 
Extending this to longitudinal and clinical imaging cohorts with cardiac diseases 
would be valuable. 

15.5 Conclusion 

We propose a novel conditional generative model to synthesise spatio-temporal 
cardiac anatomies from clinical factors. It generates realistic 3D-t heart anatomies, 
capturing anatomical variations and motion. This work paves the way for further 
research in cardiac imaging, including disease incorporation and mesh represen-
tation. It can also be applied to tasks like data augmentation, building condition-
specific atlases, and biomechanical heart modelling. 
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Chapter 16 
Generative Models for Synthesizing 
Anatomical Plausible 3D Medical Images 

Wei Peng and Kilian M. Pohl 

Abstract Deep learning methods trained on 3D medical images typically do not 
generalize well as training data are relatively homogenous and small. One way 
to potentially overcome this issue is creating realistic-looking 3D medical images 
using generative models. This chapter describes the fundamental principles and 
architectures of generative models used for this purpose, such as those based 
on generative adversarial networks (GANs) and diffusion probabilistic models 
(DPMs). The chapter also reviews evaluation techniques for measuring the quality 
of synthetic medical images, including the evaluation of the biological plausibility 
of the anatomy displayed. 

16.1 Introduction 

Medical imaging is indispensable in healthcare, providing valuable insights into 
human anatomy and facilitating diagnosis, treatment planning, and disease mon-
itoring [51]. However, acquiring medical images is generally expensive, time-
consuming, and can pose health risks to patients, such as radiation exposure in 
CT acquisition [56]. Medical imaging studies are therefore generally quite small 
in size and homogeneous so that deep-learning models trained on them often do not 
generalize across different populations and image acquisitions [58]. A promising 
solution is to create larger and more diverse training data sets by synthetically 
generating medical images via generative models [34, 35, 37, 53]. Generative 
models first capture the distribution of the training data and then produce new 
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Fig. 16.1 Axial, coronal, and sagittal view of (a) a real MRI and (b) a very similar looking 
synthetic MRI produced by a generative model [35] 

samples (such as the magnetic resonance image (MRI) shown in Fig. 16.1)  by  
sampling from that distribution. The generated images can then diversify training 
data to reduce biases and the influence of confounders [29]. In addition, these 
models can be used for simulating disease progression [39], which could provide 
valuable insights about disease dynamics [57] and improve treatment planning [10]. 

Despite their great potential, the application of generative models in the medical 
imaging domain has been challenging. Part of the challenge stems from the 
technology being originally developed for large data sets of natural 2D images [6], 
which can be easily downloaded from the internet or from large benchmark data 
sets [5]  (  >.1 Million samples). Compared to those benchmark data sets, publicly 
available data sets of medical images are rare and small in size ( <.60K MRIs [50]) 
as, in addition to the mentioned issues, requires considering ethics and privacy 
concerns [33]. The issue is further amplified by 3D medical images [37] being 
relatively noisy and high dimensional [46]. Moreover, synthetic medical images 
must not only appear visually realistic but also be anatomically plausible [35], i.e., 
display anatomy and pathology that is biologically accurate. Accounting for all these 
challenges requires models specifically designed for 3D medical image applications, 
which is the focus of this chapter. 

The next section briefly describes generative models originally developed for the 
synthesis of 2D natural images and their extensions to 3D medical images. The last 
section focuses on models generating brain MRIs that display biologically plausible 
anatomy. 

16.2 3D Medical Imaging Generation 

Examples of deep learning-based generative models are variational autoencoder 
(VAE) [23], Normalizing flow [42], generative adversarial networks (GANs) [13], 
and diffusion probabilistic models (DPMs) [19, 41]. The main objective of these 
models is to learn the distribution of the given data and later sample from the 
distribution to produce new samples. Based on how they represent the distribution, 
generative models can be split into explicit and implicit generative models [55]. 
Explicit generative models (such as VAEs and DPMs) define cost functions that
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focus on learning the distribution of the data. These approaches are generally quite 
stable and theoretically sound [23]. The cost function of implicit models (e.g., 
GANs) focuses on transforming random noise into a target image. These models 
are especially suitable for data distributions that are too complex to accurately 
encode explicitly. Among generative models, GANs and DPMs produce 3D medical 
images of the highest quality [2]. Their synthetic images have been used for data 
augmentation, anomaly detection, cross-modality image synthesis, and privacy-
preserving data sharing [40]. This section will describe GAN-based and DPM-based 
models used for the synthesis of 3D medical images. 

16.2.1 Generative Adversarial Networks 

GANs [13] are a type of generative model that leverages a game-theoretic frame-
work to train two neural networks: a generator that turns random noise into a 
synthesized image and a discriminator that distinguishes between real and synthetic 
images. The generator tries to create realistic data that fools the discriminator. This 
adversarial training process ends once the discriminator cannot reliably differentiate 
between real and synthetic data. 

Originally developed for 2D natural images [13], extending GANs to 3D medical 
images is challenging [53]. First, GANs often suffer from mode collapse (i.e., only 
producing images that are similar to each other [15]) as the adversarial training 
will lead the generator to focus on “easy-to-fake” modes (samples) while neglecting 
others. The risk of mode collapse increases as the complexity of the task increases 
(such as from 2D to 3D image synthesis). Furthermore, training normally gets stuck 
in local minima as it is extremely hard to find the global optimum to the min-
max objective function underlying the adversarial training [45]. Finally, a critical 
challenge is the memory requirement of GANs as the processing of even a single 
3D medical volume can often exceed the memory capacity of current GPUs [22]. In 
the remainder of this section, we review GANs specifically designed for 3D medical 
images. 

16.2.1.1 Auto-Encoding Generative Adversarial Network 

One of such approaches makes use of variational autoencoder (VAE) [23], which, 
unlike GANs, does not suffer from mode collapse as they directly learn the data 
distribution by training an encoder to map images into a low-dimensional latent 
space and a decoder to transforms the latent space encoding into an image. However, 
they generally only produce images of much lower quality (e.g., the images are 
blurry). By initiating image generation from outputs generated by VAE (instead of 
from random noise), VAE-GAN [45] aims to address the mode collapse problem 
and produce high-quality 3D medical images [45].
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This is achieved by expanding the adversarial training of the original GAN with a 
second discriminator that distinguishes between the encoding of the MRI generated 
by the VAE vs. the GAN. The VAE is then first trained to accurately encode medical 
images (a.k.a. real code). Next, the goal of the GAN is to produce fake code (from 
noise) that fools the additional discriminator in believing it is real. Once fooled, the 
GAN trains the generator to produce images using real and fake code. In addition to 
feeding those images into the discriminator, the images produced from the real code 
are also compared to the real images by adding the reconstruction loss (of the VAE) 
to the objective function of the GAN. This addition avoids mode collapse. Further 
improving training stability is adding the Wasserstein loss and gradient penalty 
(WGAN-GP) loss [24] to the objective function, which resulted in the first GAN 
that was able to produce high-quality 3D medical images. 

16.2.1.2 Style-Based GAN 

An alternative approach to improving the synthesis of medical images is based on 
StyleGAN [22], which simplifies the generation of 2D natural images by encoding 
them by their content (e.g., objects) and style (e.g., visual texture, coloring, lighting). 
During training, this style-based approach [12] generates low-resolution content, 
whose resolution is incrementally increased. The generation at each iteration is 
constrained according to the style of the image. By decoupling style from content, 
StyleGAN is more stable during training and generates images of significantly 
higher image quality compared to previous GAN models [22]. Its extension to 
3D medical images (called 3D-StyleGAN ) is fairly straightforward, i.e., all neural 
operations (such as convolution) are simply performed in 3D [20]. 

However, the high dimensionality of 3D medical images and associated memory 
requirements results in 3D-StyleGAN having feature maps (i.e., features in the mid-
dle layers of the generator) and latent vectors (i.e., samples from the latent space) 
that are significantly smaller than their 2D counterpart. Thus, 3D-StyleGAN [20] 
can currently only produce realistic-looking 3D t1-weighted MRI of 2 mm isotropic 
voxel resolution, while MRIs are commonly acquired at higher resolution (i.e., 
≤.1 mm isotropic). 

To produce 3D MRIs at higher voxel resolution, one could view 3D images as a 
sequence of 2D images (i.e., videos), which can be generated by StyleGAN-V [48]. 
StyleGAN-V generates videos by coupling StyleGAN with a continuous motion 
representation [48], aiming at improving the temporal consistency. Compared to 
StyleGAN, its computational cost is only 5% higher, which compares favorably to 
the 3 times increase by 3D-StyleGAN. However, this approach treats one dimension 
of the 3D volume differently from the other two dimensions, which is a reasonable 
assumption for videos but can introduce various artifacts when generating 3D
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Fig. 16.2 Varying intensities across slices in an MRI generated by a slice-based approach [34] 

images [34]. For example, the generated MRI in Fig. 16.2 shows a high quality 
image of a single slice (left, axial view) but ‘stripes’ in the other two (out-of-slice) 
views that are artefacts not found in a real, high quality MRI (such as in Fig. 16.1). 

16.2.1.3 Hierarchical Amortized GAN 

The computational memory requirements of GANs is generally a bottleneck when 
applying them to 3D medical images. For example, the size of brain MRI with at 
least 1mm isotropic voxel resolution is equivalent to a high-resolution 4K image. 
While running GANs on multiple GPUs could theoretically address this issue, the 
implementation becomes impractical for 3D medical images (as the memory of a 
single GPU is not even big enough to store the entire image [34]) so that the model 
itself or the data would need to be divided and distributed across multiple GPUs. 
One possible alternative is Hierarchical Amortized GAN (HA-GAN, [53]), which 
models the generation process using a low-resolution global branch that covers 
the entire 3D image and a high-resolution local branch, which encodes anatomical 
details of local patches. In particular, the generator first creates a lower-resolution 
representation Ẑ . of the 3D image in the first few network layers. The proceeding 
layers transform Ẑ . into a lower-resolution 3D medical image. Simultaneously, 
Ẑ . is split into subsets, from which high-resolution image patches are generated. 
The training now consists of optimizing the entire generator with respect to both 
tasks. Once trained, the entire Ẑ . is only fed into the high-resolution branch of the 
generator, which results in a full-size 3D high-quality medical image. By doing 
so, HA-GAN distributes the memory requirement across smaller (sub-)volumes 
during training so that it can generate high-resolution images during inference. 
Furthermore, the parallel architecture ensures anatomical consistency across the 3D 
image. 

16.2.2 Diffusion Probabilistic Models 

An alternative to GANs is diffusion probabilistic models (DPM) [19, 49], which 
potentially can generate realistic-looking 3D images at 1 mm isotropic voxel
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resolution. The principle design of the Diffusion Probabilistic Model (DPM) [19, 
49] is based on iterating between mapping (1) data (e.g. images) gradually to noise 
(a.k.a., Forward Diffusion Process (FDP)) and (2) noise back to data (a.k.a., Reverse 
Diffusion Process(RDP)). Specifically, letN(0, I ).be the Gaussian distribution with 
zero mean and identity matrix I . being the variance. Now, FDP perturbs the real data 
x0 . into Gaussian noise xT ∼ N(0, I ). after T iterations. This process is formulated 
as a Markov chain, whose transition kernel q(xt |xt−1). at time step t ∈ {0, . . . , T }. is 
defined as 

.q(xt |xt−1) := N(xt ;
√
1 − βt · xt−1, βt · I ). (16.1) 

The weight βt ∈ (0, 1). is changed so that the chain gradually enforces drift, i.e., 
adds Gaussian noise to the data. Let αt := 1 − βt . and ᾱt := Πt

s=1(1 − βt )., then xt . 

is a sample of the distribution conditioned on x0 . as 

.q(xt |x0) := N(xt ;
√

ᾱt · x0, (1 − ᾱt ) · I ). (16.2) 

Given this closed-form solution, we can sample xt . at any arbitrary time step t 
without needing to iterate through the entire Markov chain.

The RDP aims to generate realistic data from random noise xT . by approximating 
the posterior distribution p(xt−1|xt ).. It does so by going through the entire Markov 
chain from time step T to 0, i.e.,

.p(x0:T ) := p(xT )

TΠ

t=1

pθ(xt−1|xt ). (16.3) 

Defining the conditional distribution pθ(xt−1|xt ) := N(xt−1;μθ(xt , t), ∑). with 
fixed variance ∑ ., then (according to [19]) the mean can be rewritten as 

.μθ(xt , t) = 1√
αt

(
xt − βt√

(1 − ᾱt )
ϵθ (xt , t)

)
, (16.4) 

with ϵθ (·). being the estimate of a neural network defined by parameters θ .. θ . 

minimizes the reconstructing loss defined by the following expected value 

. Ex0∼q,t∈[0,...,T ],ϵ∼N(0,I )

l
||ϵ − ϵθ (xt , t)||22

l
,

where ||·||2 . is the L2 norm and xt . is inferred from Eq. (16.2) based on x0 .. This helps 
the model to learn the noise distribution at each time step t and thus can remove the 
noise from the image generated at step t + 1.. 

As for GANs, generating 3D high-resolution medical images is currently con-
strained by the size of GPU memory [35]. To address this challenge, recent work has 
explored several memory-efficient approaches, including (1) data re-organization 
(e.g., wavelet-based processing [36]), and (2) data compression, where the 3D image
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is compressed into a lower-dimensional latent representation before applying the 
diffusion process [37]. We now review these two strategies in further detail. 

16.2.2.1 Data Re-organization in the Observation Space 

Patch-Based Diffusion Model 

The traditional diffusion model is based on U-Net architecture [44], which means 
the model can be trained on different sizes of images as it is a fully convolution 
network [30]. Patch-based diffusion training [54] takes advantage of this property by 
training the model based on patches that are much smaller than the final output, thus 
significantly reducing memory consumption and speeding up the training process. 
However, training the model directly using the cropped patches results in artifacts 
across patches in the synthesized images as the patches are defined within fixed 
grids and the model only learns the distribution of those patches (and not the entire 
image). One way to address this shortcoming is to add the image position of the 
patches to the input of the DPM [7]. Thus, for 3D imaging data, three additional 
channels are added to the input layer of the diffusion model as each coordinate 
dimension is represented by a separate channel. The model can then be trained on 
these randomly sampled patches while still being able to generate a full-resolution 
image during inference. 

One limitation of patch-based diffusion is its perception fields [25] being 
confined to the patches so that dependencies beyond the size of patches are 
difficult to learn. This could make it hard to model the entire anatomical structure. 
One solution is to jointly consider global and local interactions by, for example, 
randomly selecting multiple small patches in the input image [26]. During training, 
the method then has to learn how to model both global (inter-patches) and local 
(intra-patches) interactions. 

Conditional DPM 

Another straightforward approach to reduce the dimensionality of 3D medical 
images is to view them as a stack of 2D slices. Based on this idea, conditional DPM 
(cDPM) [34] trains on 2D slices of a 3D volume x ∈ R

D×H×W
. by defining two 

sets of arbitrarily chosen slice indices: the ‘target’ set P., for which the generator 
aims to produces the slices xP ∈ R

len(P)×H×W
., and a ‘conditional’ set C., whose 

images slices xC ∈ R
len(C)×H×W

. guide the generator. Note, the total number of 
indices of both sets (i.e., len(C) + len(P).) is chosen so that it does not exceed the 
computational resources available. 

cDPM now learns to generate the target slices xP . conditioned on xC . by feeding 
their index sets C. and P. and the corresponding slices (i.e., the real slices xC . and 
noise for P.) into an attention network [47]. The goal of the attention network 
is then to learn the dependencies across slices so that the diffusion process can
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generate realistic-looking slices for P. conditioned on xC .. It does so by repeatability 
generating random sets of target slices xP . conditioned on random sets of xC .. 
Once trained, a new 3D volume is generated by initiating the process with random 
noise (i.e., C. is empty) and then using the generated slices as a conditional set for 
producing the next set of target slices. This process is repeated until all slices of the 
3D volume are generated. 

As the cDPM can be trained on many different (arbitrary) slice combinations 
(defined by C. and P.), cDPM only requires a relatively small number of 3D medical 
images for training. Furthermore, it will learn short- and long-range dependencies 
across slices as the spatial distance between slices from C. and P. varies. Learning 
these dependencies enables cDPMs to produce 2D slices that, when put together, 
result in somewhat realistic-looking, high-resolution 3D images. However, one 
issue with this approach is that the inter-dependency between the slices is not well 
modeled so the model fails to consistently produce accurate 3D volumes, as shown 
in Fig. 16.2. To minimize this issue, one can smooth the 3D medical image across 
slices via, for example, total variation (TV) [27]. TV smooths the images while 
preserving the contrast of the image by preserving piece-wise constant structures, 
i.e., the boundaries of anatomical structures. 

Diffusion with Wavelet Transformation 

Instead of only training on slices [34] or patches [54], wavelet diffusion model 
(WDM) [36] presents an efficient way to train on a complete volume. As the 
computional burden is mainly caused by the high dimensionality of the 3D data, 
WDM reduces the dimension of the medical images by encoding them as wavelet 
coefficients [38]. Wavelet coefficients capture the essential information of an image 
at different scales and frequencies. Once the model learns how to produce synthetic 
wavelet coefficients, medical images are obtained by performing an inverse discrete 
wavelet transform (IDWT). 

In [36], each input image x ∈ R
D×H×W

. is encoded by 8 wavelet transforms 
(DWT). The corresponding coefficients are concatenated into a single target matrix 

xw ∈ R
8× D

2 × H
2 × W

2 . so that original 1-channel image is now encoded as an 8-channel 
image with its dimension being an eighth of the original one. The eight sets of 
coefficients are processed in parallel by neural networks thus significantly reducing 
the computational burden and memory usage. Based on these wavelet encodes, a 
3D diffusion model is trained to produce realistic wavelet coefficients. Finally, the 
coefficients are transformed into synthetic 3D images using IDWT.
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16.2.2.2 Data Compression via the Latent Space 

As mentioned, another memory-efficient approach for generating 3D medical 
images is to first project them to a lower-dimensional latent space before starting 
the diffusion process. We now review several implementations of this approach. 

Extend 2D Pre-trained Diffusion Model for 3D Generation 

One way to generate the latent space encoding is to use a pre-trained diffusion 
model, such as Stable Diffusion (SD) [43]. SD was trained for over 150,000 GPU 
hours on 5 billion 2D image-text pairs to learn general patterns applicable to a 
wide range of image-related tasks [4]. One can now apply SD to each slice of 
a 3D medical image in order to derive the low-dimensional encoding. To ensure 
consistency across the slices, an extra ‘temporal’ operation is applied to the slice 
encoding in order to learn the correlations across slices [28]. One way of doing so 
is to fully take advantage of the pre-trained model by adding a module enforcing 
cross-slice consistency to the original 2D SD architecture. Alternatively, one can 
directly extend the 2D diffusion model to 3D. However, preserving the pre-trained 
information during this extension is a challenge. 

Also expecting to benefit from the knowledge of SD, diffusion transformers 
(DiT) [32] build a transformer-based diffusion model in SD’s latent space. They 
replace the U-Nets in the diffusion model with a vision transformer (ViT) [7]. As 
the transformer is in the latent space, the model will process the low-dimensional 
feature patches instead of image patches. To apply this to 3D medical images, the 
position embedding should also be extended to 3D. To further reduce the memory 
cost and improve flexibility, a masking strategy can be applied [11, 17], in which a 
large part of the patches will be masked out during the training. 

Latent Diffusion Model 

An extension of Stable Diffusion [43], Latent Diffusion Model (LDM) [37]  is  
currently one of the best methods for generating high quality 3D medical images. 
This two-stage generative framework first learns a compact latent representa-
tion of the high-dimensional data via Vector Quantized Variational Autoencoder 
(VQVAE) [1, 8]. The core components of VQVAE are the encoder E., a generator 
G., and a quantizer. Let x be an image, then the quantizer maps the continuous latent 
space encoding E(x). to a discrete latent space encoding zq . by finding the nearest 
codebook vector ek .,i.e., 

.zq = Quantize(z) = ek, k = argmin
j

||E(x) − ej||. (16.5)
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During training, the model then tries to jointly minimize the reconstruction and the 
quantization loss, i.e., 

. L(x, zq) = ||x − G(zq)||2 + β||zq − E(x)||2

with β . being a hyperparameter controlling the weight of the quantization loss. The 
quantization loss measures the difference between the latent code and its quantized 
version, which works as an extra regularization term to help the VQVAE training. 
Once trained, the resulting encoding is a compressed representation of the data while 
maintaining its key features. 

Next, a diffusion model is constructed in this low-dimensional latent space. 
The architecture of the model is the same as it is in the observation space but 
the input is now the feature representations from the encoder E.. Compared to 
performing diffusion in the observation space, the model is much more memory 
efficient as the dimension of the encoding is much smaller (up to 16 times smaller). 
Furthermore, the sampling speed can be up to 10+ times faster [35]. But as the 
image quality is determined by the generator from the first stage ( G.), it is crucial to 
train a ‘perfect’ VQVAE, which requires meticulous design (like introducing extra 
adversarial training loss, e.g., VQGAN [8]) and a substantial number of training 
samples. 

BrainSyn 

BrainSyn [35] is a two-stage model that synthesizes high-resolution medical images 
conditionally dependent on metadata (such as age). The first stage of BrainSyn 
involves a Variational Autoencoder GAN model (VQGAN) [8], which is VQVAE 
plus adversarial training. The vector quantization discretizes the feature space 
derived by the variational autoencoder so that the 3D medical image is represented 
as a set of indices (a.k.a, code), whose meaning is defined by a code book. This 
compresses the data over 500 times [35, 43] (compared to 16 times with VQVAE). 
The code book and the quantized encoding of each 3D image (i.e., the application 
of the codes to the code book) are the inputs to the second stage, which learns to 
generate new samples dependent on metadata. 

To model the dependency on metadata in the second stage, a Generalized Linear 
Model (GLM, [31]) disentangles the quantized encoding into a metadata-specific 
encoding (i.e., the encoding predicted by the metadata) and a subject-specific 
encoding (i.e., the difference between meta-specific and quantized encoding, a.k.a 
residual). The subject-specific encoding is then turned into the discrete code (a.k.a., 
Residual Code or ‘R-Code’) via the code book of the first stage. This operation is 
efficient as GLM is a parameter-free model that needs no training. Similar to [1], 
the discrete diffusion model then learns the (categorical) distribution of R-Codes by 
learning dependencies of the code throughout the image by using ‘masking’ [17], 
i.e., the model has to predict the code of part of the image (masked out region) from 
the remaining image regions.
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After completing training, BrainSyn synthesizes a new “subject” by first gen-
erating a (random) R-code, which is transformed into a residual. The residual 
is combined with the metadata-specific encoding, which is derived from random 
metadata values. The resulting quantized encoding is finally converted into an MRI 
using the generator from the first stage. 

16.3 Anatomy Plausible Synthesis and Evaluation 

Quantitatively evaluating the similarity between synthetic and real images is crucial 
for using synthetic images in the medical context. Here, we first review metrics 
commonly used for assessing the perceptual quality of (natural) images, such as 
structural similarity index (SSIM) [9]. Next, we describe a framework for measuring 
anatomical plausibility, i.e., whether the anatomy is correctly displayed in the 
synthetic images. Finally, we will outline strategies for improving the anatomical 
plausibility of synthetic medical images generated by diffusion models. 

16.3.1 Evaluation Metrics 

The four metrics commonly used to assess the quality of synthetic 3D medical 
images are Multi-Scale Structural Similarity (MS-SSIM) [24], peak signal-to-noise 
ratio (PSNR) [9], Fréchet Inception Distance (FID) [18], and Maximum-Mean 
Discrepancy (MMD) [14]. Of those four metrics, MS-SSIM and PSNR directly 
measure the difference between a real and a synthetic image. Specifically, SSIM [9] 
quantifies the image quality by assessing structural similarity between reference 
and synthetic images. It divides the images into small windows and then compares 
the luminance, contrast, and structure across the two image windows between real 
and synthetic images. The Multi-scale structural similarity (MS-SSIM) [24] extends 
SSIM to multiple scales (i.e., image resolutions) to incorporate image details at 
different resolutions. 

PSNR [9] is a metric commonly used to quantify the quality of a reconstructed 
signal compared to a distortion-free original. To apply this concept to image 
generation, real and synthetic images are randomly paired together. For each pair, 
the metric then records the ratio between the maximum possible signal value (pixel 
intensity) and the power of the image differences that affect the image quality. The 
final outcome is then the average of that ratio across all image pairs. 

In contrast, FID and MMD are population-level metrics that are based on the data 
statistics, e.g., comparing the distributions of synthetic and real data. These metrics 
can be computed in the observation or latent space. Specifically, Fréchet Inception 
Distance (FID) [18] first extracts features from the images by using a pre-trained 
model, such as using a 2D model slice-by-slice [34] or directly using a 3D model 
like Med3d [3]. Separately for the real (‘r’) and synthetic (‘s’) data, the method then
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determines the multivariate normal distribution N(μi,∑1). of the feature vectors. 
Finally, the Fréchet distance between the resulting two distributions is defined as 

. W(μr,∑r, μs,∑s) = ||μr − μs||2 + tr(∑r + ∑s − 2((∑1/2
r ∑

1/2
s )1/2)2)

This distance considers both the difference in their means (first term) and the 
difference in their covariances (second term). Lower FID scores indicate a better 
overlap between the distribution, i.e., higher quality of the generated medical 
images. 

Maximum-Mean Discrepancy (MMD) [14] also measures the difference in the 
distribution of real ( X.) and synthetic ( Y.) images. Let k be a kernel function (e.g., 
Gaussian kernel), then MMD2

. measures how well the distributions align in the 
feature space by computing 

. MMD2(X,Y) = 1

n(n − 1)

n⎲

i /=j

k(xi, xj ) + 1

n(n − 1)

n⎲

i /=j

k(yi, yj )

− 2

n2

n⎲

i=1

n⎲

j=1

k(xi, yj ).

The first two terms of the above measure capture the mean kernel similarities within 
each set and the third term captures the average kernel similarity between sets. Note, 
the lower MMD 2 . the better generally is the quality of the synthetic images. 

However, there are several issues with these four metrics. First, the scores fail 
to properly assess qualitative differences between generative models. For example 
in Fig. 16.3, the lower quality MRIs generated by HA-GAN [53] have a lower (i.e., 
better) FID score (0.080) than the higher quality MRIs generated by cDPM [34] 
(FID: 0.130). One reason behind this phenomena is that the scores emphasize the 
semantic meaning (whether this looks like an organ) instead of the anatomical 
plausibility. Second, metrics are sometimes ambiguous and are hard to interpret. 
For instance, MS-SSIM measures the similarity of intensity patterns between a real 
and a synthetic image but neither higher nor lower scores are necessarily better 
as smaller MS-SSIM also can mean higher diversity. Thus, the metric is only 
meaningful when also computing the MS-SSIM between real images so that one 
can tell whether its value is close to the real samples or not. Last, these metrics fail 
to provide information about the anatomy plausibility, i.e., one can have good scores 
but the anatomy in the image is unrealistic. 

16.3.2 Anatomical Measurements 

One can measure anatomy plausibility by measuring the accuracy of human experts 
correctly distinguishing real from synthetic medical images. One issue with this
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Fig. 16.3 Synthetic brain MRI generated by HA-GAN (FID: 0.080) [53] and cDPM (FID: 0.130) 
[34]. Even though HA-GAN has a lower FID score, the MRI from HA-GAN is quite blurry, i.e., 
of much lower quality than the one generated by cDPM 

approach is the inconsistency within and across the evaluations performed by human 
experts. Alternatively, a neural network can be used to evaluate anatomy plausibility. 
For example, one can train a classifier on the real medical images to identify the 
sex of a subject [35]. An insignificant difference in the accuracy of the classifier 
on the synthetic data then indicates the high plausibility of the anatomy displayed 
in the synthetic images. Another approach to measure anatomical plausibility is 
to augment the training data with synthetic images and then show a significant 
reduction in the generalization error of the trained model. 

However, this type of assessment is quite indirect and might only focus on certain 
anatomical regions important to the decision process of the neural networks might 
only focus on specific anatomical regions for its decision process. Instead, one 
can first segment all anatomical structures in a set of synthetic medical images 
and extract regional measurements (such as volume) from the segmentations. For 
each regional measurement, one then determines its distribution, which is compared 
to the distribution based on the real medical images using Cohen’s d [52]  (lower  
Cohen’s d indicates better anatomical plausibility).

16.3.3 Anatomy Enhanced Generation 

Creating anatomically plausible images requires models that can capture intrinsic 
properties of anatomical structures and their complex spatial relationships. The 
following section introduces several approaches that aim to do so by introducing 
prior knowledge (such as label maps of anatomical structures) into the generation 
process. 

16.3.3.1 MedGen3D 

MedGen3D [16] generates 3D medical images by first creating a label map of the 
anatomy, which is easier than creating images as one does not have to account for 
intensity differences between anatomical structures, partial volumes, noise, and, for 
MRIs, image inhomogeneity. The label map is generated via a conditional diffusion
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model by dividing the 3D volume into 2D slices and then, as in section “Conditional 
DPM”, producing label maps of those slices from random noise or by conditioning 
on existing slices. Next, a seq-to-seq model [21] uses the generated label map to 
synthesize realistic 3D medical images. As the generation is based on slices, the 
generated 3D image will often show artifacts, such as varying intensities across 
slices [34]. To add coherence across slices, the model refines the medical images 
via a diffusion refiner [16]. The diffusion refiner generates the same volume from 
three views (axial, coronal, and sagittal) and averages the volume to improve the 
cross-slice coherence. The final outcome is not only a new 3D image but also a 
segmentation, which eases further analysis. 

16.3.3.2 MedSyn 

MedSyn [56] was the first text-guided generator of high-resolution (256 3 .) CT and 
corresponding label map. Specifically, the input to the generator is a radiology 
report of a CT image. From that report, the method first generates a low-resolution 
image and label map in order to minimize memory burden. Conditioned on the 
low-resolution output, the generator produces the higher-resolution results, which 
converges faster than directly learning from random noise [19]. In addition, jointly 
learning to generate image and corresponding label map enables MedSyn to 
explicitly encode anatomy, which is important for correctly displaying organs in 
the medical images. 

MedSyn is quite versatile as it does not require a training set containing label 
maps, which is not the case for other joint learning strategies [16, 59]. Furthermore, 
one can give it a mask outlining anatomy that should not be altered by the 
generator [59]. Finally, MedSyn can be used as a segmentation tool by keeping 
the input image fixed. 

In conclusion, generative adversarial networks (GANs) and diffusion probabilis-
tic models (DPMs) can produce 3D medical images that not only look realistic but 
also display anatomy that is biologically plausible. To do so, these models have 
to account for the high dimensionality of medical images and the relatively small 
sample size of studies acquiring them. By addressing these challenges they then 
generate medical images that have the potential to revolutionize medical research 
and clinical practice. 
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Chapter 17 
Diffusion Probabilistic Models for Image 
Formation in MRI 

Şaban Öztürk , Alper Güngör , and Tolga Çukur 

Abstract Diffusion probabilistic modeling has recently emerged as a state-of-the-
art framework in MRI image-formation tasks. Two mainstream tasks in this domain 
are image reconstruction from undersampled k-space acquisitions with the purpose 
of accelerating MRI exams, and image translation to impute missing sequences for 
broadening the scope of multi-contrast MRI protocols. Diffusion models, known 
for their exquisite capability to generate high-fidelity images, have demonstrated 
great promise in solving the ill-posed inverse problems associated with these 
tasks. In the context of reconstruction, diffusion models have shown prowess in 
recovering high-quality MR images from heavily undersampled acquisitions, to 
enable significant reductions in scan times. In the context of translation, they 
have shown superior quality in imputed images of missing sequences, to ensure 
availability of comprehensive multi-contrast MRI protocols without the need for 
additional exams per patient. This chapter provides a comprehensive overview of 
the theoretical foundations, practical implementations, and recent advancements in 
the use of diffusion models for these pivotal MRI tasks, highlighting the potential 
of this deep learning framework to transform clinical imaging practices. Through 
detailed discussions and illustrative examples, we explore how diffusion models can 
bridge existing gaps in MRI technology, paving the way for faster, more accurate, 
and comprehensive imaging solutions. 
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17.1 Introduction 

Magnetic Resonance Imaging (MRI) is a powerful and versatile imaging modality 
widely used in clinical assessments and research studies. Yet, MRI characteristically 
suffers from prolonged scans and limited signal-to-ratios, which limit the amount 
of data that can be acquired within practically reasonable exam times [1]. This 
limitation has driven MRI physicists to seek approaches to improve scan efficiency. 
A mainstream approach for efficient MRI scans rests on undersampling k-space 
acquisitions to only capture a subset of measurements that would be required for 
fully-sampled acquisitions [30]. Images linearly recovered from such undersampled 
acquisitions suffer from aliasing artifacts as MRI reconstruction is an ill-posed 
inverse problem. Another approach is to prioritize sequences within a multi-contrast 
protocol and acquire only those with high priority as exam time permits [22]. To 
impute the images for omitted sequences, an ill-posed inverse problem must then 
be solved to non-linearly map the tissue signals in acquired sequences to those 
in omitted sequences. In both problems, powerful image priors that emphasize 
desirable attributes of high-quality MR images are key in obtaining accurate and 
efficient solutions. 

In the past decade, deep learning (DL) models have been established as gold 
standard to capture image priors that aid in solution of MRI inverse problems [26]. 
Traditional methods often employ hand-constructed image priors that have limited 
power in describing the complex visual attributes embodied in medical images 
[22, 30]. In contrast, DL-based image priors can learn a hierarchy of nonlinear 
features from large training sets of MRI data. These rich, data-driven features can 
facilitate solution of inverse problems as they offer a more accurate representation 
of visual attributes of MRI images [2, 7]. Generative DL models have shown 
particular promise in MRI image formation tasks, due to their ability to produce 
a diverse collection of images [13, 47]. Such representational diversity has been 
shown to enhance reliability and performance in image reconstruction [10, 31] and 
image translation [23, 36, 41]. Until the last couple of years, generative adversarial 
networks (GAN) were arguably the prime approach in generative modeling of MRI 
images [15, 24]. Relying on a game theoretic interplay between two agents, i.e., 
the generator and the discriminator, GAN models can offer exceptional realism and 
structural detail during image generation. Unfortunately, the two-agent games are 
susceptible to instabilities that can cause premature convergence in GAN models, 
and hence severely compromise image quality and diversity [32]. 

As an emerging paradigm, diffusion probabilistic models (DPM) have gained 
growing attention in the field as a powerful substitute for previous generative 
modelling frameworks [44]. Instead of employing a two-agent game to implicitly 
learn the data likelihood, DPMs provide an explicit characterization of the likelihood 
to avoid training instabilities and other common pitfalls associated with GANs. 
To do this, conventional DPMs cast a diffusion process to map between image 
samples from the desired data distribution and random noise samples from a 
Gaussian distribution [46]. In the forward direction of the process, image samples
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are degraded with modest amounts of Gaussian noise over many time steps, until 
a start-point of pure noise. In the reverse direction, a recovery network is used to 
progressively denoise intermediate image samples to arrive at an end-point of clean 
images that serve as ground-truth. The advent of DPMs in MRI image formation 
have set new standards for image quality based on these fundamental ideas, offering 
high image quality and fidelity all at once [21, 38]. 

In this chapter, we will explore the application of DPMs in MRI image formation 
tasks. We begin with a preliminary overview of DPMs, including the forward and 
reverse processes, training methodologies, and sampling procedures. Following this, 
we take a look at the basics of MRI image reconstruction, discussing how diffusion 
models can help enhance recovery of images from undersampled data. Next, 
we cover MRI image translation, illustrating how diffusion models facilitate the 
imputation of missing sequences in multi-contrast protocols. Finally, we conclude 
with a discussion on potential future directions to further boost the performance and 
reliability of diffusion-based MRI image formation, highlighting ongoing research 
and emerging trends in the field. 

17.2 Preliminary: Diffusion Probabilistic Models 

In this preliminary section, we provide a detailed overview of diffusion probabilistic 
models, focusing on the foundational aspects of the forward diffusion process and 
the degradation operator, the reverse diffusion process and the recovery operator, 
the training objectives for the network-based recovery operator, and the sampling 
procedures used to generate images from trained models. 

17.2.1 Forward Diffusion Process 

In conventional DPMs, the forward diffusion process is devised to map between 
the data distribution and a pure Gaussian noise distribution [44]. Starting with a 
clean image sample drawn from the training set, intermediate samples in the forward 
direction are obtained by adding a small amount of Gaussian noise. The forward 
transition probability in between consecutive time steps can then be described as 
[18]: 

.q(xt | xt−1) = N(xt ;
√
1 − βtxt−1, βt I), (17.1) 

where t ∈ [0, T ]. denotes the current time step, x0 . is the original clean image, 
βt . is the noise variance scheduled across time steps, and N(·;μ, σ 2). denotes a 
Gaussian distribution with mean μ. and variance σ 2

.. Over a total of T . time steps, the 
clean image becomes increasingly noisy, essentially transforming the original data 
distribution into a simple Gaussian distribution. Based on these forward transition
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probabilities, the cumulative distribution of the forward process from the original 
image to any time step t . can be written as: 

.q(xt | x0) = N(xt ;
√

ᾱtx0, (1 − ᾱt )I), (17.2) 

where ᾱt = Πt
i=1(1 − βi).. This cumulative formulation allows us to express the 

state of the intermediate image sample at any time step t . directly in terms of the 
clean image x0 .. The forward diffusion process in DPMs can be viewed as a Markov 
chain, where transitions between states involve adding a small amount of noise to 
the image sample. The noise schedule {βt }. is typically chosen such that it gradually 
increases over time, ensuring a progressive transition from the clean image to pure 
noise. 

17.2.2 Reverse Diffusion Process 

The reverse diffusion process aims to conduct transitions between image samples 
in the opposite direction, i.e., starting at time step T and moving towards time step 
0. In conventional DPMs based on a Gaussian-noise degradation operator, these 
reverse transitions naturally involve progressive denoising of image samples, and 
this is exactly where the power of deep learning comes into play [45]. The recovery 
operator that performs reverse transitions is implemented as a neural network Gθ . 

parameterized by θ .. Given the image sample xt . at time step t , the recovery network 
can be used to estimate either the incremental noise ϵθ (xt , t). between consecutive 
time steps or the clean image at t = 0.. Afterwards, these estimates can be used to 
draw a less-noisy sample at time step t − 1.. 

For instance, the network-operationalized reverse transition probability based on 
incremental noise estimates can be described via the following equation [18]: 

.pθ(xt−1 | xt ) = N(xt−1;μθ(xt , t), σ
2
t I), (17.3) 

where μθ(xt , t). is the predicted mean, and σ 2
t . can be either learned or assumed 

to be fixed. Note that this reverse transition probability assumes that the denoising 
transformation that must be implemented to obtain the less-noisy image sample is 
governed by a Gaussian distribution as well [45]. This approximation is valid when 
the step sizes are sufficiently small (i.e., a larger T on the order of thousands is 
prescribed to discretize the diffusion process). The predicted mean μθ(xt , t). can 
then be derived from the network’s estimation of incremental noise as follows: 

.μθ(xt , t) = 1√
αt

(
xt − βt√

1 − ᾱt

ϵθ (xt , t)

)
. (17.4)
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Afterwards, posterior sampling can be performed based on a Gaussian distribution 
as follows: 

.xt−1 = μθ(xt , t) + σtz, (17.5) 

where z ∼ N(0, I).. This iterative process gradually denoises intermediate image 
samples, leveraging the network’s predictions to move step-by-step towards the 
original clean image. 

17.2.3 Training Objective 

The forward diffusion process in conventional DPMs can be emulated via simple 
Monte Carlo simulations, where the clean images from a training set are progres-
sively degraded with increasing levels of noise. This emulation will yield a set of 
intermediate image samples x0,1,..,T . across time steps. Afterwards, the network-
based recovery operator can be trained in order to estimate either the incremental 
noise in between consecutive steps or the clean image at step 0, as mentioned before. 
Assuming that the incremental noise is estimated, the naive objective for learning 
the parameters of the recovery operator can be formulated as [44]: 

.Lsimple = Et,x0,ϵ

l
||ϵ − ϵθ (xt , t)||2

l
, (17.6) 

where E. is expectation that is typically computed via a Monte-Carlo estimator over 
a set of training samples, ϵ . is the true noise that can be derived as (xt − xt−1)., and 
ϵθ (xt , t). is the noise predicted by the model. This simple yet effective loss function 
directly trains the model to predict the noise added in between steps t and t − 1.. 
Yet, pioneering studies on DPMs have suggested that a mean-squared error loss on 
the noise can occasionally suffer from instabilities and thereby suboptimal learning. 
To address these issues, a variational lower bound (VLB) loss is commonly adopted 
[43]: 

. Lvlb = Eq

l
T⎲

t=1

DKL (q(xt−1 | xt , x0) || pθ(xt−1 | xt )) − logpθ(x0 | x1)
l

,

(17.7) 
where DKL . denotes the Kullback-Leibler divergence between the true posterior 
probability q(xt−1 | xt , x0). and the model’s estimate for the posterior pθ(xt−1 | xt ).. 
This objective ensures that the model not only learns to denoise effectively but 
also aligns its approximate posterior distribution closely with the true posterior 
distribution of the data.
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17.2.4 Sampling Procedures 

A trained DPM can be used to synthesize random images from the learned 
data distribution through progressive denoising transformations mediated by the 
recovery operator. For this purpose, a pure Gaussian noise sample xT ∼ N(0, I). is 
drawn, and the recovery operator is applied iteratively to perform reverse diffusion 
steps as outlined below [18]: 

Initialize xT ∼ N(0, I). 
For t = T , T − 1, . . . , 1.: 

. xt−1 = μθ(xt , t) + σtz, z ∼ N(0, I)

By following this iterative denoising process, the model generates a high-quality 
image x0 . that approximates a sample from the original data distribution. The gradual 
refinement ensures that the generated images are both diverse and of high fidelity, 
making diffusion models particularly suitable for complex image generation tasks. 

In sum, DPMs offer a robust framework for generating high-quality images 
through well-defined forward and reverse processes, stable training objectives, 
and effective sampling procedures. These models have shown great promise in 
various applications, including challenging MRI image formation tasks. The explicit 
characterization of data likelihood, stability during training, and avoidance of mode 
collapse make them an attractive alternative to other generative models like GANs, 
particularly in the field of medical imaging where reliability and accuracy are 
paramount. 

17.3 Diffusion-Based MRI Reconstruction 

Accelerated MRI constitutes a significant area of investigation in the domain of 
medical imaging, primarily focused on mitigating characteristic aliasing artifacts 
while reconstructing images from undersampled k-space data [10]. The inverse 
problem involved in this reconstruction task can be formulated based on the physical 
signal model for MRI acquisitions: 

.Ax = y, (17.8) 

where A = ΩFB . represents the imaging operator that accounts for the k-
space undersampling pattern ( Ω .) and coil sensitivities (B), with F. denoting the 
Fourier transform. Due to the ill-posed nature of the inverse problem described in 
Eq. 17.8, prior information has to be leveraged in order to obtain a high-quality 
reconstruction x̆ .:
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.x̆ = min
x

||Ax − y||2 + R(x, y), (17.9) 

where the first term enforces data consistency and R(x, y). denotes a regularization 
term that modifies the optimization objective for MRI reconstruction by enforcing 
the assumed image prior [13]. 

DPMs have recently emerged as a promising approach to tackle MRI reconstruc-
tion, promising enhanced image fidelity and improved generalization capabilities 
[8, 16]. In essence, a trained DPM model can be used to compute the posterior 
probability p(x|y). of the MR image x. given undersampled k-space data y..  To  
do this, reverse diffusion steps are taken with the trained DPM starting from a 
pure Gaussian noise image. To ensure that the DPM does not simply reconstruct 
a random MRI image that doesn’t belong to the actual subject, reverse diffusion 
steps must be guided by the physical signal model and the acquired data. Using 
Bayes’ theorem, this can be achieved by multiplying the distribution of each 
intermediate image sample p(xi ). with the likelihood term p(y|xi ). [14]. Assuming 
p̃(xi ) ∝ p(xi )p(y|xi )., an unadjusted Langevin algorithm can be cast for sampling 
images: 

.xk+1
i ← xk

i + γ

2
∇xi

log p̃(xk
i | xi+1) + √

γ z, (17.10) 

where z. denotes standard complex Gaussian noise, and γ . controls noise scale. Note 
that the DPM has not been trained to capture p̃(xk

i | xi+1)., yet the score function 
for p̃θ (xi | xi+1). parameterized by θ . can be derived by computing its log-gradient: 

.∇xi
log p̃θ (xi | xi+1) = ∇xi

logpθ(xi | xi+1) + ∇xi
logp(y | xi ). (17.11) 

The first term reflects the reverse transition probabilities as learned by the trained 
DPM, whereas the second term reflect likelihood of measured data given the 
underlying intermediate image sample. The influence of this second term on the 
derived intermediate samples can be formulated based on the physical signal model 
of accelerated MRI acquisitions, i.e., by performing data consistency projections as 
in traditional MRI reconstruction [14]. As such, the overall sampling equation can 
be expressed as follows: 

. xk+1
i ← xk

i + γ

2τ 2i+1

(
σ 2

i+1 − σ 2
i

)
sθ

(
xk
i , i

)
− γ

2σ 2
η

(
AHAxk

i −AHy
)

+ √
γ z,

(17.12) 
where sθ

(
xk
i , i

)
. denotes the recovery operator that receives the intermediate image 

sample at the current time step to produce an estimate of the clean image, AH
. 

denotes the Hermitian transpose of the operator A.. 
While MRI reconstruction based on the above formulation has been suggested 

to attain high image fidelity, it can suffer from poor generalization under domain 
shifts, e.g., when the training and test sets contain MRI data acquired under different 
protocols or scanners. Adaptive diffusion priors (AdaDiff) [16] have been developed
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to address this challenge in DPM-based MRI reconstruction. AdaDiff learns an 
unconditional diffusion prior for high-fidelity image generation (Fig. 17.1) and 
adapts this prior during inference to enhance generalization performance compared 
to static DPMs. Accordingly, MRI reconstruction with AdaDiff involves two phases: 
a rapid-diffusion phase that quickly produces an initial reconstruction using the 
trained prior, and an adaptation phase that refines this reconstruction by updating 
the prior to minimize data-consistency loss on the acquired k-space data of the given 
test subject (Fig. 17.1). 

Note that traditional DPMs generate images through a lengthy sequence of 
inference steps, resulting in prolonged image sampling times [18], thus building 
AdaDiff based on these DPMs would be computationally prohibitive. To overcome 
this barrier, AdaDiff instead employs an adversarial diffusion model that enables 
generation in a few large reverse diffusion steps, significantly speeding up image 
sampling during the rapid-diffusion phase. The primary reason that traditional 
DPMs require a large number of diffusion steps is that they rely on approximating 
q(xt |xt+1). with an auxiliary Gaussian distribution. In contrast, Adadiff employs a 
rapid adversarial diffusion model with a large step size k without the need to assume 
normality, following the approach described by [46]. The training process involves 
optimizing both a discriminator and a generator, DθD

. and GθG
. parameterized by θD . 

and θG . respectively. The discriminator loss LD . is defined as follows: 

.

LD =
⎲

t≥0

(
Eq(x0,xt )Eq(xt+k |xt )

l− log(DθD
(xt , xt+k, t + k))

l

+ Eq(xt+k)ENθG
(μ,γ )

l− log(1 − DθD
(x̂t , xt+k, t + k))

l

+Eq(x0,xt )Eq(xt+k |xt )

l
1

2
||∇xt DθD

(xt , xt+k, t + k)||2
l)

(17.13) 

where x̂t . is the generated image from the reverse diffusion process. Meanwhile, the 
generator loss LG . is defined as: 

.LG =
⎲

t≥0

Eq(xt+k)ENθG
(μ,γ )

l− log(DθD
(x̂t , xt+k, t + k))

l
(17.14) 

Given the trained diffusion prior, an initial reconstruction (xinit). is obtained 
in the rapid-diffusion phase by balancing between the image sets defined by the 
imaging operator and the trained diffusion prior. This balance is maintained by 
alternating between data-consistency projections and reverse diffusion projections. 
Data-consistency projections ensure alignment with the imaging operator, while 
reverse diffusion projections ensure conformity with the trained diffusion prior. 
Starting from xT . at the final time step T , drawn from a Gaussian noise distribution, 
the data-consistency projection at time step t + k . is implemented as [39]:
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Fig. 17.1 DPMs synthesize an image ( x0 .) starting from a white Gaussian noise sample ( xT .)  by  
going through a sequential process. In a forward step of this process, scaled Gaussian noise is 
added to the previous sample xt−1 ., resulting in a noisier sample xt .. In a reverse step of the process, 
noise introduced to xt+1 . during forward sampling is suppressed to obtain xt .. This reverse mapping 
is modeled as a projection through a neural-network operator, pθ (xt |xt+1).. Conventional DPMs 
use small step sizes to preserve the approximate normality of the reverse transition probability 
q (xt |xt+1)., which leads to long sampling times. AdaDiff employs a rapid adversarial diffusion 
model that enables sampling under large step size k, thus allowing transitions between x0 . and xT . 
in fewer steps. The increased noise in each step, due to the larger step size, disrupts the normality 
assumption for the reverse transition probability q (xt |xt+k).. To address this, AdaDiff utilizes 
an adversarial mapper that implicitly models the distribution of the reverse diffusion steps. The 
generator estimates denoised image samples, while the discriminator distinguishes real samples 
obtained via the forward diffusion process from the synthetic samples produced by the generator 

.ẋt+k =
(
xt+k +AH (y −Axt+k)

)
, (17.15) 

where A., AH
. are the imaging operator and its Hermitian. The reverse diffusion 

projection refines ẋt+k . to align it with the support of the diffusion prior: 

.xt = ẋt+k + βt (x̂t − ẋt+k), (17.16) 

where βt . is a blending factor, and x̂t . is generated by the reverse diffusion process.
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Fig. 17.2 Reconstructions from undersampled acquisitions with an acceleration factor of R=4x 
are presented. The results include data from both the IXI and fastMRI datasets. Each reconstructed 
image is displayed alongside the reference image obtained from fully-sampled acquisitions. 
Zoomed-in sections and arrows are used to emphasize the differences among the reconstruction 
methods. The traditional low-rank method LORAKS and the adaptive generative adversarial 
method GANprior . exhibit high noise amplification. The unrolled generative adversarial method 
rGAN shows residual aliasing, while the unrolled convolutional method MoDL displays noticeable 
spatial blurring. The conventional DPM (DDPM) still has some residual artifacts. In contrast, 
AdaDiff demonstrates minimal artifacts and noise, and maintains high spatial resolution in tissue 
depiction 

Next, a prior adaptation phase is executed to further refine the reconstruction 
by adapting the diffusion prior to the individual test subject’s data distribution as 
closely as possible. For this purpose, an inference optimization is performed where 
the parameters of the prior are updated to minimize a data-consistency loss between 
the generated and measured k-space data: 

.Ldc = ||y −Ax||22, (17.17) 

where x. is the reconstructed image. Parameter updates are performed iteratively to 
minimize this data-consistency loss, leading to an improved reconstruction: 

.θnew = θold − η∇θLdc (17.18) 

where θ . represents the parameters of the diffusion prior, and η . is the learning 
rate. This iterative optimization ensures that the final reconstruction is both data-
consistent and aligns with the adapted prior. 

Illustrative reconstructions using standard DPMs, adaptive diffusion priors, 
and other renowned MRI reconstruction techniques are shown in Fig. 17.2.  The  
methods LORAKS [17] and GAN prior . [34] exhibit significant noise amplification. 
Although rGAN and MoDL present lower noise levels, rGAN [11] displays residual 
reconstruction artifacts, and MoDL [2] experiences spatial blurring due to its pixel-
wise loss function. Among the diffusion models, DDPM [18] is characterized by
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relatively high noise levels. Conversely, AdaDiff adjusts its diffusion prior to align 
more closely with the distribution of the test data, allowing it to produce superior 
quality reconstructions that depict tissues with minimal artifacts and noise. 

17.4 Diffusion-Based MRI Translation 

Image translation is a pervasive task in multi-modal medical imaging that involves 
converting images from one modality to another, such as generating CT images 
from MRI data or synthesizing missing contrasts in a multi-contrast MRI protocol. 
This enables imputation of missing modalities without the need to run additional 
scans, so it can lower costs of comprehensive imaging exams [3]. While translation 
is attempted between images of the same underlying anatomy, medical image 
translation is still a challenging task since the tissue signals in different modalities 
are related to each other through hard to characterize, nonlinear relationships. As 
such, employing data-driven regularization priors to help improve predictions is key 
for the translation task, as it is for the single-modality reconstruction tasks. 

DPMs have shown significant potential in medical image translation as they are 
highly adept in learning the underlying data distribution and generating high-fidelity 
image samples through a gradual denoising process [42]. Early adoption of DPMs 
have shown significant promise for this family of deep learning models in difficult 
translation tasks such as synthesizing missing MRI contrasts, mapping MRI to CT 
images, and converting PET onto MRI images, which can all increase the diagnostic 
utility of multi-modal imaging protocols [38]. Among within-modality translation 
tasks, conversion between MRI sequences, such as T1-weighted to T2-weighted 
images, allows for curation of comprehensive protocols even when additional scans 
are prohibited by time constraints or patient conditions [38]. Among cross-modality 
translation tasks, generation of CT images from MRI data and generation to MRI 
images from PET data are two prominent examples. Note that these cross-modality 
tasks help provide more divergent tissue information than would be possible by 
either modality alone. For instance, MRI provides excellent soft tissue contrast, 
while CT offers detailed structural information regarding bone tissue. Analogously, 
PET images provide metabolic information to help locate tumor formation in the 
body, whereas MRI serves to do a more detailed mapping of healthy tissue in the 
surroundings of the tumor site [8]. 

Taken together, findings in recent reports suggest that DPMs provide a robust 
framework for image translation in medical imaging by capturing intricate relation-
ships between different modalities. Their ability to generate high-quality synthetic 
images can significantly enhance diagnostic evaluation by imputation of com-
prehensive multi-modal imaging protocols. Yet, to learn these translation tasks, 
conventional DPMs commonly require training on paired datasets of source and 
target modalities, which require spatially-registered source and target images from 
the same set of subjects [35, 44]. As such, conventional DPMs for translation tasks 
rely on supervised learning setups. This reliance of supervision can be limiting in
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cases where spatially-misaligned source and target images are available, or when 
source and target images cannot be acquired from the same set of subjects due to 
practical limitations. Unsupervised diffusion models can be a promising solution to 
this problem by facilitating the use of unpaired datasets of source-target images. 

In a recent study, SynDiff [38], an adversarial diffusion model has been 
introduced to enable unsupervised training for multi-contrast MRI and multi-modal 
translation tasks, while benefiting from high-fidelity synthesis capabilities of DPMs 
(Fig. 17.3). Unlike conventional DPMs, SynDiff employs a rapid diffusion process 
with large step sizes to improve computational efficiency while preserving accuracy, 
with similar motivations to AdaDiff introduced for MRI reconstruction. However, 
while AdaDiff uses an inherently unconditional DPM that maps Gaussian noise 
samples onto target images, SynDiff aims to maps Gaussian noise samples onto 
target images under source image guidance that is received via a conditional DPM 
architecture. At the core of SynDiff thus lies a novel source-conditional adversarial 
projector that enhances target image generation by leveraging information from the 
source image. For unsupervised learning, SynDiff incorporates a cycle-consistent 
architecture that integrates diffusive and non-diffusive processes to map back and 
forth between the source and target modalities. 

The diffusive component of SynDiff utilizes a source-conditioned adversarial 
projector to enhance reverse diffusion sampling efficiency. Regular diffusion models 
use large T to ensure small step sizes for normality, but this can be inefficient. 
SynDiff proposes a fast diffusion process where the noise variance γt . is set as: 

.γt = 1 − exp

(
βmink

T
− (βmax − βmin)2tk − k2

2T 2

)
. (17.19) 

In the reverse diffusion direction, a conditional process is proposed due to available 
guidance from a source image y.. A source-conditional adversarial projector captures 
the transition probability q(xt−k|xt , y)., and a conditional generator Gθ(xt , y, t). 
performs gradual denoising in each reverse step: 

.x̂t−k ∼ pθ(xt−k|xt , y) (17.20) 

To synthesize target-modality images, reverse diffusion steps require guidance 
from source-modality images. Given a training set of unpaired source and target 
modality images, SynDiff first produces paired estimates so that pseudo-supervised 
learning can then be performed. To obtain these estimates, a non-diffusive com-
ponent is employed that is essentially a cycle-consistent GAN model, known for 
its effective and efficient translation capabilities [23]. This non-diffusive module 
estimates source images paired with each target image in the training set, and 
it employs two generator-discriminator pairs (GφA,DφA). and (GφB ,DφB ). with 
parameters φA,B

. [23]. The generators produce source image estimates ỹA,B
.: 

.ỹB = GφB (xA
0 ), (17.21)
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Fig. 17.3 For unsupervised learning, SynDiff utilizes a cycle-consistent approach that translates 
bidirectionally between two modalities (A and B). To synthesize a target image x̂A

0 . in modality 
A, the diffusion module depends on a source image yB . from modality B of the same anatomy 
for guidance. However, training data may not always include paired source images of the same 
anatomy. To enable training with unpaired images, SynDiff incorporates a non-diffusion module 
to initially estimate a paired source image ỹB . from x̂A

0 .. Likewise, to produce a target image x̂B
0 . 

in modality B, the non-diffusion module first estimates a paired source image ỹA . from x̂B
0 ..  The  

non-diffusion module consists of two generator-discriminator pairs (GφA,B ,DφA,B ). that generate 
initial translation estimates for x̂A

0 → ỹB . and x̂B
0 → ỹA .. These initial translation estimates ỹA, ỹB . 

are then used as source-modality guides in the diffusion module. For cycle-consistent learning, the 
diffusion module includes two generator-discriminator pairs (GθA,B ,DθA,B ). to produce denoised 
image estimates for (xA

t , ỹB
t ) → x̂A

t−k . and (xB
t , ỹA

t ) → x̂B
t−k .
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.ỹA = GφA(xB
0 ). (17.22) 

The non-saturating adversarial loss for the generators GφA,B . is defined as: 

.LGφ = Epφ(y|x0)[− log(Dφ(y))]. (17.23) 

Meanwhile, the discriminators adopt a non-saturating adversarial loss [32]: 

.LDφ = Eq(y|x0)[− log(Dφ(y))] + Epφ(y|x0)[− log(1 − Dφ(y))]. (17.24) 

The diffusive module synthesizes target images based on initial estimates 
provided by the non-diffusive module. This process involves employing two adver-
sarial diffusion mechanisms with respective pairs of generators and discriminators, 
denoted as (GθA,DθA). and (GθB ,DθB ).. Starting with Gaussian noise images xA,B

T . 

at time step T , the target images are synthesized over T/k . reverse diffusion steps. 
During each step, the generators produce deterministic estimates to denoise the 
target images: 

.x̃A
0 = GθA(xA

t , y = ỹB, t), (17.25) 

.x̃B
0 = GθB (xB

t , y = ỹA, t). (17.26) 

Next, the denoising distribution for each modality is used to synthesize target 
images: 

.x̂A
t−k ∼ q(xA

t |xA
t , x̃A

0 ), (17.27) 

.x̂B
t−k ∼ q(xB

t |xB
t , x̃B

0 ). (17.28) 

SynDiff employs cycle-consistency loss for unsupervised learning, where true 
target images are compared with their reconstructed counterparts. Within the 
diffusive module, these reconstructions manifest as synthetic target images x̂A,B

0 .. 
Meanwhile, in the non-diffusive module, source-image estimates are transformed 
into the target domain through the generators: 

.x̌A
0 = GφA(ỹB), (17.29) 

.x̌B
0 = GφB (ỹA). (17.30) 

Given these definitions, the aggregated cycle-consistency loss is defined as:
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Fig. 17.4 SynDiff was evaluated on the IXI dataset for translating between different MRI 
contrasts. Representative synthesized images for (a)  T1 →.T2 and (b)  T2 →.PD translation tasks 
are shown alongside the source and ground-truth target (reference) images. Compared to other 
methods, SynDiff produces images with reduced noise and artifacts, while preserving higher 
anatomical accuracy 

.

Lcyc = E
t,q(xA,B

0 ),q(xA,B
t |xA,B

0 )

l
λ1φ(||xA

0 − x̌A
0 ||1 + ||xB

0 − x̌B
0 ||1)

+ λ1θ (||xA
0 − x̂A

0 ||1 + ||xB
0 − x̂B

0 ||1)
l (17.31) 

where λ1φ . and λ1θ . are the weights for cycle-consistency loss terms from the non-
diffusive and diffusive modules, respectively. The overall generator loss is: 

.LG
total = λ2φ(LG

φA
+ LG

φB
) + λ2θ (LG

θA
+ LG

θB
) + Lcyc, (17.32) 

where λ2φ . and λ2θ . are the weights for adversarial loss terms from the non-diffusive 
and diffusive modules, respectively [16, 35, 42]. 

Representative target-modality images synthesized diffusion-based and GAN-
based methods for multi-contrast MRI protocols are displayed in Fig. 17.4. Specif-
ically, SynDiff is compared against the following techniques: cGAN [23], UNIT 
[27], MUNIT [19], AttUnet [37], SAGAN [48], and DDPM [18]. GAN methods 
exhibit noise and local inaccuracies in tissue contrast. Traditional DPMs often 
suffer from spatial warping and blurring. UNIT-DDPM demonstrates relatively 
lower anatomical accuracy, occasionally losing tissue features. In contrast, SynDiff 
exhibits reduced noise and artifacts, and achieves superior accuracy in tissue 
depiction.
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17.5 Emerging Directions in MRI Image Formation 

Diffusion probabilistic models have already started to transform how we approach 
image formation tasks in the realm of MRI applications. We have showcased 
prominent use cases of DPMs for reconstructing MRI images from undersampled k-
space acquisitions, and for translating source onto target contrasts in multi-contrast 
MRI protocols. In these tasks, DPMs have been reported to significantly outperform 
previous state-of-the-art in the field in terms of image quality. That said, DPMs 
are not without limitation, and several lines of technical development are currently 
sought after to push the envelope of performance and efficiency. 

One of the critical challenges faced by current DPMs is their slow sampling 
speed, which can hinder their practical applicability in real-time scenarios. The 
primary cause of inefficiency in diffusion models is that they rely on small step 
sizes (equivalently a large number of time steps) to ensure that the denoising trans-
formations in the reverse direction approximately follow a Gaussian distribution. 
Several promising approaches have been introduced in the literature to cope with 
this challenge. On one hand, distillation techniques have been proposed that transfer 
the representations learned by a teacher DPM with a large number of time steps 
(e.g., T =1000), onto a student DPM with a much smaller number of time steps 
(e.g., T =10) [40]. Alternatively, implicit sampling techniques have been suggested 
to reduce the number of sampling steps through a teacher DPM without transfer-
ring representations onto a separate model [43]. While these techniques enable 
mimicking the behavior of the original, inefficient DPM to speed up inference, 
they inevitably cause losses in image quality. One potential reason that has been 
suggested to mediate these losses is that the denoising transformations that have 
to be performed at different time steps in the diffusion process can show divergent 
characteristics, thus a single denoising network may have difficulty in maintaining 
sample quality especially when under acceleration [5]. To mitigate these losses, a 
practical strategy is to split the diffusion process into multiple non-overlapping time 
fractions, and to train independent denoising networks for each fraction so as to 
ensure high performance following acceleration [6]. One the other hand, adversarial 
mechanisms have been suggested to improve the efficiency of DPMs directly during 
the training phase so as to lower the number time steps required [38, 46]. This 
approach corresponds to setting a hybrid adversarial-diffusion model, wherein there 
is an outer diffusion sampling loop with few time steps, and an inner adversarial 
sampling loop that enables accurate sample generation over large step sizes without 
the need to assume a Gaussian distribution for denoising transformations. It is 
possible that by integrating these various approaches, researchers can significantly 
enhance the efficiency of diffusion models, making them more viable for real-time 
applications. 

A second group of developments concern the neural network architecture used 
to implement the recovery operator. Starting on with the earliest studies introducing 
DPMs, UNet-based convolutional architectures have been mainstream in the liter-
ature. This can be attributed in part to the prowess of this particular architecture
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in performing denoising transformations, and in part to the practical challenges in 
hyperparameter optimization in deep neural networks that have likely discouraged 
many practitioners from adopting other architectures to build DPMs. Still, there 
is a growing interest in exploring alternative architectures such as transformers and 
more recent state-space models. Transformers, with their self-attention mechanisms, 
offer superior capabilities in capturing long-range dependencies, which can enhance 
the denoising capabilities of diffusion models [9, 24]. Several bodies of work have 
already reported performance improvements by building DPMs on transformers as 
opposed to convolutional backbones [25]. While the contextual sensitivity offered 
by transformers is desirable in medical imaging, self-attention-based architectures 
often suffer from high model complexity, which can compromise learning especially 
in domains where the training sets are relatively compact such as medical imaging 
[12]. As a remedy, recent selective state-space models, a prime example being the 
Mamba architecture, enable efficient processing with reduced model complexity, 
all the while enabling capture of long-range context [29, 49]. Early studies for 
adopting Mamba in image formation tasks [4, 20] suggest that, with further research 
to optimize architectures, we can pave the way for enhanced efficiency and accuracy 
in diffusion models. 

Another important group of developments involve the design of the diffusion 
process that inherently characterizes image generation capabilities of DPMs. In 
conventional DPMs, the diffusion process is designed with a Gaussian noise 
distribution at the start-point and the clean data distribution at the end-point. This 
process is highly adept if the aim is to learn the marginal distribution of clean 
image samples. However, when these conventional DPMs are deployed in inverse 
problem solutions, where the aim is to map degraded measurements onto clean 
images, information regarding the measurement model and measured data have to 
be injected during inference via a dedicated optimization procedure. This common 
approach seeks a compromise solution between the support set of the trained 
diffusion model and the support set of the measurements. In certain cases, these 
sets might only weakly intersect, causing conventional DPMs to yield suboptimal 
solutions or poor convergence. Recently, diffusion bridges have been introduced 
with the aim to address this fundamental limitation. Diffusion bridges present an 
innovative approach to embed task-specific information directly into model training, 
by setting the start-point of the diffusion process as the distribution of measurements 
and the end-point as the clean data distribution [28]. This allows integration of 
task-specific knowledge about the inverse problem that must be solved into the 
training of the recovery operator. Several studies in MRI image reconstruction and 
translation have already reported performance benefits with diffusion bridges over 
common DPMs [3, 33]. Future research should focus on refining diffusion bridge 
methodologies to fully harness their advantages over conventional approaches.
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17.6 Conclusion 

DPMs hold immense potential, particularly in the realm of MRI image formation 
tasks such as reconstruction and translation. Their ability to generate high-fidelity 
images and capture intricate details makes them well-suited for clinical and research 
applications of MRI. The ongoing developments underscore the transformative 
potential of DPMs in these domains, heralding a new era of innovation and 
efficiency. Therefore, as advancements continue in accelerating sampling speeds, 
devising powerful backbones, and embedding task-specific information within the 
diffusion process, diffusion models are poised to revolutionize MRI imaging. 
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Chapter 18 
Embedding 3D CT Prior into X-ray 
Imaging Using Generative Adversarial 
Networks 

Han Li, Zhen Huang, and S. Kevin Zhou 

Abstract There is clinical evidence that suppressing the bone structures in X-
rays (e.g., Chest X-rays (CXRs), pelvic X-rays (PXRs)) improves diagnostic 
value, either for radiologists or computer-aided diagnosis. However, bone-free 
CXRs are not always accessible. In this chapter, we explore the integration of 
3D CT prior knowledge into X-ray imaging using generative adversarial networks 
(GANs) to address challenges posed by 2D projection superposition and improve 
diagnostic accuracy. First, we introduce the Decomposition GAN (DecGAN) 
designed for the anatomical decomposition of CXR images, leveraging unpaired 
CT data. DecGAN utilizes decomposition loss, adversarial loss, cycle consistency 
loss, and mask loss to ensure realistic anatomical separation of components such 
as bone, lung, and soft tissue. We can remove the bone components and get 
the bone-suppressed CXRs. Next, we propose a coarse-to-fine High-Resolution 
CXRs Suppression (HRCS) approach to suppress bone structures in high-resolution 
CXRs. By leveraging digitally reconstructed radiographs (DRRs) and domain 
adaptation techniques, this method mitigates domain differences between CXRs 
and CT-derived images. Experiments on benchmark datasets show that this method 
outperforms existing unsupervised bone suppression techniques and significantly 
reduces false-negative rates in lung disease diagnoses. Finally,we address the super-
position problem in PXRs by introducing the Pelvis Extraction (PELE) module. This 
module, comprising a decomposition network, a domain adaptation network, and an 
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enhancement module, utilizes 3D anatomical knowledge from CT scans to isolate 
the pelvis from PXR images, enhancing landmark detection. Evaluations of public 
and private datasets demonstrate that the PELE module significantly improves 
landmark detection accuracy, achieving state-of-the-art performance across sev-
eral metrics. These approaches are based on similar principles but evaluated 
across different scenarios. The results demonstrate the potential to improve X-
ray diagnosis at no extra cost by leveraging generative models enriched with CT 
knowledge. 

18.1 Introduction 

X-ray (e.g., Chest X-rays (CXRs), pelvic X-rays (PXRs)), which is reconstructed 
from a series of X-ray projections, is one of the most common imaging modalities 
employed in the diagnosis. However, its utility is often limited by the 2D nature 
of the projection, where important anatomical structures may be obscured. For 
instance, in CXR imaging, bones such as ribs can obscure the lung area, making 
accurate diagnosis difficult [4, 11]. Similarly, in PXRs, soft tissue such as the bladder 
and intestines can overlap with the pelvis, complicating landmark detection. To 
address these challenges, we explore the integration of 3D computed tomography 
(CT) priors into 2D X-ray imaging to overcome the challenges posed by structural 
overlaps and ambiguous anatomical details inherent in X-ray images. In this chapter, 
we propose three different methods that utilize CT-derived prior to improve X-ray 
analysis. 

First, for CXRs, we introduce a Decomposition Generative Adversarial Network 
(DecGAN) [12], which leverages CT-derived anatomical priors to decompose X-
rays into distinct components (e.g., bones, lungs, and soft tissue) using unpaired 
data. We can remove the bone components and get the bone-suppressed CXRs. This 
unsupervised method does not rely on dual-energy (DE) images, making it more 
accessible for clinical use. DecGAN achieves superior unsupervised CXR bone 
suppression and improves the prediction accuracy of lung diseases. 

Second, we further develop a coarse-to-fine High-Resolution CXRs Suppression 
(HRCS) [13] that utilizes digitally reconstructed radiographs (DRRs) derived from 
CT data. By using DRRs as a bridge between CT and CXR, and employing domain 
adaptation techniques, we are able to perform high-resolution bone suppression 
without requiring paired data or manual annotations. This method enhances diag-
nostic accuracy by reducing the false-negative rate of lung disease detection. 

Third, we tackle the challenge of soft tissue overlap in pelvic X-rays by 
introducing the PELvis Extraction (PELE) module [8]. This method explicitly 
extracts the pelvis bone from PXRs using unpaired 3D CT priors. The extracted 
pelvis is enhanced and then used for landmark detection, significantly improving 
the accuracy of computer-assisted diagnosis and surgical planning.
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Through these approaches, we demonstrate that embedding 3D CT priors into X-
ray analysis can significantly enhance the diagnostic value of 2D X-rays, providing 
a robust solution to the challenges posed by anatomical superposition. 

The structure of the chapter is as follows. Sections 18.2–18.4 introduce DecGAN, 
HRCS, and PELE respectively, followed by the conclusion in Sect. 18.5. We add 
more discussion in the end of each section to help readers to be inspired by our 
book and explore this direction, potentially creating something meaningful. 

18.2 Decomposition Generative Adversarial Network 
(DecGAN) 

DecGAN is built on the backbone of CycleGAN with latent space disentanglement, 
as illustrated in Fig. 18.1. Given a CXR input X, our goal is to construct a function F 
that generates the modulated reconstruction Xm ., where different chest components 
can be adjusted by modifying the corresponding factors [αb, αl, αo].: 

.Xm = F(X, αb, αl, αo) = GX(GDec(GD(X, αb, αl, αo))), (18.1) 

To address the challenge of CXR decomposition, we contribute in three key 
ways: (1) We design an additional latent space decomposition discriminator, DDec ., 
to facilitate the embedding of prior CT decomposition knowledge and ensure the 
separation of different components in the generated DRR. (2) The DRR decompo-
sition network, GDec ., is incorporated into the CycleGAN backbone, providing the 
decoder with sufficient knowledge to manage the decomposition information in the 
latent space. (3) A soft bone mask M., generated from the bone components in the 
latent space, is used as an additional constraint to ensure the separation and realism 
of the reconstructed components. We primarily introduce the DRR Decomposition 
Network G Dec . and the Mask Loss here, as the other components are similar to those 
in CycleGAN. For more details, please refer to the original paper. 

18.2.1 DRR Decomposition Network 

The decomposition network G Dec . is built upon the U-Net architecture [18]. The 
components of a 3D CT volume are projected using consistent parameters and 
concatenated into channels, serving as the ground truth for DRR decomposition: 

.IDec = [Ibone, Ilung, Iother ], (18.2) 

where Ibone ., Ilung . and Iother . are the components of DRR for bone, lung and other 
soft-tissue, respectively.
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Based on the input DRR image D and its separated components IDec .,  the  
decomposition network can be trained in a supervised way by the decomposition 
loss:

.LDec(GDec) = ED∼pdata(D)[||GDec(D) − IDec||22]. (18.3) 

18.2.2 Mask Loss 

In early experiments with DecGAN, we observed that the reconstruction results 
lacked fidelity when modifying the probability maps Zprocess .. This issue arises 
because GX . has limited prior knowledge for generating outputs with altered 
Zprocess .. To address this, we introduce additional constraints on the generative 
model for CXR decomposition. The bone component is particularly well-suited 
for this purpose, as it only appears in specific regions of the CXR and is easily 
distinguishable from other components. Moreover, the bone component is generally 
irrelevant to lung disease diagnosis. Thus, we aim to improve the generative model 
by placing less emphasis on bone structures. 

Unlike the complete probability maps Zprocess ., we first remove the bone 
components from the latent space: 

.Zbonef ree = [0, Zlung,GD(X) − Zbone − Zlung]. (18.4) 

A soft mask M. is subsequently generated from the bone probability map, using 
a confidence threshold of 95%. Since the images are normalized to a range of [0,1], 
the soft mask is defined as: 

.M = 1 − (Zbone − t)/(1 − t) ∗ δ[Zbone], (18.5) 

where t is a threshold (we set t = 0.95.) and the binary function δ[Zbone]. is defined: 

.δ[Zbone] =
l
0 Zbone < t;
1 Zbone ≥ t .

(18.6) 

Using the mask M. from (18.5), the reconstruction results—without bone compo-
nents or with suppressed bone structures—are constrained by the input CXRs. The 
mask loss encourages the non-bone regions of the reconstructed images to resemble 
the original images more closely: 

.Lmask(GX) = EX∼pdata(X)[||GX(Zbonef ree) ∗M− X ∗M||1]. (18.7)
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DecGAN 
DecGAN 

(no , no ℒ ) 
CycleGANNo Adaptation 

Blind Signal 

Separation 
Original CXR 

Fig. 18.2 Qualitative results of CXR bone suppression. In DecGAN, we implement multiple con-
straints that allow for the separate decomposition of various components while ensuring realistic 
output. DecGAN effectively suppresses bone components to a high degree while maintaining the 
integrity and realism of the non-bone regions 

18.2.3 Inference and Modulation 

During the inference phase, since the CXR components are separated within the 
latent space and the generative model is trained to decode this information, we can 
modulate specific components (e.g., lung) by adjusting the weights of the probability 
maps, [αb, αl, αo]., to generate the modulated CXR reconstruction as follows: 

.Xm = GX([αb ∗ Zbone, αl ∗ Zlung, αo ∗ (GD(X) − Zbone − Zlung)]). (18.8) 

Clearly, setting αb . to 0 results in bone-suppressed CXRs (Fig. 18.2). 

18.2.4 Experiments of DecGAN 

18.2.4.1 Datasets 

We collected 246 CT volumes from LIDC-IDRI [1]. The bone regions in the 3D CT 
volumes were manually labeled, while the lung regions were segmented based on 
intensity and dilation techniques. DRRs were generated from these 246 CT volumes 
with augmentation through rotation and rescaling. Additionally, 662 CXRs from the 
Shenzhen Hospital X-ray Set [9] and 112,120 CXRs from ChestX-ray14 [22]  were  
collected. For testing, 99 cases were randomly selected from the Shenzhen Hospital 
X-ray Set, and the official split of ChestXray14 was used for our experiments.
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Fig. 18.3 Illustration of CXR modulation. DecGAN allows targeted modulation of specific 
components while keeping other regions unaffected 

18.2.4.2 DecGAN Bone-Suppressed CXRs for Automatic Disease 
Classification 

The components of a CXR can be modulated by adjusting the weights of Zprocess ., 
as described in (18.8). Figure 18.3 shows the results of modulating the components. 
The weights αb . and αl . are varied while keeping the other weights constant. It is 
evident that the bone and lung components can be either suppressed or enhanced 
without affecting the other components. 

To directly demonstrate the effectiveness of DecGAN for lung disease diagnosis, 
the decomposition results are fed into a lung disease prediction system based 
on DenseNet-121. The lung enhancement results are generated with weights 
[ αb ., αl ., αo .] set to [1,2,1]. These enhanced lung images are concatenated 
with the original CXRs and used as inputs for the pretrained DenseNet-121 
model [7]. The quantitative prediction results are summarized in the next section 
Table 18.1. 

18.2.5 Conclusion of DecGAN 

In this section, we present DecGAN, a model trained in an unpaired setting 
to decompose CXR images into different components by leveraging prior CT 
anatomical knowledge. We demonstrate the effectiveness of DecGAN in unsuper-
vised bone suppression and lung disease diagnosis tasks, achieving state-of-the-art 
performance. We believe DecGAN has the potential to significantly enhance the 
diagnostic utility of CXR images. 

However, DecGAN’s low-resolution output limits its clinical applicability. Built 
on CycleGAN, DecGAN requires significant GPU resources, making it challenging 
to process high-resolution CXRs (e.g., 1024 ×. 1024) due to both memory con-
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straints and convergence difficulties. Similarly, recently developed diffusion models 
face similar challenges. To address these issues, we explore an alternative approach 
for high-resolution bone suppression in the next section, enabling efficient removal 
of bone impressions at a resolution suitable for clinical application. 

18.3 High-Resolution CXRs Suppression (HRCS) 

This work builds upon DecGAN [12], introducing several key advancements: 
(1) While DecGAN [12] was limited to low-resolution CXRs as both input and 
output, this study extends the approach to generate high-resolution CXRs with 
bone suppression, which is more relevant for clinical use; (2) Unlike the previous 
approach, which directly produced bone-suppressed CXRs via a learning-based 
model [12], this work separates the process by first computing bone decomposition 
and then subtracting it from the original high-resolution CXR, thereby preserving 
non-bone regions. This distinction is critical for clinical diagnostic accuracy; (3) We 
introduce bone decomposition in the Laplacian of Gaussian (LoG) domain instead 
of the conventional image domain, which helps to reduce the domain discrepancy 
between DRR and CXR; (4) Finally, we assess the approach by having experienced 
radiologists utilize the high-resolution, bone-free CXRs for diagnostic purposes, 
confirming the clinical value of the improved resolution and accuracy. 

Our method starts with a high-resolution CXR input and aims to produce a high-
resolution bone-suppressed CXR by extracting structural knowledge from unpaired 
CT scans. This knowledge serves as a structural prior in our framework. As depicted 
in Fig. 18.4, the proposed approach is composed of two main stages. In the initial 
stage, we conduct a low-resolution decomposition of the CXR to obtain bone 
decomposition results. This is achieved by utilizing unpaired CT structural priors 
in combination with a decomposition network and domain adaptation techniques. 
In the second stage, the low-resolution bone decomposition results are upsampled 
to match the size of the high-resolution CXR. These results are then normalized to 
ensure that their intensity distributions are consistent with the original CXR. The 
bone components are subsequently subtracted from the original CXR to achieve 
bone suppression. 

The two stages of our method can be further divided into four key steps: (1) The 
first step involves employing multi-task learning [5, 21] to train a decomposition 
network. This network is used to break down a given DRR image into a bone 
component, ΔgIbone ., and a lung mask, Ilungmask ., within the LoG-DRR domain; 
(2) In the second step, the low-resolution CXR image IX . is transformed into the 
LoG domain, where the decomposition network FMT . is applied to generate the 
bone decomposition ΔgIpredbone . and the predicted lung mask Mpredlung . using 
domain adaptation techniques; (3) The third step focuses on obtaining a high-
resolution bone decomposition result. Histogram matching is then applied to adjust 
its intensity distribution, aligning it with that of the original high-resolution CXR
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image; (4) Finally, the rectified bone component is subtracted from the original CXR 
to produce the final bone-suppressed result. 

18.3.1 Decomposition in Unpaired CT Domain 

As shown in Fig. 18.4, to leverage knowledge from unpaired CT images for accurate 
bone suppression in CXRs, in step-1, we first construct a multi-task decomposition 
network, FMT ., to decompose a DRR image and obtain both the bone component and 
the lung mask. Research suggests that transforming images into the LoG domain 
reduce the domain gap between DRR and CXR [19], facilitating better domain 
adaptation. Therefore, we initially transform both the DRR images ID . and the CXR 
images IX . into the LoG domain using the LoG operator. The LoG operator combines 
the Gaussian and Laplacian filters to enhance edge responses while reducing noise. 

18.3.2 CXR Bone Decomposition via Domain Adaptation 

To further narrow the gap between the LoG-DRR and LoG-CXR domains, in step-
2, we propose to modify the style of LoG-CXR to align it with that of LoG-DRR. 
This is achieved using CycleGAN [26], to effectively utilize the domain knowledge 
embedded in the multi-task decomposition network FMT . learned in step-1. 

In particular, we employ two generators: one for translating LoG-CXR to LoG-
DRR ( GD .), and another for translating LoG-DRR to LoG-CXR ( GX .). Since 
our CXR and CT datasets are unpaired, CycleGAN is configured in an unpaired 
mode. This configuration prevents the use of a reconstruction loss between the 
generated image and its paired ground-truth. Instead, we incorporate discriminators 
to differentiate between the generated LoG-DRR and the real LoG-DRR ( DD .), 
as well as between the generated LoG-CXR and the real LoG-CXR ( DX .). The 
two generators and their corresponding discriminators are trained adversarially, 
following the standard CycleGAN procedure [26]. 

After the training of the generators is complete, domain adaptation at the data 
level can be achieved by transforming each LoG-CXR ΔgIX . into ΔgIf akeD . using 
the generator GD .. The pretrained multi-task decomposition network FMT . can then 
be directly applied to ΔgIf akeD . to obtain the low-resolution bone decomposition 
and lung mask results: 

.ΔgIf akeD = GD(ΔgIX), . (18.9) 

IpredMT = FMT (ΔgIf  akeD) = [ΔgIpredbone; Mpredlung], (18.10) 

where ΔgIf akeD . is the domain adaptation result of CXR IX ., ΔgIpredbone . and 
Mpredlung . are the low-resolution bone decomposition result.
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18.3.3 High-Resolution Bone Decomposition 

In step 3, we aim to perform CXR bone suppression at high resolution. This 
process consists of two primary sub-steps: low-resolution bone upsampling and 
high-resolution CXR intensity normalization. 

Low-Resolution Bone Upsampling The low-resolution bone image ΔIpredbone . 

and lung maskMpredlung ., generated by the multi-task decomposition network FMT ., 
are upsampled to high resolution (e.g., 1024 × 1024.) as follows: 

.ΔgI
h
lungbone = ΔIh

predbone × Mh
predlung, (18.11) 

where the superscript ‘h’ in ΔgI
h
lungbone ., ΔIh

predbone ., and Mh
predlung . indicates that 

the images are at the target high-resolution size. 

Next, we convert ΔgI
h
lungbone . into a bone mask Mh

lungbone . by applying a 

thresholding function T., where intensities below the mean intensity of ΔgI
h
lungbone . 

are set to 0 and those above the mean are set to 1. We then multiply the original high-
resolution CXR Ih

X . by this bone mask Mh
lungbone . to obtain a coarse high-resolution 

bone image within the lung mask Mh
lungbone .. This can be represented as: 

.Mh
lungbone = T(ΔgI

h
lungbone), I

h
Xcoabone = Ih

X × Mh
lungbone. (18.12) 

The coarse bone result, denoted as Ih
Xcoabone ., does not accurately reflect the 

true bone distribution, as it still includes the intensities of lung and soft tissue 
regions. To address this issue, we calculate the mean intensity Ib10 .within the bone’s 
neighboring regions (within a 10-pixel radius) as an approximation of the lung and 
soft tissue intensities. We then subtract this value from Ih

Xcoabone . to more accurately 
estimate the real bone structure in the CXR:Ih

Xbone = Ih
Xcoabone − Ib10 .. 

High-Resolution CXR Intensity Histogram Matching Histogram matching is a 
technique that preserves the fine details of the original image while aligning the 
intensity distribution with that of a target image. As illustrated in Fig. 18.4,  we  use  
the histogram of the estimated bone image Ih

Xbone . from the CXR as the reference 
for the bone intensity distribution. The intensity distribution of the LoG-CXR bone 
component ΔgI

h
lungbone . is then adjusted by matching its histogram to the reference 

distribution, resulting in the final bone component Ih
f inalbone ., expressed as: 

.Ih
f inalbone = HM(ΔgI

h
lungbone,D

h
Xbone), (18.13) 

where HM  is histogram matching, Dh
Xbone . is the target bone intensity distribution 

of Ih
Xbone ..
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18.3.4 High-Resolution CXR Bone Suppression 

In step-4, we finally subtract the rectified bone component Ih
f inalbone . from the 

original CXR to generate the final bone suppression result Ih
BS = IX − Ih

f inalbone ., 

where Ih
BS . represents the final high-resolution bone-suppressed CXR. 

18.3.5 Experiments of HRCS 

18.3.5.1 Datasets 

We evaluate our method on three publicly available datasets. A total of 246 CT 
volumes from LIDC-IDRI [1] are used as unpaired CT structural priors to train 
FMT . in the first stage. The datasets consist of 662 CXRs with a resolution of 1024×
1024. from the Shenzhen hospital dataset [9] and 112,120 CXRs with resolutions of 
approximately 3000 × 3000. from the Chest-14 dataset [22]. 

18.3.5.2 HRCS Bone-Suppressed CXRs for Automatic Disease 
Classification 

To further demonstrate the effectiveness of our method for lung disease diagnosis, 
we fed our bone-suppressed results from both datasets into a lung disease prediction 
system based on DenseNet-121 [7]. We concatenate two original CXR images and 
one bone-suppressed CXR image from our method to create a three-channel input. 
This three-channel image is then used as input to the DenseNet-121 [7]. 

The DenseNet-121 [7] models in both tests utilize three convolutional layers 
with full padding, using 3 × 3. convolutional kernels and 64 filters. The Shenzhen 
hospital dataset [9] is classified into two categories (normal vs. abnormal), while 
the Chest-14 dataset [22] is classified into 14 categories. Both X-ray datasets are 
split according to their official splits [9, 22]. The data augmentation and training 
strategies follow those described in previous work [17]. 

The quantitative prediction results for both datasets are summarized in 
Tables 18.1 and 18.2, along with the results of other methods evaluated on the 
official splits. Our method achieves state-of-the-art performance for lung disease 
classification on both datasets. 

Lung diseases such as pneumothorax, edema, and fibrosis can cause subtle 
changes in lung textures, which may be difficult to detect, especially when occluded 
by ribs. We hypothesize that bone suppression can improve the accuracy of 
automatic disease classification, and this is supported by the results in Table 18.1. 

For the Shenzhen hospital dataset, our method improves the AUC by 0.050 and 
accuracy by 0.054. The false-positive rate also drops from 20.9% to 12.2%. Notably, 
these performance improvements were achieved in an unpaired training setting,
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Table 18.1 Area under the curve (AUC) for the prediction of 14 lung diseases on the ChestX-
ray14 dataset 

Wang et al. Yao et al. DenseNet-121 DenseNet-121 DenseNet-121 

Method [22] [24] [7, 17] + DecGAN[12] + Our method 

Atelectasis 0.700 0.733 0.777 0.781 0.776 

Cardiomegaly 0.810 0.858 0.879 0.881 0.908 
Effusion 0.759 0.806 0.825 0.827 0.842 
Infiltration 0.661 0.675 0.696 0.703 0.711 
Mass 0.693 0.727 0.835 0.835 0.836 
Nodule 0.669 0.773 0.773 0.778 0.750 

Pneumonia 0.658 0.690 0.730 0.737 0.742 
Pneumothorax 0.799 0.805 0.842 0.843 0.863 
Consolidation 0.703 0.717 0.761 0.762 0.758 

Edema 0.805 0.806 0.847 0.851 0.854 
Emphysema 0.833 0.842 0.920 0.917 0.918 

Fibrosis 0.786 0.757 0.823 0.837 0.847 
Pleura Thicken 0.684 0.724 0.779 0.783 0.793 
Hernia 0.872 0.824 0.938 0.929 0.930 

Average 0.745 0.767 0.816 0.819 0.824 

Table 18.2 The area under the curve (AUC), accuracy (ACC), true positive rate (TP), and true 
negative rate (TN) for predicting normal versus abnormal cases on the Shenzhen Hospital dataset. 
The test set consists of 68 abnormal CXRs and 67 normal CXRs 

Method DenseNet-121 [7] DecGAN [12] Ours (1-channel) Ours (3-channel) 

AUC 0.895 0.910 0.906 0.915 
ACC 0.752 0.822 0.814 0.876 
TP 60.6% (40) 79.1% (53) 86.7% (57) 87.8% (58) 
TN 91.0% (61) 85.7% (58) 77.6% (52) 88.0% (59) 

and we believe the improvements could be even more pronounced with supervised 
training data. 

18.3.5.3 HRCS Bone-Suppressed CXRs for Clinical Diagnosis 

To assess whether our bone suppression results are beneficial for clinical diagnosis, 
we conducted a series of experiments involving two radiologists with varying levels 
of experience. More details are available in the original papers. 

18.3.5.4 Bone-Suppression Visualization Results of HRCS 

We selected three CXRs (one normal, one with pulmonary calcification, and one 
with tuberculosis) from the Shenzhen hospital dataset [9] to visually compare bone
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Fig. 18.5 Each bone-suppression method is represented by two rows and eight columns. The top 
row displays the bone-suppressed images, while the bottom row shows the result of subtracting 
these images from their corresponding original CXRs. The first two columns present normal CXR 
results generated by various methods, while the last six columns contain two abnormal CXRs 
(one with pulmonary calcification and one with old tuberculosis). The images within blue boxes 
highlight normal detail regions, whereas red boxes indicate abnormal regions 

suppression results from different methods. As shown in Fig. 18.5, our method has 
three advantages: (1) Our bone-suppressed results are more visually pleasing. (2) 
Our method can retain large nodules (e.g., calcifications in the fourth column and 
old tuberculosis in the seventh column) as well as small details (e.g., small vascular 
sections in the fifth and last columns). (3) The shapes and details are clearer in our 
results compared to others, as seen in the lung markings in the second, fifth, and last 
columns, and in the nodules in the fourth and seventh columns. These advantages 
help reduce reading difficulty and the risk of misdiagnosis. 

18.3.6 Discussion 

From the above results, we conclude: (1) Our method produces superior image qual-
ity after bone suppression compared to state-of-the-art approaches. (2) Our bone-
suppressed images enhance lung disease classification accuracy and outperform 
existing methods. (3) Bone-suppressed images help reduce clinical misdiagnosis, 
especially false negatives. (4) Our approach aids in reducing reading difficulty and 
the likelihood of misdiagnosis.
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18.3.7 Conclusion of HRCS 

In this section, we presented a method for automatically obtaining bone-suppressed 
CXRs. Our approach integrates learning-based and physical model-based methods, 
combining the advantages of both: automation and high-resolution results with low 
computational cost. Specifically, we proposed an unsupervised bone suppression 
method using structural priors derived from unpaired CT images. We applied 
LoG transformation and domain adaptation to reduce the domain gap between 
DRRs and CXRs, leveraging CT domain knowledge. We then used a multi-task 
decomposition network and histogram matching to generate high-resolution bone 
images. Experiments and clinical evaluations on two benchmark CXR datasets 
demonstrate that bone-suppressed images enhance both clinical diagnosis and 
automatic lung disease classification. 

A limitation of our approach is that the diversity of the generated DRR images 
is limited and may not accurately reflect the imaging conditions of all CXRs, 
particularly in extreme cases. For example, our method may not perform well for 
CXRs without bones or with bones of very low contrast. 

However, generating the bone image first and then subtracting it from the original 
CXR proves to be an effective approach for producing high-resolution, high-quality 
bone-suppressed CXRs. In addition to the previously discussed advantage that 
HRCS places lower demands on the quality of the generated bone itself, another 
key reason is that bones are generally easier to generate than soft tissues. Therefore, 
we want to identify more tasks that benefit from having the bone image directly, 
rather than a fully bone-suppressed image. Pelvic X-ray bone extraction serves as 
an ideal task that directly benefits from having access to the bone image itself. 

18.4 PELvis Extraction (PELE) 

Pelvic X-rays (PXRs) are commonly utilized in clinical decision-making for 
conditions involving the pelvis, the lower section of the trunk that provides 
structural support and stability. Specifically, PXR-based landmark detection aids 
in downstream analyses and supports computer-assisted diagnosis and treatment 
planning for pelvic disorders. While PXRs have advantages such as lower radiation 
exposure and reduced cost compared to computed tomography (CT), they pose a 
challenge due to the overlay of soft tissues, such as the intestines and bladder, 
which can obscure the underlying pelvic bone structures. This overlap may affect 
the accuracy of landmark detection in certain cases. Existing deep learning-based 
landmark detection methods typically address this issue indirectly by focusing on 
network architecture improvements. However, approaches that explicitly tackle soft 
tissue obstruction in PXRs remain relatively uncommon. 

In this section, we present the PELE module, designed to extract pelvic structures 
from PXRs, thereby enhancing downstream analyses such as landmark detection.
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Fig. 18.6 (a)  and  (b) The diagram of the proposed PELvis Extraction (PELE) module. (c)  The  
enhancement module. (d) The landmark detection fl ow

As  shown  in  Fi  g. 18.6, the PELE module consists of two stages: (a) image 
decomposition via FDE . and (b) domain adaptation through FDA .. 

Image Decomposition The goal is to decompose a 2D PXR Xraw . into a pelvis-
only image Xbone . and a tissue-only image Xtissue ., i.e., Xraw → (Xbone,Xtissue)., 
using a learned deep network. However, it is challenging due to the lack of pelvis-
only images paired with 2D PXRs. Inspired by previous work [2, 6, 10, 13], 
we leverage 3D prior knowledge from CT and use a 2D digitally reconstructed 
radiograph (DRR) as a bridge between 3D CT and 2D PXRs. 

From a 3D CT volume Vraw . and its isolated pelvis portion Vbone ., we generate 
2D DRR images of Vraw . and Vbone ., denoted as Iraw . and Ibone ., respectively, using 
the DeepDRR [20] algorithm. We then train a deep neural network FDE . to perform 
DRR-based decomposition: Ibone = FDE(Iraw).. 

To improve the performance of FDE ., we also introduce bone mask segmentation 
as an auxiliary task. Specifically, given a CT volume Vraw . and its bone mask 
annotation Vmask ., the bone portion is obtained via Vbone = Vraw ⊙ Vmask ., where 
⊙. denotes element-wise multiplication. We project the 3D Vmask . to create the 2D 
mask image Imask . using DeepDRR. The training process consists of two steps: (i) 
First, two networks are trained: a nnU-Net F1 . for predicting Imask . and a U-Net F2 . 

for predicting Ibone .; (ii) Then, the product Imask ⊙ Ibone . is used as the final bone 
prediction Îbone .: 

. Imask = F1(Iraw); Ibone = F2(Iraw); Îbone = FDE(Iraw) = Imask ⊙ Ibone.

(18.14)
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Domain Adaptation Although DRR images share the same dimensions as PXRs, 
there still exists a domain gap between them. Therefore, the decomposition model 
FDE .cannot be directly applied to PXRXraw .. To bridge this gap, we employ domain 
adaptation (DA) using CycleGAN [26] as the backbone. CycleGAN learns a forward 
mapping network FDA . from PXR to DRR, as well as an inverse mapping Iraw =
FDA(Xraw).. The predicted pelvis for Xraw ., denoted as Xbone ., is then given by: 

.Xbone = FDE(Iraw) = FDE(FDA(Xraw)). (18.15) 

18.4.1 Pelvis Enhancement 

The extracted pelvis image Xbone . sometimes contains artifacts, especially in poorly 
penetrated areas such as the hip bones, sacrum, and tailbone, which can affect 
diagnosis. To address this, we propose an enhancement module to generate the 
final output, XboneEnh ., as shown in Fig. 18.6c. We smooth and normalize the pelvic 
contour edge in Xbone . to obtain a processed pelvic bone image XboneP re .,  using  a  
Gaussian filter for smooth t ransitions:

. XboneP re = N [G (Xmask) ⊙ Xbone] , (18.16) 

where Xmask . is the binary bone mask, N. denotes the normalization operator, and 
G. is a low-pass filter (e.g., Gaussian filter). Next, we multiply XboneP re . with Xraw . 

to incorporate PXR details and apply tone mapping (e.g., Gamma correction) to 
enhance dark areas and reveal finer details. The final enhanced image is XboneEnh .. 

18.4.2 Pelvic Landmark Detection 

As depicted in Fig. 18.6d, we use the enhanced pelvis image XboneEnh . to train a 
landmark detection network Φ .. Landmark annotations on Xraw . are used to generate 
ground truth (GT) heatmaps Hgt .. For a given landmark position (x0, y0).,  the  GT  
heatmap Hgt (x, y). is defined as: 

.Hgt (x, y) = 1√
2πσ

exp

l
− (x − x0)

2 + (y − y0)
2

2σ 2

l
, (18.17) 

where σ . is the standard deviation of the Gaussian distribution. The detection 
network is trained using XboneEnh . and supervised by the GT heatmaps Hgt ..  A  s
XboneEnh . and Xraw . share the same spatial grid, the predicted landmarks can be 
directly mapped onto Xraw .. We evaluate two baseline landmark detection models: 
U-Net [18] and GU2Net [25]. U-Net is a popular model in medical analysis, while
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GU2Net is a universal landmark detection model that combines local features with 
global context. 

18.4.3 Experiment of PELE 

18.4.3.1 Datasets 

For the CT dataset, we use the publicly available CTPelvic1K dataset [16], which 
consists of 1184 volumes (over 320K slices). DRR images are generated using the 
DeepDRR [20] algorithm and resized to 512 × 512. via bilinear interpolation. In 
total, 919 DRR images are generated to train FDA ., and 200 high-quality images are 
selected to train FDE .. For PXRs, we curate 850 images from three different sources: 
Dataset1 consists of 400 high-resolution PXRs from the open-source CGMH-
PelvisSeg dataset, provided by CGMHai Lab. Dataset2 includes 150 images from 
an open-source dataset provided by [3]. Dataset3 is an in-house dataset comprising 
300 PXRs, retrospectively collected from cooperative hospitals under institutional 
review board (IRB) policies. 

18.4.3.2 PELE Bone-Suppressed CXR for Landmark Detection 

We selected 14 corresponding landmarks based on the CE Angle, acetabular index, 
H-line, and Perkin quadrant [14, 15, 23], which are commonly used in clinical 
auxiliary diagnosis. All images were annotated by a pelvic surgeon with over ten 
years of experience and subsequently reviewed by D2, who focused on verifying the 
locations forming the CE Angle, acetabular index, and H-line, and made corrections 
where necessary after consulting with D1. 

For evaluation, we utilize mean radial error (MRE) to quantify the Euclidean 
distance between ground truth and predicted landmarks, along with successful 
detection rate (SDR) at four radii: 3, 4, 6, and 9 pixels (px), as shown in Table 18.3. 

Table 18.3 presents the quantitative performance of various baselines before and 
after incorporating the PELE module. Notably, when trained with only 107 PXRs 
(12.5 %. of all PXRs), the MRE improvement is particularly pronounced, with a 
gain of over 200% compared to the baseline. This suggests that PELE offers a 
substantial advantage for small datasets. With 50 %. of the data (i.e., 425 PXRs), 
our method achieves an MRE of 1.83 and an SDR of 94.41% within a 9px radius. 
Furthermore, PELE demonstrates good generalization by working effectively with 
different baselines (i.e., U-Net, GU2Net), indicating that it can be applied to a range 
of models. 

As illustrated in Fig. 18.7, the red points represent the ground truth, while the 
blue points denote the predicted landmarks. It is evident that the localization of the 
detected landmarks has significantly improved after applying the PELE module, as 
the visual distance between the predicted and actual points has noticeably decreased.
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Table 18.3 Performance of various landmark detection models with and without the PELE 
module. The highest scores are highlighted in bold, while the second-best results are underlined 

MRE STD SDR (%) 

Models Training data (px) (px) 3px 4px 6px 9px 

GU2Net [25] 107 11.64 30.79 52.40 67.34 82.84 90.50 

GU2Net with PELE 107 4.85 12.95 53.43 67.40 83.40 91.30 

U-Net [18] 107 10.70 30.99 51.12 66.13 81.82 90.07 

U-Net with PELE 107 4.74 14.33 52.79 66.42 83.17 91.52 
GU2Net [25] 213 6.66 23.44 54.30 70.00 85.97 92.26 

GU2Net with PELE 213 4.39 11.12 54.53 70.71 85.99 93.04 
U-Net [18] 213 6.98 22.01 52.30 68.05 83.45 91.30 

U-Net with PELE 213 4.72 10.65 53.70 69.27 84.51 92.24 

GU2Net [25] 425 3.81 20.53 56.54 73.10 87.04 93.35 

GU2Net with PELE 425 2.01 9.75 56.89 73.49 88.14 94.41 
U-Net [18] 425 3.41 19.48 55.17 72.63 86.65 92.70 

U-Net with PELE 425 1.83 9.32 55.49 73.18 87.33 93.38 

18.4.4 Conclusion of PELE 

The design of the PELE module significantly improves the accuracy of pelvic 
landmark detection across various baseline models. By explicitly addressing the 
overlay of soft tissues, such as the intestines and bladder, which can obscure the 
underlying pelvic bone structures in PXR images, the module isolates the pelvis, 
thereby enhancing the reliability of landmark positioning and the identification 
of critical structures. This improvement facilitates more accurate diagnosis and 
treatment planning for downstream clinical tasks. 

18.5 Conclusion 

DecGAN directly decomposes CXRs into bone CXR images, lung CXR images, 
and other soft-tissue CXR images, thereby generating a bone-suppressed CXR by 
removing the bone component. These decomposed CXRs are highly effective for 
deep learning models, such as CXR disease classification. However, radiologists 
may have concerns about the quality of the generated CXRs. For instance, they 
might worry about the introduction of artificial artifacts and find the resolution too 
low for clinical use, which significantly reduces the clinical value of DecGAN. 

HRCS adopts an alternative approach to bone suppression. It only generates a 
bone CXR image and subtracts this bone image from the original CXR to obtain a 
bone-suppressed CXR. This method has higher clinical value because it can produce 
high-resolution bone-suppressed CXRs without introducing artificial artifacts. This 
is because HRCS subtracts the generated bone CXR from the original CXR, rather
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Fig. 18.7 Visualizations of various methods under the 213 training data setting. Blue points 
indicate the predicted landmarks, while red points correspond to the ground truth labels. The 
following row presents close-up views of local details to better illustrate the results. The MRE 
value is shown in the top left corner for comparison. The blue circles are just for reference 

than directly generating a bone-suppressed CXR, which reduces the difficulty of 
the task. Besides, HRCS can generate a low-resolution bone CXR, which is then 
resized to high resolution, just ensuring that no critical details are lost in the final 
bone-suppressed CXR (no artifacts are added in the low-resolution bone CXR). 

PELE follows the approach of HRCS but benefits from using the generated pelvic 
bone image directly, rather than relying on a fully bone-suppressed image. Pelvic X-
ray bone extraction is an ideal task that directly benefits from having access to the 
bone image itself. 

All three of the introduced methods embed 3D CT priors into 2D X-ray 
imaging using GANs to extract bone structures from X-ray images. Using GANs 
to directly generate specific CXRs, such as bone-only or bone-suppressed CXRs, 
is a straightforward idea borrowed from natural image computer vision tasks. 
However, when adapting methods from natural image tasks, it is crucial to consider
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the clinical value. In most cases, medical AI methods should serve as an aid for 
radiologists rather than making decisions independently. The methods should be 
highly interpretable, and the generated results should assist radiologists in their 
decision-making process. 

There are several promising directions for further research. First, leveraging 
large foundational models for modality transfer presents a valuable opportunity. 
These large-scale networks are capable of extracting more robust and nuanced 
features, which could significantly enhance the performance of medical imaging 
tasks, including bone suppression. Second, expanding the decomposition beyond the 
current focus on bones is an intriguing direction. Currently, bones are the primary 
target because their density is much higher than that of other tissues, making them 
easier to isolate and suppress. However, incorporating additional components, such 
as soft tissues and organs, could lead to a more comprehensive approach to CXR 
decomposition. This could improve the utility of bone-suppressed images and help 
address a broader range of clinical needs. 
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